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ABSTRACT
With population growth, water will increase in the following decades tremendously. The 
optimization of water allocation for agriculture requires accurate soil moisture (SM) monitoring. 
Recent Global Navigation Satellite System Reflectometry (GNSS-R) studies take advantage of 
continuously emitted navigation signals by the Global Navigation Satellite System (GNSS) 
constellations to retrieve spatiotemporal soil moisture changes for soil with high clay content. 
It presents the advantage of sensing a whole surface around a reference GNSS antenna. This 
article focuses on sandy SM monitoring in the driest condition observed in the study field of 
Dahra, (Senegal). The area consists of 95% sand and in situ volumetric soil moisture (VSM) 
range from ~3% to ~5% durinf the dry to the rainy season. Unfortunately, the GNSS signals’ 
waves penetrated deep into the soil during the dry period and strongly reduced the accuracy 
of GNSS reflectometry (GNSS-R) surface moisture measurements. However, we obtain VSM 
estimate at low/medium penetration depth. The correlation reaches 0.9 with VSM error lower 
than 0.16% for the 5–10-cm-depth probes and achieves excellent temporal monitoring to 
benefit from the antenna heights directly correlated to spatial resolution. The SM measurement 
models in our research are potentially valuable tools that contribute to the planning of 
sustainable agriculture, especially in countries often affected by drought.
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1. Introduction

Water resource management is considered one of the 
critical problems in the world, especially in the context 
of the growth of the population, the development of 
the industry, the need for increased food production 
and the pollution of the water resource due to various 
human activities. In addition, it is also necessary to 
ensure sustainable agricultural development (Zhang 
et al., 2017) and flood control (Rodriguez-Iturbe & 
Porporato, 2004).

A vital parameter of the water resource is soil 
moisture (SM). Indeed, its impact on the soil- 
vegetation-atmospheric exchange is exceptionally 
high in three regions: the Great Plains of North 
America (Xu et al., 2018), India and the Sahel, where 
rainfall is strongly influenced by SM (Koster et al.,  
2004). In many countries like Mali, or Senegal, water 
resources basically come from groundwater reservoirs 
that are declining and not renewable. There are no 
clear conclusions in previous studies whether or not 
this groundwater depends on SM variations due to the 

limitation of SM data and the complexity of hydro
logical phenomena (Fatras et al., 2012; Lebel et al.,  
2009; Lopez et al., 2016; Mougin et al., 2009). 
Knowledge of these phenomena is fundamental for 
a proper understanding (Rascon et al., 2021; 
Steelman et al., 2012) of water resources management, 
in ecology, in the development of agricultural strate
gies, as well as in case of extreme events (He et al.,  
2012; Martínez-Fernández et al., 2021; Sun et al.,  
2015).

As a result of its importance, various methods have 
been developed to measure SM indices, with three 
main approaches. The most direct one consists of 
using gravity surveys to carry out measurements in 
the field (Gehman et al., 2009), and it enables calibrat
ing the measurement probes. These probes are today 
the most widely used field measurement techniques, 
even with the information being scarce and very local. 
Modeling enables the provision of large-scale SM 
values but remains dependent on the availability of 
other variables such as meteorological data (Kumar 
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et al., 2008; Mitchell et al., 2004), the selection of 
model parameters and the model itself (e.g. WGHM 
(Döll et al., 2003), Global Land Data Assimilation 
System models (Rodell et al., 2004)).

Remote sensing in the microwave domain is based 
on the gap presets and is advantageous in that it can 
work any time of day or night, regardless of the 
weather conditions at the time of acquisition. It 
records information directly related to SM using the 
soil dielectric properties and electromagnetic (EM) 
radiation in the microwave region 0.5–100 cm 
(Karthikeyan et al., 2017; Sun & Cui, 2021; Wang & 
Qu, 2009). Many research and experiments have used 
the SM inversion method from an active microwave, 
which assumes that heat exchange in the ground hap
pens through thermal conduction (Han et al., 2018; 
Kerr, 2007; Xu et al., 2020). However, these spectral 
windows are also susceptible to cloud cover, limiting 
their use due especially to their low spatial and tem
poral coverage.

Meanwhile, passive microwaves use a sensor which 
emits an EM wave in a known frequency and polariza
tion in the direction of a target, such as its surface (Xu 
et al., 2020). Passive microwaves are preferred for 
estimating SM (Chew & Small, 2018; Entekhabi et al.,  
2010; Peng & Loew, 2017). Passive microwave sensors 
including Scanning Multichannel Microwave 
Radiometer, Special Sensor Microwave/Imager sen
sors, Advanced Microwave Scanning Radiometer 
Earth Observing System and Soil Moisture Ocean 
Salinity Satellite/Soil Moisture Active Passive mission 
have been used successfully to measure SM (Ahmad 
et al., 2011; Jones et al., 2010; Kerr et al., 2001; Njoku & 
Chan, 2006; Paloscia et al., 2001; Wen et al., 2005; 
Wigneron et al., 2021). However, spatial and temporal 
resolution is significantly lower than the infrared 
range and is thus considered a significant limiting 
factor for SM measurements.

In addition, recent used EM waves come from 
Global Navigation Satellite System(GNSS) (GPS, 
GLONASS, Galileo, etc.), which extract the various 
geographic parameters of the earth surface with high 
spatiotemporal resolution (Darrozes et al., 2016). This 
opportunistic remote sensing technique is called 
GNSS reflectometry (GNSS-R), based on the evalua
tion of GNSS waves obtained by an antenna after 
reflection on the earth surface (Aranyossy & Ndiaye,  
1993; Alonso-Arroyo et al., 2014; Darrozes et al., 2016; 
Roussel et al., 2014).

Most GNSS signals are received directly by 
a geodetic antenna’s upper hemisphere, as Right- 
Hand Circular Polarization (RHCP) waves. 
Meanwhile, a portion comes from below the horizon 
of the antenna after reflections from surrounding sur
faces. Fortunately, the lower antenna gain pattern is 
mainly Left-Hand Circular Polarization (LHCP) and 
records LHCP signal corresponding to the reflected 

signal. EM interferences between direct (RHCP from 
upper part of the antenna) and reflected waves (LHCP 
from lower part) are especially obvious in the total 
signal-to-noise ratio (SNR) recorded by the receiver.

This SNR technique is applied in various studies of 
Earth Sciences, particularly SM analysis. The temporal 
resolution can be several minutes, hours or days, 
depending on the calculating algorithm applied to 
assess the SM variation (Chew et al., 2014; Larson 
et al., 2008).

The reflected GNSS signal changes are due to the 
surface variations (soil composition, moisture, rough
ness) and their characteristics. Therefore, the SNR is 
then evaluated to predict SM content. This SNR 
method is applied using any conventional GNSS recei
ver/antenna without any hardware modifications. The 
GNSS R technique has SM retrieval accurately at 2– 
5 cm depth over clayed soils (Rodriguez-Alvarez et al.,  
2011; Roussel, 2015). Nevertheless, if the SM content is 
less than 10% volumetric soil moisture (VSM), it 
causes cyclic wrapping of the phase.

The present study aims to develop a comprehensive 
approach for desert or semiarid climates where the SM 
levels are weak. According to the theory of radar 
waves, these weak SM levels induce a significant 
wave penetration (Ulaby & Moore, 1986). This pene
tration depends on the soil composition. For clay soils 
or rich clay soil content, even in case of extreme 
dryness, the waves are reflected in the first centi
meters, and the SM retrieval on the surface is well 
correlated to the in situ SM probe at 5 cm depth 
(Vey et al., 2016; Zhang et al., 2018). For sandy soils, 
the penetration is more critical and exceeds the meter 
in conditions of intense drought. Our approach esti
mating SM is based on state-of-the-art GNSS-R for 
SM retrieval. It is combined with the phase unwrap
ping, generally used in SAR imagery (Benoit et al.,  
2020; Lu & Zebker, 1998) for very weak values of 
SM, which induces the intense penetration for the 
sandy soil of the study area. The method using SNR 
data incorporates both direct and reflected signals, 
continuously collected by the geodetic antenna. The 
variation in soil moisture is not the only parameter 
that will affect the reflected signal of radar waves; two 
other aspects will interfere with bare soil: (i) the sur
face roughness of the soil and (ii) variations in soil 
composition. However, of these three parameters, only 
variations of the surface soil moisture (SSM) has 
a cyclical response related to seasonal changes of this 
Sahelian area. SSM changes the EM properties of the 
reflected waves, i.e. the complex dielectric constant 
that depends on electrical conductivity and relative 
permittivity of the media. Two parameters, namely 
the phase and the frequency of the multipath contri
bution to SNR, are analyzed to connected with the 
antenna height above the reflecting surface (Lopez 
et al., 2016). Results obtained from the total of the 
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different GNSS satellite constellations will be evalu
ated applying independent SM records measured in 
the field with Theta probe sensors (Roussel, 2015).

2. Methodology

2.1.1 Interference Pattern Technique
Interference Pattern Technique (IPT) is a method 
based on analyzing the multipath signature present 
in the GNSS SNR data recorded continuously by 
a GNSS receiver and its associated single geodetic 
antenna (Figure 1a). Multipath propagation affects 
the SNR recorded by a GNSS receiver by generating 
frequency oscillations with lower amplitudes than the 
direct signals. These frequency oscillations depend on 
the satellite elevation (SE) angle and vary from the 
intermediate frequency at Low Satellite Elevation 
(LSE) to the high frequency at High Satellite 
Elevation (HSE).

Because the antenna gain pattern prefers the direct 
signal over the reflected signal by construction, and 
during reflection will also reduce the signal energy; the 
primary influence of the structure of the SNR time 
series is the direct one (Figure 1b). The SNR total show 
a low frequency which corresponds to the main varia
tion of the energy of the direct signal as a function of 
the SE angle. The multipath (Figure 1b, lower graph) 
under medium frequency oscillation is visible for low 
elevations while for higher elevations of the satellite 
these multipaths do not emerge or poorly emerge of 
noise level.

For multipath component analysis, the direct signal 
contribution must be eliminated by fitting and sub
tracting a simple parabolic polynomial from the raw 
time series of SNR to obtain the residual of SNR 
multipath (SNRm) component (Larson et al., 2008; 
Figure 1b, red curve).

The influence of multipath interference appears in 
SNR measurements at different frequencies of the 
L-bands, such as L1, L2 and L5. According to Larson 
et al. (2010), for a static or quasi-static surface (vertical 
velocity of the surface is lower than 10–6 m.s−1). the 
oscillations frequency is approximated as a sinusoidal 
function of the SE: 

~f �
4π
λ

heff (1) 

where heff is the effective antenna height measured by 
the antenna height Ho (Figure 1a) and λ is the signal 
wavelength. The multipath oscillation frequency ~f and 
the effective antenna height heff are directly propor
tional, as shown in equation above, and can be calcu
lated for each satellite at each epoch and for each 
specular point of the time series where the moisture 
measurement occurs.

When the GNSS wave penetrates the reflecting sur
face, heff varies depending on the characteristics of the 
non-moving or weakly moving surface (e.g. vegetation 
density, SM, soil type, Figure 2a).

Frequency ~f is estimated, based on harmonic 
Fourier decomposition of the Lomb–Scargle period
ogram (Lomb, 1976; Scargle, 1982), using a moving 
window from the SNRm time series. We also add, 
before Lomb–Scargle analysis, a step of phase 

Figure 1. (a) Transmission of EM waves to the single geodetic antenna: direct GNSS signal path with RHCP and the reflected path 
with LHCP; (b) SNR in dB-Hz of GNSS signals and SNR multipath (SNRm) signals removed the direct contribution of signal 
(parabolic red line) from the initial SNR profile (Modified from Roussel et al., 2016 and Darrozes et al., 2016).
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unwrapping (Figure 2, see Section 2.2). The retained 
periodogram peaks must reach a significance level 
equal to 1% (Li et al., 2018) and defining a local max
imum between ~fmax and ~fmin using user-defined hmin, 
hmax,; in our case, the penetration of the wave leads to 
hmax = Ho + Pd, where Pd is the penetration depth of 
the wave (see next section).

According to the results of Larson et al. (2010), and 
a given quite constant heff , SNRm can be expressed as 
follows: 

SNRm ¼ Am cos
4πheff

λ
sin θð ÞþΦm

� �

(2) 

where Am is the amplitude of the multipath oscilla
tions and m is the phase of the multipath oscillations. 
Am denotes the backscatter intensity of ground reflec
tions, including both the gain pattern and multipath 
power. According to field studies, Am and Φm are 
strongly correlated with the level of SM (Larson 
et al., 2010), and SM is more sensitive to Φm than 

Am (Chew et al., 2015; Roussel et al., 2016). 
Consequently, the three metrics of Am, Φm (above) 
and heff (derived from ~f , see Equation (1)) can be 
used to estimate SM variations.

2.2 Phase unwrapping method

2.2.1 Unwrapping SNR phase method
The GNSS waves penetration depth depends on the 
soil dielectric properties (Njoku & Entekhabi, 1996), 
the SM content and the SE (Figure 2a, 2b). The zenith 
signal’s penetration depth Pd, according to Njoku and 
Entekhabi (1996) and Behari (2006), can be expressed 
as follows: 

Pd ¼
λ
ffiffiffiffiffiffiffiffiffiffiffiffi
Re εrð Þ

p

2πIm εrð Þ
(3) 

where Re εrð Þ and Im εrð Þ are the real and imaginary 
parts of the reflecting surface relative permittivity, 
respectively.

Figure 2. (a) Theoretical penetration depth of the GNSS waves when the ground consists of 100% clay (red), 95% sand (blue, our 
study) and 100% sand (green); (b) theoretical penetration depth of the various GNSS wavelengths and for various SE for a sandy 
soil; (c) representation of the unwrapping phase process (Zebker & Yanping, 1998). Red arrow shows a positive phase slip while 
green arrow shows a negative one.
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Recent studies applying IPT on clay soils give excel
lent results with high accuracy SM estimation at 2– 
7 cm depth because the penetration depth of the wave 
is less than the wavelengths of the GNSS signals 
(Figure 2a, b). However, if we are in the conditions 
of sandy soils and VSM has low values, i.e. in the driest 
season, the wave penetration can exceed the wave
length λ and causes the cyclic phase wrapping 
(Figure 2a). Theoretical, the penetration depth of 
GNSS signals shows a significant increase when the 
soil is 100% clay (red) or 100% sand (green), especially 
for sandy soil when VSM is very low (<10%) 
(Figure 2a). This penetration also depends on the SE 
and the wavelength of the GNSS signal (Figure 2b). 
When SE is low, the penetration of the wave will be 
lower, while for high SE, the energy of the EM signal 
being more important, the depth of penetration will be 
greater. Still, from a theoretical point of view, we see 
that when the wavelength of the signal increases, its 
penetration depth also increases (Figure 2b). Thus, 
when the penetration depth is greater than the wave
length λ used, the phase undergoes one or more cycle 
slips. As a result, the three metrics estimated from 
SNRm does not correlate with the SM. Therefore, in 
the sandy field, we propose using an additional phase 
unwrapping algorithm to solve this problem by recon
stituting the phase cycle slip that appears in the esti
mated Φm, thus obtaining continuous phase variations 
(Figure 2c).

Figure 2c shows the example of a discrete noisy 
phase signal φ xð Þ whose amplitude exceeds the range 
[-π, π] by processing phase wrapping operation 
W φ xð Þð Þ with the original continuous noisy phase 
signal. The wrapped phase ψ ¼W φ xð Þð Þ is calculated 
using the four-quadrant arctangent (atan2) function 
of sin φ xð Þð Þ and cos φ xð Þð Þ. We must remove the 2π 
slips that are present in the wrapped phase signal 
(Figure 2c) to eliminate the phase cycle slip and 
restore the continuous form, allowing the phase varia
tion φ xð Þ usable in analysis or further processing 
(Figure 2d). This process is called phase unwrapping 
and can be represented as follows: 

φunw xð Þ ¼ U ψ½ � ¼ ψ þ 2kπ (4) 

where Φunw xð Þ is the unwrapped phase signal, U ψ½ �
is the operation of phase unwrapping and k is an 
integer relating to the cycle number of phase slips. 
To apply the phase unwrapping procedure for the 
estimated phase Φm from the SNRm time series, we 
must calculate the difference Δψ between two adjacent 
successive samples on its left. Once a phase wrap is 
detected, Δψ is less than –π or greater than +π, 2π is 
either subtracted (negative phase slip, k < 0) or added 
(positive phase slip, k > 0), from this sample to the 
right-hand side. In addition, this phase unwrapping 
method is ideally suited to noisy data, such as GNSS 

signals (Gdeisat, 2018) or InSAR images (Hooper & 
Zebker, 2007; Smith, 2002; Zebker & Yanping, 1998).

2.2.2 New metrics
Following Equation (2), we can obtain the three 
metrics heff , Am and Φm from SNRm for each GNSS 
constellation (see IPT). Considering the Am depending 
on the antenna gain pattern and multipath intensity, it 
is constant. However, the phase unwrapping algo
rithm processing changes the phase Φm to obtain 
a variation of continuous phase Φunw, the effective 
antenna height heff (proportional to the frequency ~f , 
Equation (1)) must be re-calculated. The new height 
effective hunw

eff after using the unwrapping phase is 
determined as follows: 

hunw
eff ¼ cos� 1 SNRm

Am

� �

� Φunw

� �

�
λ

4π � sin θð Þð Þ

(5) 

2.3 Estimating SM from SNR signals using IPT and 
unwrapping phase method

Following the GNSS-R theory presented in the pre
vious parts, a complex processing chain integrating 
IPT and phase unwrapping methods has been devel
oped to determine SSM in sandy environments 
(Figure 3). In this processing chain, we employ 
a new time series of hunw� cal

eff , calibrated with in situ 
VSM to remove negative correlation of hunw

eff , to better 
retrieve variations of SM and to establish the SM 
maps.

As defined in Equation (3), the new variable Pd eff is 
computed using the effective height hunw

eff derived from 
the unwrapping phase process: 

Pd eff ¼ hunw
eff � Ho

� �
� Er (6) 

where Ho is the antenna height from the phase center 
to the ground without any penetration and Er corre
sponds to the total error term due to the measurement 
error for each GNSS wavelength and errors associated 
with the phase unwrapping and the surface roughness, 
which will further increase the measurement noise.

A Savitzky–Golay (Sgoley) filtering method (Baba 
et al., 2014; Schafer, 2011) was applied for hunw

eff to 
minimize errors caused by interference values (noisy 
signal whose frequency span is large) to obtain the 
filtered effective height hunw� cal

eff (Equation (7)). This 
improvement in the height reduces the noise of the 
time series and increases the accuracy of SM estima
tions. The principle of this filter is to replace each hunw

eff 

data point with some combination of the values con
tained in the moving window centred at that point. 
Sgoley filtering process can be described as follows: 
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HSgo ! dHSgo ¼
1
L

Xk

n¼� k
HSgoþn (7) 

where dHSgo is the result from the Sgoley filter, HSgo is the 
input data and L ¼ 2kþ 1 is the moving window length.

New time series Φunw, hunw
eff and hunw� cal

eff were nor
malized to minimum and maximum of in situ SM 
variables recorded by a classical SM sensor (Theta 
probe). Pearson correlation coefficient R is quantified 
to determine the correlation between these normalized 
time series with VSM measured by the Theta probe. 
We can also describe the differences between them in 
terms of the totalized root mean squared error 
(RMSEtotal) as follows: 

RMSEtotal ¼ RMSErp þ RMSEsp þ RMSESE (8) 

where RMSErp is an error caused by the difference in 
position between the reflected point used to retrieve the 
SM and the Theta probe used to measure the reference 
moisture; RMSEsp is the error caused by the difference in 
spatial observation of the two moisture measurement 
methods (ML3 Theta probe is ~0.03 m2, GNSS-R IPT is 
from 0.8 to 137 m2 for an antenna height Ho = 
1.61 m with SE of 2–70°); and RMSESE is the error caused 

by the GNSS instrument affected by SE, the roughness of 
the ground and the GNSS wave penetration depth.

Although the statistics parameters described above are 
helpful in research for linear problems, they cannot 
reflect all of the correlations seen in wave field studies. 
As a result, we propose an additional method for analyz
ing waveform data to consider the correlations known as 
Wavelet Transform Coherence (WTC) (Grinsted et al.,  
2004). The WTC is a method to analyze the phase lag and 
coherence between two-time series S (time series of 
Φunw/hunw

eff /hunw� cal
eff and in situ measurements) as 

a function of time and frequency.
To compute the WTC analysis, we first have to 

transform our time series into a wavelet coefficient 
map. The wavelet coefficient power map VSi

a;nð Þ

corresponds to the convolution in the frequency 
domain of the times series Si and a set of wavelet 
functions a;nð Þ (Equation (9)). This set is derived 
from a mother function well known as Morlet wavelet 
function, a Gaussian-windowed complex sinusoid. For 
each wavelet function, a coefficient is computed for 
the time series’ time index n, and a defined period a. 
This period a varying from the minimal period, i.e. 1/5 
of day, to the maximal period ~1 month. 

Figure 3. The flow chart represents the complex processing chain for SSM detection/observation in sandy environments using an 
integration of IPT and phase unwrapping methods: the input, the various processing steps and the output.
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VSi
a;nð Þ ¼ a;nð Þ�Si nð Þ (9) 

WTC analysis performs detection of phase difference 
(= time delay), phase angle (cross magnitude), non- 
stationary and also wavelet coherence M2 between the 
two-time series (Equation (10)). The phase difference 
between the two-time series is indicated by the arrows’ 
directions, and we can gain confidence in causal and 
geophysical test relationships using phase angle statis
tics. The two-time series are in-phase if the arrow is 
horizontal and pointing to the right, in-phase opposi
tion if the arrow is horizontal but pointing to the left, 
and phase quadrature if the arrow is pointing up or 
down. According to Torrence and Webster (1999) and 
Grinsted et al. (2004), wavelet coherence M2 can be 
calculated using the following formula: 

M2
n sð Þ ¼

S s� 1VXY
n sð Þ

� ��
�

�
�2

S s� 1 VX
n sð Þ

�
�

�
�2

� �
:S s� 1 VY

n sð Þ
�
�

�
�2

� � (10) 

3 Experimental setup

3.1 Measurement site

Senegal has a strong diversity in climate, and it crosses 
three different climate zones: in the north the desert, 
and then crosses the semiarid zone, which leaves the 
place, in its southward part, to tropical climate 
(Figure 4). Senegal is crossed by the West African 
river, which gave name to the country. Senegal River 
is 1800 km long. However, the catchment area is six 
times smaller than the two principal African basins, i. 
e. Congo and Nile; its area covers ~0.5 million km2, 
with an average discharge of ~630 m3. s−1.

The study area is located near Dahra, Senegal, 
where the climate is semiarid. The main rainfall occurs 
during the rainy season, extending from mid-June to 
mid-October (Figure 5) with relative humidity ran
ging from 60% to 75%. It is followed by a dry season 
that extends from late October to late May, with rela
tive humidity ranging from 20% to ~0%. This season is 

Figure 4. Map of African Climate using Köppen climate classification, the studied watershed is delimited by a dark red line and 
associated hydrographic network corresponds to dark blue line for main rivers until white line for small tributaries or gully 
(Modified from Peel et al., 2007; Ramillien et al., 2021). The white rectangle corresponds to the study area presented in Figure 6.
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marked by a rise in temperatures, reaching 33°C, and 
a sharp drop in rainfall. It is also a slightly windier 
period with winds up to 3.5 m. s−1. A detailed descrip
tion of the field site can be found in Tagesson et al. 
(2015). Agriculture is one of Senegal’s strengths, but 
while the south (tropical climate) has very favorable 
conditions, this is less true in the semiarid Sahelian 
zone. We then understand the importance of mapping 

SM to water the fields while saving this rare water 
commodity.

To make this mapping, we have installed a Leica 
GR25 receiver with an AR10 antenna in a sparsely 
wooded grassland in Dahra experiment (Figure 6a, 
b). In terms of geology and soil, we have 
a homogeneous area of rubified sand from 
a continental dune (Faye et al., 2017) of further square 

Figure 5. Dahra region charts of (a) monthly precipitation (mm), (b) relative humidity (%), (c) air temperature at 2 m (°C) and (d) 
wind speed at 2 m (m . s−1) from 2015 to 2017. Black vertical dashes correspond to January for each year (Modified from Laouali 
et al., 2021).

Figure 6. (a) The experiment site of Dahra (Senegal), (b) location of the AR10 antenna (15°24ʹ5.36” N; 15°26ʹ0.13” W); (c) 
photography of the AR10 antenna with a Leica GR25 receiver installed on sandy soil, this flat area is covered by grassland and 
sparce trees. The ring of thorny trees surrounding the antenna is clearly visible and serves to protect the equipment from animals.
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kilometers. Therefore, this field is considered to have 
no significant topography changes (Figure 6c), and in 
the modeling of the specular point, we assume that it is 
a flat area, and we do not use digital elevation model 
corrections. GPS and GLONASS signals were continu
ously acquired at a 1 Hz sampling frequency from 
October to December 2016.

3.2 Data used for validation

The SSM is monitored by an SM station located about 
500 m away from the GNSS receiver (Figure 7a). Some 
authors (e.g. Baup et al., 2007; Rosnay et al., 2009) have 
shown that in semiarid Sahelian areas, with equivalent 
soil and vegetation, in situ SM measurements are 
representative of much larger area. This is why, we 
consider in this case of very homogeneous geological/ 
soil (Faye et al., 2017), the moisture station represents 
a large area, including the GNSS-R station and can be 
used for calibration. Soil content of the Dahra experi
ment is ~95% of sand associated with few percent of 
organic matter in surface and few percent of clay. In 
order to avoid surface disturbances (presence of this 
small concentration of organic matter), we took soil 
samples at 10 cm depth. These samples, as shown in 
Figure 7a, are representative of the soil column down 
to at least 1 m depth (no visible soil change).

For the GNSS frequencies which are in L-band, we 
calculated the theoretical curves for a soil consisting of 
100% sand and another consisting of 100% clay 
(Figure 2a). This figure shows that the depth of pene
tration becomes important as soon as the SM is weak 

and below 10% the penetration exceeds 7 cm to reach 
40 cm for SM~1%. The response of our soil (blue curve) 
is close to the theoretical green curve (100% sand).

The SM station is equipped with two soil tempera
ture sensors and 5 ML3 Theta probe sensors with 
a sampling frequency of 15 min (accuracy of ± 
0.1%), installed at 5 cm (1, 3), 10 cm (2, 4) and 
1 m depth (5 in Figure 7a). Figure 7b shows the 
variation of SM measured by the Theta probes. 
During the transition phase from the rainy season to 
the dry period, the VSM at 5 cm depth (P5cm) varied 
from 2.23% to 4.39%, the VSM at 10 cm depth (P10cm) 
varied from 2.87% to 4.76% and the VSM at 1 m depth 
(P1m) varied from 5.03% to 5.63%. At P5cm and P10cm 

depth, VSM shows a daily sinusoidal pattern.

4 Results

4.1 Importance of the unwrapping in sandy soil

For sandy soils of Dahra, we have a very noisy phase 
dataset (Figure 8a) without any correlation with the 
in situ probes. So we applied the unwrapping techni
que to this phase dataset and we make an inspection of 
the unwrapped/wrapped signals to identify possible 
fake slips due to the noise. To calculate the number 
of fake slips, we compute the difference between two 
adjacent samples of the wrapped signal. If the com
puted difference is upper than twice the noise variance 
threshold criteria (TC), we assume we have a fake slip. 
In that case, the signal after the fake slip is affected by 
“miss wrap” due to the error propagation.

Figure 7. (a) Configurations of the SM station (15°43ʹ42.89” N, 15°00ʹ55.69” W). The station equipped with six Theta probes 
(green): (number 1, 3): 5 cm, (2, 4): 10 cm, (6): 100 cm; (b) VSM recorded by Theta probes during the study period in 2016 which 
corresponds to the transition between rain season and dry season. The gray rectangle corresponds to a non-acquisition period, 
light blue corresponds to the precipitation (mm of water) during the study period.
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This part of the time series is affected by a phase 
offset that can be positive or negative depending on 
the noise difference sign. We need to apply the 
unwrapping process to correct these harmful effects 
until all the computed differences are lower than TC. 
The resulting phase correlates with the in situ VSM 
measurements (P5cm, (1) Figure 7a) with a calibration 
function in this type of soil of VSM~1 x unwrapped 
phase where the bias is close to 0 (Figure 8b) which 
shows that we do not need to calibrate the phase to 
obtain VSM because of VSM ~Φunw. The rest of the 
study will use the Φunw dataset to compute the antenna 
height parameters (see 4.2).

4.2 Comparisons between Φunw, hunw
eff and hunw� cal

eff 
parameters for estimating SM in Dahra 
experiment

Table 1 lists the results of root mean square error 
(RMSE) and correlation coefficient of Pearson (R) 
between Φunw,hunw

eff , and hunw� cal
eff (hunw

eff after Sgoley 

filtering) with in situ VSM measured by the Theta probes 
at P5cm and P10cm for different constellations from 
October to December 2016 in the study area. We do 
not use P1m due to the weak correlation with subsurface 
SNRm measurement. This observation shows that the 
wave penetration depth is less than 1 m, which agrees 
with the theoretical model for VSM upper than 2.5% 
(Figure 2a). In the Darha experiment, where the soil 
consists of over 95% sand, retrieving SM from GNSS-R 
data became more complicated. The Am values can be 
disturbed by vegetation on the surface around the 
antenna. Thus, we used hunw

eff ; hunw� cal
eff and Φunw to 

retrieve variations of the VSM. The three parameters 
show a good correlation with the in situ measurements 
of SM at 5 and 10 cm. Indeed, R is always higher than 
0.73 in the rainy season and higher than 0.51 during the 
dry season. However, during the rainy season, Φunw has 
a lower correlation than hunw� cal

eff and results quite similar 
to those of hunw

eff regardless of the probe depth, the SE or 
even the constellation used. Conversely, Φunw has the 
slightest deviation from the in situ measurements during 

Figure 8. Impact of the phase unwrapping for sandy soils (a) before the unwrapping and (b) after the unwrapping. The correlation 
factor reaches 0.9.

Table 1. Comparison between (Φunw , hunw
eff , and hunw� cal

eff ) and VSM measured by P5cm/P10cm (RMSETotal/R) for difference constella
tions, and for SNR from LSE (2–30°) and HSE (30–70°) from October to December 2016 in Dahra site.

GNSS SNR

RMSETotal(%)/R

Rainy period 
(01/10/2016–15/10/2016)

Dry period 
(16/10/2016–06/12/2016)

SE2-30 SE30-70 SE2-30 SE30-70

P5cm P10cm P5cm P10cm P5cm P10cm P5cm P10cm

GPS Φunw 0.20/0.77 0.12/ 0.80 0.21/0.78 0.10/0.85 0.14/0.86 0.08/0.96 0.18/0.76 0.09/ 0.95
hunw

eff 0.21/0.74 0.12/0.89 0.22/0.74 0.14/0.87 0.19/0.51 0.11/0.84 0.19/0.56 0.11/0.81
hunw� cal

eff
0.15/0.89 0.08/0.96 0.17/0.87 0.08/0.97 0.11/0.85 0.07/0.93 0.15/0.77 0.08/0.92

GLO Φunw 0.19/0.77 0.12/ 0.77 0.19/0.78 0.10/0.83 0.16/0.81 0.09/0.95 0.16/ 0.80 0.09/ 0.94
hunw

eff 0.22/0.74 0.12/0.89 0.22/0.7 0.13/0.89 0.19/0.56 0.11/0.82 0.19/0.51 0.11/0.82
hunw� cal

eff
0.16/0.87 0.09/0.95 0.15/0.88 0.09/0.95 0.14/0.78 0.08/0.92 0.14/0.78 0.07/0.92

GPS+GLO Φunw 0.21/0.73 0.11/ 0.82 0.19/0.79 0.10/0.83 0.17/0.79 0.09/0.95 0.16/ 0.80 0.09/ 0.95
hunw

eff 0.20/0.79 0.12/0.90 0.23/0.74 0.14/0.87 0.18/0.59 0.10/0.84 0.19/0.53 0.11/0.82
hunw� cal

eff
0.16/0.87 0.09/0.95 0.16/0.87 0.09/0.95 0.14/0.78 0.08/0.91 0.14/0.77 0.08/0.92
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the dry period, with an RMSE varying between 0.18% 
and 0.08%. It also has the best correlation, with R ranging 
between 0.92 and 0.95 (Table 1).

Finally, the parameter that gives the best results over 
the two seasons is clearly hunw� cal

eff with the best correla
tion, with the in situ measurements at 10 cm depth, 
which is always higher than 0.91 and an RMSE lower 
than 0.16%. This parameter is less influenced by the 
vegetation density and soil roughness. It is also less 
sensitive to the constellation used: GPS and GLONASS 
alone and GPS+GLONASS have very closed results. 
Nevertheless, the number of specular points increases 
when both constellations are used simultaneously, result
ing in more accurate moisture maps (more points with 
a better spatial distribution). Furthermore, the elevation 
of GNSS satellites has little influence on this parameter, 
and the results are very favorable for low and high angles 
of incidence (Table 1). On the other hand, the parameter 
hunw

eff , even if it presents globally good results, generally 
shows the weakest correlation of the three parameters 
studied here and the most significant differences with the 
in situ measurements of SM. In bold: results with a 
correlation greater than or equal to 0.9.

4.3 Wavelet analysis of the SNR time series

For WTC analysis, it is necessary to construct wavelet 
coefficient maps of two-time series, i.e. VVSMin� situ

a;nð Þ
and 

VVSMunw
a;nð Þ

derived from the in situ time series of the SM 
probe and the SM retrieved from Φunw. We used only the 
probe at 5 and 10 cm depth. The sensor probe at 1 m is 
too deep, and GNSS waves cannot reach this depth due to 
the moisture conditions (>2.4%) (Figure 2a).

Figure 9 shows the time series of VSM P10cm and VSM 
derived from the Φunw and hunw cal

eff (Figure 9a) and the 
wavelet coefficient map of the three time series of VSM 
P10cm (Figure 9b), VSMunw (Figure 9c) and VSMhunw cal

eff 

(Figure 9d), respectively. These time series have quite 
similar coefficient maps with the main period of more 
than 8 days. The results show a normalized coefficient 
ranging from 0.6 to 0.8, with a period of 1 day for the 
in situ time series and a period of 1–2 days for the GNSS- 
R time series derived from the Φunw and hunw cal

eff . Two 
GNSS-R time series have a power noise close to 0.2/0.3 at 
the period varying from half a day to a quarter of the day. 
Figure 9c shows a good correlation between VSM P10cm 

with VSMhunw cal
eff in the rainy season.

4.4 Wavelet Coherency Analysis between VSM 
estimated from Φunw and hunw� cal

eff with VSM 
measured by in situ probe

The correlation between VSM estimated from Φunw and 
hunw� cal

eff with VSM measured by probes at P5cm 

(Figure 10a, b) and P10cm (Figure 11a, b) exhibited 

significant changes by period. Figures show that the 
VSM derived from Φunw / hunw� cal

eff and in situ VSM 
measured has no significant correlation at the period of 
less than a half-day. During the dry season, a negligible 
correlation was found in the period of fewer than 4 days. 
This decorrelation is mainly due to the wave penetration. 
In this period GNSS wave reaches more than 10 cm and 
does not correspond to the surface condition.

Nevertheless, the results in Figure 10a show a phase- 
shift (arrow field oriented toward the left) and ranging 
from π to π/2 between Φunw and SM measured by the 
probe at more or less than 1-day period. While the VSM 
estimated from hunw� cal

eff has a weak phase shift ranging 
from 0 to π/4 (arrow oriented ~horizontally toward the 
right) with VSM in situ. Low frequencies show high 
homogeneity with a high value of M2 and no phase 
delay (horizontal vector field) between in situ and 
GNSS-R data for periods ranging from 8 days to a month.

Inflexion of the trend related to the transition between 
the rainy and the dry seasons is observed during the 
period ranging from 29 October 2016 to 
11 November 2016 over 2-/4-day period with the probe 
at 10 cm (Figure 11a, b) and to a small extent with the one 
at 5 cm over a very temporally localized to 2-day period 
and only for the parameter unw (Figure 10a). Figure 11 
shows a significant phase shift ranging from π/2 and π/4 
between in situ data and GNSS-R ones during this transi
tion period. It means that GNSS-R detects SM variations 
a little bit before the probe at 10 cm records SM. 
Figure 11b shows a better correlation between hunw� cal

eff 

and the in situ P10cm data during the transition and dry 
periods. In general, the hunw� cal

eff parameter presents 
a better correlation than Φunw. Globally, hunw� cal

eff para
meter is more homogeneous in terms of phase shift and 
M2 over all periods and for both in situ P5cm and P10cm 

measurements.

4.5 SM mapping based on GNSS-R data

As final results, Figure 12 shows SM time series obtained 
combining GLONASS and GPS and using of hunw� cal

eff 
parameter. These time series range between October 
and December 2016, i.e. from rainy to dry season. 
However, the VSM at P5cm and P10cm depth only changed 
2% during the entire study period. At the end of the rainy 
season of 2016, we see that the rains are already almost 
non-existent. Figure 12 shows that less than 3cm of water 
fell during October to decrease to less than 1 mm in 
November and disappear entirely in early December. 
The SM is following the same trend with an apparent 
decrease from ~4.5% of volume moisture to almost 3% 
for P10cm and even 2.5% for P5cm. The transition period is 
marked by quasi-constant SM of ~3.7%.

The time series of hunw� cal
eff shows a very clear anti- 

correlation with SM. Indeed, when the SM decreases, the 
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GNSS waves penetrate more strongly into these sandy 
soils, resulting in an increase of hunw� cal

eff . We also notice 
that hunw� cal

eff has a minimum height that can be lower 
than the measured height of the ground, which is 
1.61 m. This result is due to different factors. The first 
one is the multi-centimetric measurement noise which 
explains this phenomenon partly. Another one is the 
existence of some periodogram of a double peak indicat
ing two possible surfaces of reflection. Moreover, 
a significant decrease in satellites visibility causes an 
increase in measurement error, as demonstrated by 
Zeiger et al. (2021).

Figure 13 shows SM maps created from the 
results of hunw� cal

eff in the study area. The specular 
points used to retrieve the SM maps have been 

computed thanks to the simulator developed by 
Roussel et al. (2014) which allows to do the accu
rate ray tracing for each satellite according to the 
following parameters: orientation and elevation of 
the satellite, tropospheric refractive indices, local 
topography around the antenna, antenna height 
and the altimetric reference surface chosen – here 
the ellipsoid of the WGS84 datum. The time step 
for calculating spatial variability is set to 3 days. 
SM content changed from 2.87% to 4.76% during 
the rainy, transition and dry periods from October 
to December 2016. The temporal variation of the 
SM maps shows that the SM content gradually 
decreases as it transitions to the dry period. This 
soil drying increases toward the southeast with 

Figure 9. Time series and magnitude maps calculated from Torrence and Compo (1998). (a) In situ P10cm and unw , hunw cal
eff time 

series and associated wavelet coefficient maps; (b) VVSMin� situ
a;nð Þ

; (c) VVSMunw
a;nð Þ

; (d) V
VSMhunw cal

eff
a;nð Þ

.
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a spatial variability lower than 0.01%. The results 
demonstrate that the unwrapping phase technique 
improves the accuracy of SM retrievals compared 
to phase measurements.

5 Discussion

In the study area, the GNSS-R signal used to retrieve 
soil geophysical parameters of the soil represents 

a more complex observation of soil surface moisture. 
In areas with very low SM, hunw

eff still has a good corre
lation but is negatively correlated due to wave pene
tration. The effective height time series shows the best 
correlation with SM after it is corrected by the 
unwrapping SNR method and filtered by the Sgoley 
method to reduce the influence of vegetation and sur
face roughness. Equation (5) shows that the hunw

eff has 
an anti-correlation with Φunw, and it could be 

Figure 10. The wavelet coherence (M2) of WTC analysis between VSM derived from GNSS-R parameters and in situ VSM at P5cm (a) 

unwparameter, (b) hunw� cal
eff parameter.

Figure 11. The wavelet coherence (M2) of WTC analysis between VSM derived from GNSS-R parameters and in situ VSM at P10cm. 
(a) unwparameter, (b) hunw� cal

eff parameter.
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Figure 12. Evolution of the final results for all the time series hunw� cal
eff – during period from October to December 2016. Results are 

obtained using Unwrapping phase algorithm for GPS+GLO satellites (dark blue dot) and compared to the in situ VSM measured by 
P10cm (a) and P5cm (b); bluedotcorrespondtohunw� cal

eff in m and the curve in red is a fit of hunw� cal
eff using a cubic spline. Rectangle blue 

correspond to the precipitation during this period.

Figure 13. Dahra SM maps generated from the results of 3 days hunw� cal
eff during the rainy, transition and dry periods in 2016 by 

interpolating the specular reflection points (red dots) around the GNSS station (the ground surface is considered flat).
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explained as the increases of SM in any soil leads to the 
penetrations depth of GNSS signals decreases. Hence, 
as the effective height hunw

eff also decreases as demon
strated in previous studies using Φm to estimate SSM 
and positively correlates with the in situ measure
ments (Roussel et al., 2016).

Another advantage of this method is the ability to 
provide spatial and temporal variability of the SM 
(Figure 13). The illuminated spatial area depends on 
a critical parameter: the antenna height. In this case, 
1.61 m antenna height corresponds to a radius of the 
reflection area of about 12 m, an average area of 452 m2 

and a mean volume of ~100 m3. The comparison between 
GPS and GLONASS constellations shows that GPS satel
lites have a better correlation with in situ probes than 
GLONASS satellites. Here we show the effect of the signal 
noise of GLONASS constellations (lower SNR) which is 
more important than that of the GPS constellation. We 
choose to use both constellations to increase the number 
of specular points, and consequently, it improves over 
time to obtain long time series with a proper time step. It 
is possible to obtain two decades of data with time steps 
close to 30 s or less using the international GNSS network, 
which is essential to look at the effects of climate change, 
for example, and to highlight local and rapid phenomena 
like agricultural irrigation.

Another important aspect is that the antenna height 
adjustment can calibrate many space missions, e.g. a 
2 m antenna height, with a coverage radius of few ten 
meters, could be useful to calibrate the Sentinel I, 
RADARSAT-2, ALOS-2 missions. On the other hand, 
a 60-m antenna with a coverage radius of few 
kilometers could be used to calibrate CYGNSS or 
SMAP data worldwide using GNSS stations of national 
(RGP for France; NGS for USA, CMONOC GNSS net
work for China, etc.) or international networks (IGS, 
EUREF, etc.). These stations are selected to identify 
those that cover either bare ground, agricultural fields 
or even forests. From the investigated surfaces, the results 
pointed out that the total of the first Fresnel surface 
depends on three main factors: the height of the antenna; 
the height of satellite ε, which can receive from broadcast 
ephemeris or precise one; and the many satellites visible 
at time t. So the different scales can be determined by 
dividing the visible satellites into low elevations and high 
elevations. Then, surfaces of a few square meters can be 
evaluated using the antenna approximately 5 m with an ε 
range of 35–70°. While surfaces from 100 to 10,000 m2 

can be analyzed using the 100-m antenna with ε < 35 °. 
However, this method also has disadvantages due to the 
maximum height of the antenna, which must be less than 
the wavelength of the C/A code (293 m); otherwise, there 
is the problem of the construction of the interference 
pattern (Ribot et al., 2016).

GNSS-R with the single antenna is considered an 
excellent alternative solution to complement the 

in situ technique in order to monitor SM for various 
types of soil: bare soil (Roussel et al., 2016), bare and 
vegetated soil (Chew et al., 2016), cobbly clay loam 
(Larson et al., 2010), etc., and even areas where the 
VSM is too low or rapidly changes. The in situ tech
nique requires calibrated reference data by applying 
the reference technique in the laboratory condition 
(Walker et al., 2004). Various sensors depend on 
daily temperature variation like the Theta probe 
(Holzman et al., 2017). Other sensors like time domain 
reflectometry are less sensitive to thermal artifacts 
(Walker et al., 2004), while GNSS-R is more sensitive 
to thermal artifacts. Besides, GNSS-R integrates 
a larger volume and deeper penetration than the 
Theta probe method, and its signal is more correlated 
to SM at ground level as humidity increases. Roxy 
et al. (2010) indicate that daily moisture variations 
correspond to daily variations of surface albedo. 
These variations decrease from the dew point until 
the maximum sun illumination and reversely.

One of the challenges in improving the spatiotem
poral resolution is that they are inversely proportional 
to each other. Various researches have justified the 
good results of the humidity calibration method 
using in situ probes in homogeneous soil (Holzman 
et al., 2017; Koyama et al., 2017). However for a non- 
homogeneous soil with strong variations in humidity, 
several in situ sensors have needed to monitor SM in 
a large area. GNSS-R allows a sensor to measure SM 
over a wide area to limit these gaps and reduces 
monitoring and human resources costs.

6 Conclusions

Long-term continuous SM data are essential in cli
matic research (Longobardi, 2008) and describe the 
region characteristics (Cleverly et al., 2016; Kirkby,  
2016). Various automated techniques, namely in situ 
measurements and remote sensing, have been usable 
in the last years. The IPT is presented by Larson et al. 
(2008) justified an excellent retrieval of SM for the soil 
rich in clay (Chew et al., 2014; Vey et al., 2016; Zhang 
et al., 2017). Our study developed a novel combination 
between technical IPT and phase unwrapping method 
to obtain a continuous phase measurement of the SNR 
multipath, used to monitor SM even for dry to very 
dry sandy soils (2.5% <VSM <8%). In this case, the 
correlation coefficient between SM variations in our 
technique and VSM observed in situ at ~10 cm depth 
is 0.97 over the study area (95% of sand). Furthermore, 
the combination of all GPS/GLONASS/GALILEO/ 
BEIDOU satellites in the SNR data treatment can be 
applied to generate a complete series of time precision, 
which considerably increase the spatial and temporal 
resolution from 1 day to 10 min.

Currently, GNSS networks exist in various countries 
and can be applied GNSS-R tool for free. Another critical 
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point is the number of GNSS satellites which increase 
continuously from 1990 (~40 compared to more than 120 
in 2030 (Gao & Enge, 2012)). This factor increases the 
spatiotemporal monitoring of the Earth, except in the 
pole areas due to the structures of GNSS orbital planes. 
GNSS-R SM maps can be established continuously 
worldwide and can provide powerful time series. 
Monitoring SM by GNSS-R will be a crucial parameter 
to improve the understanding of spatial variability of 
droughts at all spatial and temporal scales in the context 
of global climate change.
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