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A harmonic framework for the identification of linear time-periodic systems

Flora Vernerey, Pierre Riedinger, Andrea Iannelli and Jamal Daafouz

Abstract— This paper presents a novel approach for the
identification of linear time-periodic (LTP) systems in contin-
uous time. This method is based on harmonic modeling and
consists in converting any LTP system into an equivalent LTI
system with infinite dimension. Leveraging specific harmonic
properties, we demonstrate that solving this infinite-dimensional
identification problem can be reduced to solving a finite-
dimensional linear least-squares problem. The result is an
approximation of the original solution with an arbitrarily small
error. Our approach offers several significant advantages. The
first one is closely tied to the harmonic system’s inherent LTI
characteristic, along with the Toeplitz structure exhibited by its
elements. The second advantage is related to the regularization
property achieved through the integral action when computing
the phasors from input and state trajectories. Finally, our
method avoids the computation of signals’ derivative. This sets
our approach apart from existing methods that rely on such
computations, which can be a notable drawback, especially
in continuous-time settings. We provide numerical simulations
that convincingly demonstrate the effectiveness of the proposed
method, even in scenarios where signals are corrupted by noise.

I. INTRODUCTION

Periodicity arises naturally in various engineering and
scientific disciplines [1]. From the mechanical vibrations of a
car engine to the oscillations in electronic circuits, and even
the rhythmic patterns of biological processes, periodicity is
a ubiquitous feature [2]–[4]. Understanding, analyzing, and
controlling these periodic behaviors are essential for optimiz-
ing system performance, ensuring stability, and enhancing
the predictability of various applications.

Linear time-periodic (LTP) systems, a subset of linear
time-varying systems, are characterized by periodic vari-
ations in their parameters over time. Furthermore, under
specific conditions, nonlinear systems can be approximated
as LTP systems when linearized along a periodic trajectory
[3]. Given the broad spectrum of applications, modeling
LTP systems is of significant interest for both analysis and
control design. LTP systems, in comparison to LTI systems,
introduce a higher degree of complexity. This complexity
accounts for the preference in focusing on the identification
of LTI systems, a choice supported by the extensive devel-
opment of tools and methodologies for this purpose [5].

Most identification techniques for LTP systems involve
first identifying one or more linear time-invariant (LTI)
systems, which then serve as the basis for deriving a model
of the LTP system. Lifting schemes have proven successful
to identify the parameters of a discrete time equivalent
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LTI system either in the time domain [6] or the frequency
domain [7]. The subspace identification method has also
been extended to LTP systems both in the time-domain [8]
and more recently in frequency-domain [9], [10]. In [10],
restrictions on the input-output dimension and input form
were relaxed by leveraging the idea to employ the frequency
response of a time-lifted system with a linear time-invariant
structure. Also, in [11], Fourier transformations of state and
input data are used to identify the Fourier series coefficients
of the state and input matrices. It is important to note that
this approach is restricted to stable systems with oscillations
that attain a steady-state, which can be a limiting factor,
particularly in control applications.

Moreover, the majority of the proposed methods to date
is available for discrete-time systems and, when extended to
continuous-time, require unquantified approximations. Our
aim is to propose a methodology to identify the Fourier
coefficients of the state and input matrices of LTP systems
in continuous time for both stable and unstable systems.
Importantly, we aim to remove restrictions related to systems
achieving a steady-state and to eliminate signal limitations.
To achieve this objective, we make use of an equivalence
result established in [12], linking LTP systems to infinite-
dimensional LTI systems characterized by a block Toeplitz
structure formed by the Fourier coefficients of the state and
input matrices. LTP system’s parameters are thus inferred
from the Fourier series. However, it is essential to note
that the harmonic system is inherently infinite-dimensional.
Consequently, truncation becomes necessary. By selecting a
sufficiently high truncation order, the identification problem
is translated into a finite-dimensional linear least-squares
problem. We prove that the solution to this finite-dimensional
problem converges to the solution of the infinite-dimensional
counterpart with an arbitrarily small error.

The paper is organized as follows. The next section is
dedicated to mathematical preliminaries on harmonic mod-
elling. In Section III, we state the identification problem.
The main results are established in Section IV where we
tackle the approximation of the infinite-dimensional identi-
fication problem. Illustrative examples are given in Section
V, demonstrating the application of our approach to identify
linear time-periodic systems, even in scenarios where state
measurements are affected by noise.

Notations: Ca denotes the space of absolutely contin-
uous function, Lp([a b],Cn) (resp. ℓp(Cn)) denotes the
Lebesgues spaces of p−integrable functions on [a, b] with
values in C

n (resp. p−summable sequences of C
n) for 1 ≤

p ≤ ∞. Lp

loc
is the set of locally p−integrable functions. The



notation f(t) = g(t) a.e. means almost everywhere in t or
for almost every t. To simplify the notations, Lp([a, b]) or
Lp will be often used instead of Lp([a, b],Cn).

II. PRELIMINARIES ON HARMONIC MODELLING

For a given integer n, consider x ∈ L2

loc(R,Cn) a complex
valued function of time. Its sliding Fourier decomposition
over a window of length T is defined by the time-varying
infinite sequence X = (⋯,X−1,X0,X1,⋯) ∶= F(x) ∈
Ca(R, ℓ2(Cn)) (see [12]) whose n-dimensional components
Xk (named k−th phasor) satisfy:

Xk(t) ∶= 1

T
∫ t

t−T
x(τ)e−jωkτdτ

for k ∈ Z, with ω ∶= 2π
T

. The Toeplitz transformation of a
matrix function A ∈ L2

loc(R,Cn×m), denoted A ∶= T (A),
defines a block Toeplitz and infinite dimensional matrix as
follows:

A ∶= T (A) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋱ ⋮ ⋰
A0 A−1 A−2

⋯ A1 A0 A−1 ⋯
A2 A1 A0

⋰ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (1)

where (Ak)k∈Z denotes the phasor sequence of A.

Definition 1: We say that X belongs to H if X is an
absolutely continuous function (i.e X ∈ Ca(R, ℓ2(Cn)) and
fulfills for any k the following condition:

Ẋk(t) = Ẋ0(t)e
−jωkt a.e. (2)

Similarly to the Riesz-Fisher theorem which establishes a
one-to-one correspondence between the spaces L2 and ℓ2, the
following theorem establishes a one-to-one correspondence
between the spaces L2

loc and H (see [12]).
Theorem 1: For a given X ∈ L∞loc(R, ℓ

2(Cn)), there exists
a representative x ∈ L2

loc(R,C
n) of X , i.e. X = F(x), if and

only if X ∈ H .
Thanks to Theorem 1, it is established in [12] that any
system having solutions in Carathéodory sense can be trans-
formed by a sliding Fourier decomposition into an infinite
dimensional system for which a one-to-one correspondence
between their respective trajectories is established providing
that the trajectories in the infinite dimensional space belong
to the subspace H . Moreover, when a T−periodic system
is considered, the resulting infinite dimensional system is
time-invariant. For instance, consider T−periodic functions
A(⋅) and B(⋅) respectively of class L2([0 T ],Cn×n) and
L∞([0 T ],Cn×m) and let:

ẋ(t) = A(t)x(t) +B(t)u(t) x(0) = x0 (3)

If x is a solution associated to the control u ∈ L2

loc(R,Cm) of
the linear time periodic (LTP) system (3) then, X ∶= F(x)
is a solution associated to U ∶= F(u) of the linear time
invariant (LTI) system:

Ẋ(t) = (A −N)X(t)+ BU(t), X(0) = F(x)(0) (4)

where A = T (A), B = T (B) and

N ∶= diag(jωk ⊗ Idn, k ∈ Z) (5)

with ⊗ the Kronecker product. Reciprocally, if X ∈ H is a
solution to (4) with U ∈ H , then their representatives x and
u (i.e. X = F(x) and U = F(u)) are a solution to (3). In
addition, it is proved in [12] that one can reconstruct time
trajectories from the exact formula:

x(t) = F−1(X)(t) = +∞∑
k=−∞

Xk(t)ejωkt + T

2
Ẋ0(t) (6)

III. PROBLEM FORMULATION

We consider a continuous-time LTP system

ẋ(t) = A(t)x(t) +B(t)u(t) (7)

where A and B are real-valued T -periodic continuous func-
tions in L∞([0 T ]), x(t) ∈ Rn and u(t) ∈ Rm. Furthermore,
we make the following assumptions:

Assumption 1: The period T is known and the state can be
measured or estimated over a sufficiently long time interval[t0, tf ].

These assumptions are common for identification of LTP
systems, see for example [11]. Building upon the preced-
ing section, studying such LTP system essentially involves
examining an equivalent infinite-dimensional Linear Time-
Invariant (LTI) system as defined in (4). Indeed, as

A(t) = ∞∑
k=−∞

Ake
jωkt a.e. B(t) = ∞∑

k=−∞

Bke
jωkta.e,

the identification of A and B can be achieved though the
identification of the phasor sequences (Ak) and (Bk) that
appear explicitly in the operators A and B in (4) (see (1)).
Hence, it is possible to reformulate the task of identifying
a LTP system as the task of identifying a LTI system, with
the caveat that we must address the challenge of its infinite
dimensionality. Consequently, the infinite-dimensional prob-
lem we aim to solve, achieving precision to an arbitrarily
small error, can be stated as follows:

Problem 1: Under Assumption 1, identify A and B in (4)
from a state/input (x,u) trajectory of system (7) and deduce
A and B.
Problem 1 is an infinite dimensional one. Our goal is to
provide a computationally tractable approach to identification
of (4) with a guaranteed bound on the approximation. As we
will see in the sequel, adopting this approach offers several
noteworthy advantages. The first advantage is inherently tied
to the LTI characteristic of the harmonic system, as well as
the Toeplitz structure exhibited by its elements. The second
advantage pertains to the filtering property achieved through
the integral action for computing the phasors (X,U) from
state/input trajectories (x,u). The final advantage stems from
the fact that we do not require to compute the derivative
terms. Indeed, these terms satisfy the following relationship:

Ẋk(t) = e−jωtẊ0(t)



with

Ẋ0(t) = 1

T
(x(t) − x(t − T )) (8)

(see [12]) and thus it is not necessary to compute any
derivative of x. These two last properties will be very useful
to generate harmonic data and simplify the identification
problem.

IV. MAIN RESULTS

In this section, we show how problem 1 can be reduced
to a finite dimensional least squares identification problem
whose solution satisfies the original problem up to an ar-
bitrarily small error. As a consequence, the identification of
the original LTP system is achieved with a guaranteed bound
on the approximation. In addition, a direct bound on the
difference of the estimated and true matrices is derived.

A. A central strip identification problem

Before deriving a finite dimensional approximation to
Problem 1, we start by proving some technical results.

Theorem 2: Let A ∈ L∞([0 T ]) and the Fourier series of
A given by A(t) = ∑∞k=−∞Ake

jωkt a.e. Then, the operator
sequence indexed by p, A∣p(t) ∶= ∑p

k=−p
Ake

jωkt converges
in L∞ operator norm to A and we have:

lim
p→+∞

∥A −A∣p∥L∞ = lim
p→+∞

∥A −A∣p∥ℓ2 = 0
where A ∶= T (A) and Ap ∶= T (A∣p).

Proof: First, let us recall [13] that A ∈ L∞([0 T ]) if
and only if A is a bounded operator on ℓ2 ie. there exists
C s.t.

∥A∥ℓ2 = sup
∥x∥

ℓ2
=1

∥Ax∥ℓ2 ≤ C
and ∥A∥L∞ = ∥A∥ℓ2 . Hence, using the Fourier series of A,
we can write:

∥A−A∣p∥ℓ2 = ∥A −A∣p∥L∞ = ∥ ∑
∣k∣>p

Ake
jωkt∥L∞ (9)

where A ∶= T (A) and Ap ∶= T (A∣p). As by assumption
there exists a constant C1 such that

∥A∥ℓ2 = ∥A∥L∞ = ∥∑
k∈Z

Ake
jωkt∥L∞ < C1

the series ∑k∈ZAke
jωkt converges almost everywhere and

limp→+∞∑∣k∣>p Ake
jωkt = 0 a.e. Taking the limit w.r.t. p in

(9) leads to the result.
From this result, it follows that replacing the pair (A,B)
by (A∣p,B∣p) leads to the following approximation of the
harmonic state dynamic:

Corollary 1: Let (x,u) be a trajectory of (7) and(X,U) ∶= F(x,u). For any ǫ > 0, there exists p such that
for any compact time interval I

sup
t∈I

∥Ψ(X(t), U(t))∥ℓ2∥(X(t), U(t))∥ℓ2 ≤ 2ǫ (10)

where Ψ(X(t), U(t)) ∶= (A − N)X(t) + BU(t) − ((A∣p −N)X(t) + B∣pU(t))

Proof: As the operator norms are sub-multiplicative,
we have for any t:

∥(A −N)X(t) + BU(t) − ((A∣p −N)X(t) + B∣pU(t))∥ℓ2
≤ ∥A −A∣p∥ℓ2∥X(t)∥ℓ2 + ∥B − B∣p∥ℓ2∥U(t)∥ℓ2

≤ (∥A −A∣p∥ℓ2∥ + ∥B − B∣p∥ℓ2))∥(X(t), U(t))∥ℓ2
then, as X and U are absolutely continuous functions of the
time, the supremum on any compact set exists and using
Theorem 2 the result follows.

Definition 2: The degree doA ∈ Z+∪{+∞} of A is defined
by the greater non vanishing phasor of A.
Corollary 1 shows that if doA and doB are not finite, it is
always possible to obtain an accurate approximated solution
to the identification problem by imposing sufficiently large
doA and doB. Indeed for a given ǫ > 0 and p(ǫ) such that
Corollary 1 holds, the solution (Ã, B̃) of the normalized
linear least- squares optimization problem:

min
A∣p,B∣p

sup
t∈I

∥Ẋ(t) − ((A∣p −N)X(t) + B∣pU(t))∥2ℓ2∥(X(t), U(t))∥2
ℓ2

where the unknowns A∣p B∣p which are block p-banded (i.e.
Ak ∶= 0 and Bk ∶= 0 for k > p) and Toeplitz matrices, will
necessarily satisfy relation (10).
Now, let us show that Problem 1 can be simplified and
reduced to a finite dimensional problem. This problem is
referred to as the "central strip identification problem,"
relating to the "0-row" of (4).

Theorem 3: Problem 1 can be reduced to the central strip
identification problem which involves the identification of:

Ẋ0(t) = ∑
k∈Z

AkX−k(t) +∑
k∈Z

BkU−k(t) (11)

Moreover, if doA and doB are finite then the central strip
identification problem reduces to the identification of:

Ẋ0(t) = d
o
A∑

k=−doA

AkX−k(t) + d
o
B∑

k=−doB

BkU−k(t)
which is a finite dimensional problem that involves
n2(2doA + 1) + nm(2doB + 1) real unknowns.

Proof: As Ẋp(t) = e−jωptẊ0(t) for any p and as

Ẋ0(t) = ∑
k∈Z

AkX−k(t) +∑
k∈Z

BkU−k(t),
it follows that the p−strip of (4) corresponding to Ẋp(t)
satisfies

Ẋp(t) = e−jωpt(∑
k∈Z

AkX−k(t) +∑
k∈Z

BkU−k(t))
and is no more informative than Ẋ0. Thus, only the central
strip is sufficient to identify the harmonic system (4). More-
over, if doA and doB are finite, there are n2(2doA + 1) +
nm(2doB + 1) complex unknowns to be determined in this
problem. As A and B are real-valued functions, their phasors
of negative and positive order are complex conjugates of
each other: ∀k ∈ Z,A−k = Ak. Furthermore, as any phasor
of order 0 is real-valued, this means that Problem 1 amounts



to identifying n2(2doA+1)+nm(2doB+1) real unknowns.

Finally, combining Corollary 1 and Theorem 3 leads to
the following result:

Theorem 4: For any u ∈ L2

loc and any ǫ > 0, there exists
p such that the finite dimensional normalized central strip
identification problem on interval I given by:

min
Ak,Bk,∣k∣≤p

sup
t∈I

∥Ẋ0(t) −∑p

k=−p
(AkX−k(t) +BkU−k(t))∥2

∥(X(t), U(t))∥2
ℓ2

(12)
where ∥ ⋅ ∥ refers to the 2-norm, leads to an approximated
solution Ã(t) ∶= ∑p

k=−p
Ãke

jωkt and B̃(t) ∶= ∑p

k=−p
B̃ke

jωkt

that satisfies:

sup
t∈I

∥Ẋ0(t) −∑p

k=−p
(ÃkX−k(t) + B̃kU−k(t))∥

∥(X(t), U(t))∥ℓ2 ≤ 2ǫ (13)

and relation (13) still holds true if I in (12) and (13) is
replaced by a discrete set Id ⊂ I .

Proof: Let us define the central strip selecting operatorC0 ∶= [⋯ 0 Idn 0 ⋯] such that X0 = CX where X ∶= F(x).
Obviously ∥C0∥ = 1 where ∥⋅∥ is the standard Euclidian norm
(2-norm) since

sup
∥X∥

ℓ2
=1

∥C0X∥ = sup
∥X∥

ℓ2
=1

∥X0∥ = 1
is achieved for X = [⋯,0,X0,0,⋯] with ∥X0∥ = 1. Now,
for a given u, and ǫ > 0, we know that there exists p such
that Corollary 1 is satisfied and thus relation (10) holds.
Therefore,

∥C0Ψ(X(t), U(t))∥∥(X(t), U(t))∥ℓ2 ≤ ∥C0∥ supt∈I

∥Ψ(X(t), U(t))∥ℓ2∥(X(t), U(t))∥ℓ2 ≤ 2ǫ.
(14)

As C0Ψ(X(t), U(t)) = Ẋ0(t) − ∑p

k=−p
(AkX−k(t) +

BkU−k(t)), we see that the minimizer of (12) satisfies
necessarily (13). Finally, if in (12) I is replaced by a discrete
set Id ⊂ I , the minimizer of (12) satisfies necessarily (13) on
Id.

Remark 1: Note that computing ∥(X(t), U(t))∥ℓ2
in (12) can be simply achieved by computing∥(x(t), u(t))∥L2(([t−T t]) as Riesz-Fisher theorem implies

∥X(t)∥ℓ2 = ∥x∥L2([t−T t]) = ( 1
T
∫ t

t−T
x2(τ)dτ) 1

2 .

Having successfully converted the infinite-dimensional
harmonic identification problem into an approximate finite-
dimensional counterpart, the next subsection is dedicated to
the conditions essential for achieving a precise solution from
a discrete-time sequence of data.

B. Solving the central strip least squares identification prob-

lem

For a sufficiently large number N , consider a sampled
state/input trajectory (x,u) of the LTP system (7) with sam-
pling time δt = T /N over the time interval I ∶= [t0, tf ]. For a
given order p, the computation of phasors (Xk(t), Uk(t)) for∣k∣ ≤ p on the time interval [t0+T, tf ] can be performed using

a Fast Fourier Transform. Also, Ẋ0 can be determined using
(8). Then, these data are normalized following Remark 1 that
is, for ∣k∣ ≤ p
(Xk(t), Uk(t))N ∶= (Xk(t), Uk(t))

M(t) and Ẋ0N(t) ∶= Ẋ0(t)
M(t)

where M(t) ∶= ∥(x(t), u(t))∥L2([t−T t]). The data are stored
as follows:

X1 ∶= (Ẋ0N(t0 + T ) ⋯ Ẋ0N(tf)) ∈ Cn×L

X0 ∶= (X−p∶p
N
(t0 + T ) ⋯ X−p∶p

N
(tf)) ∈ Cn(2p+1)×L

U0 ∶= (U−p∶pN
(t0 + T ) ⋯ U−p∶p

N
(tf)) ∈ Cm(2p+1)×L

where X−p∶p
N
(t) is a column vector which contains the

normalized phasors from order −p to p of the n components
of X , L being the number of samples. The p-banded central
strip identification problem given by (12) is formulated as
follows:

Problem 2: From data (X1,X0,U0), solve the least-
squares problem:

min
Ak,Bk, ∣k∣≤p

∥X1 − [Ap,⋯,A−p,Bp,⋯,B−p] [X0

U0
] ∥2 (15)

where ∥ ⋅ ∥ refers to 2−norm.
We have the following proposition.

Proposition 1: The data (X0,U0) are informative for
system identification if and only if

rank (X0

U0
) = (n +m)(2p + 1). (16)

Proof: The proof follows from [14] dedicated to data
informativity for noise free linear systems identification.
To ensure that the rank condition (16) is met, a necessary
condition is that the sample size, denoted as L, exceeds the
value of (n +m)(2p + 1).

Theorem 5: For a given p, if the data (X0,U0) are
informative for system identification, the solution of the
least-squares problem is given by

[Ãp,⋯, Ã−p, B̃p,⋯, B̃−p] ∶=X1 [X0

U0
]

†

where [X0

U0
]

†

refers to the pseudo-inverse of [X0

U0
] and is

uniquely determined. Moreover, for a given ǫ > 0, if p

satisfies Corollary 1 on I ∶= [t0 +T, tf ] then relation (13) is
satisfied at least at every sample time t ∶= tk + T of I and
we have:

max
t
∥([Ãp,⋯, Ã−p, B̃p,⋯, B̃−p]
− [Ap,⋯,A−p,Bp,⋯,B−p]) [X−p∶pN

(t)
U−p∶p

N
(t)] ∥ ≤ 4ǫ. (17)

Proof: As condition (16) is satisfied, the minimizer of
(15) is uniquely defined. If p is such that Corollary 1 is
satisfied on I then relation (13) is satisfied on every sample



time t ∶= tk + T (as stated in Theorem 4). Using (13) and
(14), it follows that for any sample time t ∶= tk + T :

∥([Ãp,⋯, Ã−p, B̃p,⋯, B̃−p]
− [Ap,⋯,A−p,Bp,⋯,B−p]) [X−p∶pN

(t)
U−p∶p

N
(t)] ∥

≤ ∥ p∑
k=−p

(ÃkX−k(t) + B̃kU−k(t)) − Ẋ0(t)∥+
∥Ẋ0(t) − p∑

k=−p

(AkX−k(t) +BkU−k(t))∥ ≤ 4ǫ.

Corollary 2: There is a subsequence of sampling time
tik of length (n + m)(2p + 1) such that the matrix V

whose columns are formed by (X−p∶p
N
(tik), U−p∶pN

(tik))
is invertible. Then, the following bound holds:

∥[Ãp,⋯,Ã−p, B̃p,⋯, B̃−p]
− [Ap,⋯,A−p,Bp,⋯,B−p]∥ ≤ 4ǫM

where M = (n +m)(2p + 1)∥V −1∥.
Proof: As the rank condition (16) is achieved, an

invertible matrix V can be extracted from the columns of(X0,U0). As for any Y ∈ Rr with r = (n +m)(2p + 1) s.t.∥Y ∥ = 1, there exists Λ s.t. Y = V Λ, the following relation
holds (using (17)):

∥([Ãp,⋯, Ã−p, B̃p,⋯, B̃−p]
− [Ap,⋯,A−p,Bp,⋯,B−p])Y ∥ ≤ 4ǫ∑

i

∣Λi∣
Using norm equivalence in finite dimension, we have:

∥([Ãp,⋯, Ã−p, B̃p,⋯, B̃−p]
− [Ap,⋯,A−p,Bp,⋯,B−p])Y ∥ ≤ 4ǫr∥Λ∥
≤ 4ǫr∥V −1Y ∥ ≤ 4ǫr∥V −1∥

Taking the supremum on Y leads to the result.
Remark 2: Recall that Corollary 1 primarily establishes

the existence of a solution, yet it does not provide a con-
structive approach. Determining an appropriate value for p

often entails a trial-and-error process until a satisfactory
solution is achieved. Here, a satisfactory solution denotes
one in which the higher-order phasors obtained approach
zero. Furthermore, the rank condition (16) acts as a necessary
condition for the uniqueness of a solution in Problem 2
when dealing with noise-free data. However, it is essential to
highlight that this rank condition becomes insufficient in the
presence of noisy measurements. To mitigate the impact of
noise, a larger value for L becomes imperative in addressing
Problem 2.

C. Validation

Before exploring specific examples, we introduce a valida-
tion protocol that will be applied in the following section. For
theoretical validation, our initial focus is on the noiseless sce-
nario. After successfully solving the least-squares Problem 2
for a particular value of p, the subsequent step is to validate
the resulting model. Here, we employ the relative error

between the true and estimated phasors as our validation
criterion. This relative error is computed as follows:

err ∶= 100 ⋅ ∣∣Pth −Pest∣∣2∣∣Pth∣∣2 (18)

where Pth is a matrix which contains the theoretical values
of the phasors and Pest contains the phasors estimated with
the least-squares method. A threshold ε must be chosen
to indicate if the obtained values of the phasors are close
enough to the true ones. If err ≤ ε, the estimated model is
acceptable, otherwise a larger value of p must be chosen to
satisfy the validation criterion.

It is crucial to recognize that in real-world scenarios,
the theoretical values of the phasors are often unknown.
Consequently, an alternative validation criterion must be
employed. This validation procedure involves the use of a
distinct dataset separate from the one used for identification.
One can simulate the LTP system on a new trajectory,
facilitating a comparison between the true and estimated
trajectories. To assess the sensitivity of our proposed method-
ology to noisy data, we introduce a random disturbance to the
state measurements x. At each time instant t and for every
i ∈ [[1, n]], the noise on state xi conforms to a Gaussian
distribution N(0, σ2) where 3σ = 5

100
∣xi(t)∣. We then follow

the same procedure to calculate the error err.

V. ILLUSTRATIVE EXAMPLES

In this section, we illustrate our approach on three exam-
ples, one of them is the wind turbine problem borrowed from
[15]. The threshold for the relative error in the phasors is set
at ε = 10%.

A. A finite phasor-order example

First, let us consider a LTP system generated with random
phasors for A and B, where n = 3, m = 2 and doA = doB =

10. Consequently, the truncation order can be set to p = 10.
This leads to a total of n(n +m)(2p + 1) = 315 unknowns.
For this system, we tackle the identification problem, solving
the least-squares Problem 2 with a set of 100 random initial
conditions x(t0) and various piecewise-periodic input signals
with phasors acquired from a normal distribution. We apply
the validation protocol twice: once in the absence of noise in
the data and once when a bounded disturbance is introduced
as explained in the previous part.

In the absence of noise, the choice of L = (n +m)(2p +
1) and δt = T

4p
enables precise recovery of the unknown

phasor values, provided that the system is sufficiently excited
by the input, as indicated by the fulfillment of condition
(16). In such instances, the relative error across all 100 trials
remains below 10−6%. This outcome underscores the success
of the identification protocol when well-selected inputs are
employed.

In the presence of noise, errors arise during the computa-
tion of Ẋ0(t) and Xk(t). Since Ẋ0(t) is determined using
formula (8), and the state noise is zero-mean, the error associ-
ated with Ẋ0(t) also exhibits a zero-mean characteristic. The
Fast Fourier transform introduces a noise-smoothing effect



during the calculation of Xk(t). Consequently, if we denote
the data matrices affected by noise as X̃1 and X̃0, there exist
values, ε1 and ε0, such that ∣X1−X̃1∣ ≤ ε1 and ∣X0−X̃0∣ ≤ ε0.

A larger value of L, namely 3(n +m)(2p + 1), is chosen
to ensure that a precise enough solution can be found. The
relative error defined in equation (18), calculated for the
identified phasors, falls within the range of 3.2% and 8.5%

across all 100 trials. This level of relative error is considered
acceptable, given the chosen threshold.

The validation of the identification results on a new
trajectory is depicted in Fig. 1. With noise free data, the
true and estimated trajectories align closely. In the presence
of noise, an approximation of the true trajectories remains
possible.
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Fig. 1. Comparison of the true and estimated trajectories.

B. An infinite phasor-order example

Consider the example discussed in [16]:

ẋ =( a11(t) a12(t)
a21(t) a22(t) )x + (

b11(t)
0

)u (19)

a11(t) = 1 +
4

π

∞

∑
k=0

1

2k + 1
sin(ω(2k + 1)t),

a12(t) = 2 +
16

π2

∞

∑
k=0

1

(2k + 1)2
cos(ω(2k + 1)t),

a21(t) = −1 +
2

π

∞

∑
k=1

(−1)k

k
sin(ωkt +

π

4
),

a22(t) = 1 − 2 sin(ωt) − 2 sin(3ωt) + 2cos(3ωt) + 2cos(5ωt),
b11(t) = 1 + 2cos(2ωt) + 4 sin(3ωt) with ω = 2π.

The corresponding Toeplitz matrix A possesses an infinite
number of phasors and does not exhibit a banded structure.
Nevertheless, its higher-order phasors tend to converge to-
wards zero. This convergence implies that it remains feasible
to identify the non-negligible phasors within the matrix.

Given the inherent instability of this system, we employ
noisy data obtained from multiple trajectories for phasor
identification (see [17]). With a truncation order set at p = 25,

a time step of δt = T
256

and utilising 16 trajectories, each with
a length of 512 time points, the identification error ranges
from 4.6% to 9.8% among the 100 trials.

The validation of the identification results on a new
trajectory is visually demonstrated in Fig. 2. It is noteworthy
that the algorithm can operate with a reduced number of
trajectories if their length is long enough.
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Let us plot the true and estimated moduli of the phasors for
A on Fig. 3. Since we tackled the identification problem with
a finite truncation order p = 25 and there was noise in the
identification data, the effects of this noise are discernible,
particularly on the higher-order phasors. This phenomenon
is to be expected, as the noise injects high-frequency content
into the signal. However, the amplitude of these components
is obviously limited. Figure 2 shows that the predictive
accuracy of the estimated phasors is already acceptable. To
improve the results, a threshold can be set on the phasor
modulus so that phasors below this threshold are eliminated.



In summary, even with a theoretically infinite number of
phasors, it is possible to obtain an approximation for the
non-negligible phasors.

C. Wind turbine

Consider the three-bladed wind turbine discussed in [15],
and review its key attributes. The equation governing the
system’s motion can be expressed as follows:

M(t)q̈(t) +C(t)q̇(t) +K(t)q(t) = 0
where M , C and K are the system’s mass, damping and
stiffness matrices, and q(t) = (ζ1(t), ζ2(t), ζ3(t), yc(t))T
contains the lag angles of each blade and the horizontal
displacement of the hub. The rated rotor speed is Ωr =

1.2 rad.s−1. Functions M , C and K are periodic with period
2π
Ωr

. This autonomous system can be described by the state
equation: ẋ(t) = A(t)x(t) where

x(t) = (q(t)
q̇(t)) , A(t) = ( 04,4 I4−M(t)−1K(t) −M(t)−1C(t))

We are dealing with an unstable system characterized by
n = 8. For this system, we embark on the identification
task by solving the least-squares problem (2) across 100

random initial conditions x(t0). In this context, we assume
a truncation order of p = 4, resulting in the determination of
n2(2p+1) = 576 unknowns. The step size is set to δt = T

256
.

Given the system’s inherent instability, we rely on noisy
data from 15 trajectories, each with a length of 256 to
identify its phasors. The identification protocol proves suc-
cessful across all initial conditions, with the relative error
(18) ranging from a minimum of 0.9% to a maximum of
6.3% among the 100 trials. Furthermore, the validation of
these identification results on a new trajectory is depicted in
Fig. 4.
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Fig. 4. Comparison of the true and estimated trajectories.

Given that the system under investigation is a wind turbine,
achieving precise identification holds significant relevance,
particularly in the context of control applications.

VI. CONCLUSION

In this paper, we have presented a novel approach that
enables the identification of the state and input matrices of
a LTP system up to an arbitrarily small error. Our approach
capitalizes on the intrinsic equivalence between LTP systems
in the time domain and infinite-dimensional LTI systems in
the harmonic domain. Leveraging the block Toeplitz structure
of the latter, we have devised a finite-dimensional linear
least-squares problem, the solution of which corresponds
to the unknown phasors. Our approach offers significant
advantages, including avoiding signal derivative calculations,
and performs effectively in noisy scenarios, as shown in
numerical simulations.
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