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Summary: Agricultural robotics is a rapidly growing research area due to the need for new practices that are more 
environmentally responsible. It involves a range of technologies including autonomous vehicles, drones and robotic arms. 
These systems can be equipped with sensors and cameras to gather data and perform tasks autonomously or with minimal 
human intervention. For robot navigation and manipulation, and plant monitoring and analysis, perception is of prime 
importance and is still a challenging task today. For instance, visual perception using color images only for disease detection 
in vineyards, such as Mildew in which the symptoms manifest as small spots on or beneath the leaves, is still a hard task that 
does not allow to achieve high detection accuracy. To extract more representative features to improve the detection accuracy, 
other modalities must be used in addition to the Red Green and Blue (RGB) information of color images. In this paper, we 
present first a multimodal acquisition system that we have developed. It is composed of a multi-spectral (MS) camera and an 
RGB-D camera that are mounted on a mobile robot for data acquisition in a vineyard. Next, we describe the multi-modal 
dataset that we have built based on the data acquired with our system in a commercial vineyard. Finally, we implemented an 
Early RGB and depth data fusion technique together with the YOLOv5m Deep Learning network to detect the main parts of 
the vine: leaves, branches, and grapes using our dataset. The results that we have obtained, compared to those obtained using 
RGB images only with the YOLOv5m architecture, demonstrate the benefits of adding multi data fusion techniques to the 
object detection pipeline. These results are encouraging and show that multi-sensor data fusion is a technique that is worth 
considering as it can be useful for improving grapevine disease recognition technologies. 

Keywords: viticultural robotics, vineyard analysis, multi-modal dataset, RGB-D camera, multi-spectral camera, RGB-D 
fusion, object detection. 

 

1. Introduction 

Nowadays, in modern agriculture, farmers must 
deal with several trade-offs every day. They must 
satisfy a rising public demand while maintaining the 
quality of their products and of their land for the good 
health of the consumers of their products. The new 
environmental considerations imply an evolution of 
agricultural and viticultural practices [1] to increase 
sustainability and farmers’ health and safety. For these 
reasons, robotic and precision agricultures are 
developing at a large pace as they can contribute to a 
reduction in the use of phytosanitary products such as 
pesticides, herbicides, and fungicides in farming as 
well as a reduction of human labor in harsh working 
conditions. 

Robotic agriculture and precision agriculture are 
two different concepts but they are related. Robotic 
agriculture involves the use of robots or automated 
machines to perform specific tasks in the agricultural 
process, such as planting, harvesting, or spraying 
crops. On the other hand, precision agriculture is a 
farming method that uses technology to optimize crop 
production by analyzing and managing various factors, 
such as soil characteristics, weather patterns, and crop 
health, with high precision and accuracy. Although 
both concepts are different, they nevertheless have one 
common point in that they both rely heavily on visual 
perception and more particularly on one important 
application of visual perception that is object 

detection [2]. Indeed, object detection allows robots to 
navigate autonomously while avoiding obstacles in 
robotic agriculture. In precision agriculture it allows to 
identify and locate objects of interest, such as weeds, 
crops, and pests for weed and pest management and 
crop health monitoring. It is typically achieved through 
machine learning and deep learning algorithms, which 
are trained on large datasets of annotated images [3]. 
Once trained, these algorithms can accurately detect 
and classify objects in real-time, enabling robots to 
perform tasks such as crop monitoring [4], weed 
control [5, 6], and fruit picking [7]. 

Object detection using visual cues is challenging 
due to factors that are outside human control such as 
illumination, geometric properties of agricultural 
fields, weather conditions, and plant structure 
uncertainty. Appropriate detection and localization of 
plants, fruits and weeds are the backbones for 
inspection, robotics, and autonomous systems for 
agriculture. It helps farmers in several ways: to 
monitor crop health more efficiently, to identify and to 
respond to potential pest or disease outbreaks before 
they become severe resulting in a reduction in the need 
for phytosanitary products, and to estimate production 
yield and increase product quality. 

Our work is targeted towards vineyard inspection 
and analysis. In this field, standard RGB cameras and 
computer vision can provide affordable and versatile 
solutions for object detection such as leaves, branches 
and grapes. The Faster R-CNN architecture provides 
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accurate results for grape detection. Recognition 
results can be integrated through data association 
approaches that use object tracking or mapping to 
perform fruit counting in the vineyard. An alternative 
to the two-stage object detection algorithm is the one-
stage algorithms such as the YOLO (You-Only-Look-
Once) architectures. YOLOv5 model has outstanding 
performance in terms of speed and accuracy [8, 9]. To 
further improve object detection, multi-modal data 
fusion is crucial. The use of depth cameras can provide 
3D information and highlight the unique geometry of 
objects present in the scene [10]. 

In the next section, we describe the multimodal 
acquisition system that we have developed as well as 
the multimodal dataset that we have built with data 
acquired with it. In section 3, we present the data 
fusion method that we have developed and used 
together with the YOLOv5m Deep Learning network 
to detect leaves, branches and grapes in a vineyard. In 
section 4, we present the results obtained and a 
comparison of the results with and without multi-
sensor data fusion. Finally, we conclude in section 5. 

2. Data acquisition and multimodal dataset 

In this study, a multimodal acquisition system was 
developed to acquire vineyard data in several 
modalities. It is composed of a SILIOS CMS-V multi-
spectral camera sensitive to eight different 
wavelengths bands from 550 to 830 nm and of a 
Microsoft Kinect V2 camera for RGB and depth 
information. Both cameras have been mounted on a 
Summit XL mobile robot as shown in Fig. 1 for ease 
of acquisition in a vineyard field which can have an 
irregular or an uneven shape. The positions of the 
cameras on the robot have been carefully chosen for 
accurate capture of the fine details of the scene, i.e., 
leaves, branches, and berries. Also, the cameras are 
fixed on the mobile robot so that their relative positions 
are perfectly known and do not vary during 
acquisition. 

  

  
Fig. 1. Top-left: Summit XL mobile robot instrumented 
with the multi-sensors system; Top-right: RGB image; 

Bottom left: MS image; Bottom right: Depth image. 

To acquire data with our acquisition system, the 
cameras must be calibrated, and the acquired images 
registered. Camera calibrations are achieved using the 
calibration method described in [11] for the multi-
spectral camera and the iai_kinect2 package by [12] for 

the Microsoft Kinect V2 camera. Regarding image 
registration, the feature-based image registration 
algorithm is used [13]. This algorithm uses the Harris 
corner detector to extract the corner features from the 
reference images, the RGB images in our case, and the 
target images, the multispectral images. Then, it 
matches the corner features using the Scale Invariant 
Feature Transform (SIFT) algorithm to find the best 
affine transformation that aligns the images. Only the 
RGB and the multispectral images need to be 
registered. The depth image is already registered with 
the RGB image by the Microsoft Kinect V2 camera 
that is used to acquire both images. 

Image acquisition is done at a frame rate of 15 
images per second and with the mobile robot moving 
at a speed of 0.6 meters per second to reduce motion 
blur [14]. An example of the three types of images 
produced by our acquisition system, namely RGB 
images, depth images, and multispectral images is 
shown in Fig. 1. All the acquired images depict vine 
plants and 300 of them have been manually labelled 
with four classes to build our multimodal dataset. The 
four classes are branches, leaves, grapes, and 
background which represents any area that is not 
assigned to anyone of the other three classes. 

3. Object detection with multi-sensor data 

The method presented in this paper aims to 
improve object detection in vineyards by combining 
RGB and depth information using an Early Fusion 
architecture together with the YOLOv5 Deep Learning 
network [15]. The whole network architecture is 
shown in Fig. 2. YOLOv5 is a popular convolutional 
neural network (CNN) for real-time object detection 
with high accuracy [8, 9]. The architecture employs a 
single neural network to analyze the entire image, 
subsequently dividing it into regions and predicting 
bounding boxes and class probabilities for each. The 
network comprises a backbone, which consists of 
convolutional layers that extract and generate image 
features at multiple scales; a neck, which generates 
feature pyramids to facilitate scale-invariant object 
detection; and a head, which utilizes anchor boxes to 
produce final output vectors containing class 
probabilities, objectness scores, and bounding box 
coordinates. Compared to its predecessor YOLOv4, 
YOLOv5 is 88% smaller in size and 180% faster in 
performance while maintaining comparable accuracy 
on the same task. 

Since the YOLOv5 model is designed to process 
images in the RGB format, it can only accept an image 
with the three color channels (Red, Green and Blue) as 
input. However, our RGB-D data contains four 
channels: three channels for the RGB image and one 
channel for the depth image. Thus, the four channel 
RGB-D image must be transformed to a three-channel 
image to be able to be processed by YOLOv5. This is 
achieved by first transforming the depth image into a 
three-channel image so that it is of the same dimension 
as the RGB image and can thus be fused with it channel 
by channel. We have considered two types of 
transformation: replicating the raw depth image two 
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times to obtain a depth image with three identical 
channels and colorizing the depth image using the Jet 
color palette to obtain a colored depth image in the 
RGB format. The effect of both transformations on the 
detection accuracy will be studied in the experiment 
section. 

After transforming the depth image to a three-
channel image, we now have a six-channel RGB-D 
image. To transform this six-channel image to the 
three-channel input of the YOLOv5 network, we have 
defined an Early data fusion network. It consists in first 
stacking the RGB and the depth information into a 
single tensor. Next, a convolution operation with six 
input filters, and three output filters is performed. The 
filter size has been chosen to be 3x3, and by doing 
zero-padding, the input and the output image sizes are 
the same. Finally, a batch normalization function is 
added to prevent vanishing gradients during training. 
Thus, at the output of this fusion module, a three-
channel image is obtained that is then input to the 
YOLOv5 pipeline for training, test, and validation. 

 
Fig. 2. Early fusion network architecture together with 

YOLOv5 network. 

4. Experimental Results 

In all our experiments, we have used the 
multimodal dataset that we have built with 300 
manually labeled images of three classes of objects: 
leaves, grapes, and branches and a fourth background 
class which represents all areas that are none of the 
three object classes. The images of our dataset are 
images of vine plants where the “leaves” object is 
abundantly present. Moreover, the leaves overlap with 
each other such that it is very difficult to label all of 
them to generate the ground truth data. Thus, in the 
images many leaves are left unlabeled. In supervised 
Deep Learning networks, unlabeled data are 
automatically assigned to the no-class or the 
background class. In our case, they are assigned to the 
no-class. In the general case, if a valuable information 
(leaves, grapes, or branches) is not labeled, then during 
training the network might get confused because this 
information will be considered as pertaining to both the 
object class and the no-class. This will result in a 
degradation of the performance. For example, if a leaf 
is unlabeled, there will be the same type of object in 
two different classes, the “leaves” object class and the 
no-class. Then, during training similar features will be 
used to identify the leaf and the no-class object. 
Consequently, during testing, detected leaves will be 
assigned a lower probability than if all the leaves in the 
dataset were correctly labeled. To overcome this 
problem, a pre-processing step has been implemented 
to clear (i.e., set to zero) all the non-labeled regions. 
An example of the resulting images of this pre-
processing step is shown in Fig. 3. 

  
Fig. 3. Example of a labeled image processed to clear out 

no labeled regions. Vineyard RGB images (left) and Image 
with no labeled regions clear out (right). 

Three training and test cases have been considered 
using two Deep Learning architectures: a Data Fusion 
network that we have defined and the YOLOv5m, a 
medium size YOLOv5 network, with the Ranger 
optimizer and pretrained with the MS COCO dataset. 
We have used and compared both the Adam and the 
Ranger optimizers [16]. Finally, we have chosen the 
Ranger optimizer, which is a combination of RAdam 
and Lookahead, because it offers improved training 
efficiency, faster convergence, and better performance 
compared to Adam. The three cases are: 

 YOLOv5m network trained, validated and tested 
with the RGB images only. 

 Data fusion and YOLOv5m networks trained, 
validated, and tested with RGB and raw depth 
images. 

 Data fusion and YOLOv5m networks trained, 
validated, and tested with RGB and colored depth 
images. 

For the first training and test case where only the 
RGB images are needed, the other modalities of our 
multimodal dataset are just ignored and not used. In the 
two other cases, the depth information is used in 
addition to the RGB ones. For the experiments, the 
dataset has been randomly split into 70% of training, 
15% of validation and 15% of testing data. Regarding 
the network parameters, the number of epochs is 100, 
the batch size is 4 and the image size is set to 640×640 
pixels. 

To evaluate our model, we have computed the 
precision and recall scores, and the Mean Average 
Precision (mAP) at 50% and in the interval [50-95%]. 
mAP@0.5 is a measure used to evaluate the overall 
performance of an object detection model by 
considering a prediction as correct if its Intersection 
over Union (IoU) with manual annotation is greater 
than or equal to 0.5, and by taking the average of the 
mean accuracies for each object class. 

The quantitative results are summarized in Table 
1. They show that the network with data fusion and 
multi-sensor data achieves better precision, and 
especially better robustness. The combination of data 
fusion with the YOLOv5m network allows for better 
adaptability to different vineyards, which is our 
ultimate goal. We can clearly see in Table 1 that for 
the mAP@0.5:0.95, we have a gap of almost double in 
the robustness of the system. We can therefore 
conclude that the RGB-D system allows for better 
robustness and therefore better adaptation to different 
configuration changes such as luminosity and 
seasonality. 
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Table 1. Quantitative results of the combined data fusion 
and YOLOv5m model trained with the multimodal dataset. 

 P R mAP@0.5 mAP@0.5:0.95 

RGB 
only 

0.82862 0.68724 0.76331 0.35314 

RGB + D 0.82562 0.69211 0.76367 0.3593 

RGB + D 
colored 

0.83125 0.68456 0.75909 0.34817 

Fig. 4 represents an example of the output of the 
combined data fusion and YOLOv5m network trained 
with RGB images only, and with RGB-D images. The 
red, green and blue boxes are respectively the leaves, 
the grapes, and the branches classes. 

  

Fig. 4. Example of detection using the combined data 
fusion and YOLOv5m network trained with RGB images 

(left) and with RGB-D images (right). 

5. Conclusions 

We have developed a multimodal acquisition 
system that is particularly suitable for data acquisition 
in a vineyard. Using our acquisition system, we have 
acquired data in a commercial vineyard and built a 
multimodal dataset with 300 manually labelled images 
of vine leaves, grapes, and branches. We then used this 
dataset to study the effects of using depth information 
in addition to RGB information and data fusion 
techniques to detect object in vineyards. To do so, we 
have trained a combined data fusion and medium size 
YOLOv5 network, denoted by YOLOv5m, to detect 
leaves, grapes, and branches in vineyard images. The 
results that we have obtained show that the use of 
multimodal data allows to increase the detection 
accuracy while reducing false negatives. 

These results are encouraging, and we intend in 
future work to either use our dataset or create a new 
dataset with even more modalities, and data fusion 
techniques to address viticultural challenges such as 
the rapid and accurate detection of plant pathologies 
for vine plant health monitoring and disease 
management, berry detection for automatic harvesting 
or production yield estimation, and weed detection for 
autonomous weed removal in robotic agriculture. For 
example, in disease detection and recognition, the 
detection result mixed with the localization of the 
robot, can help to create a map of where the different 
diseases are. In this way, the vineyard owners can 
localize problems earlier, and solve them before they 
become a real problem. 
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