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A New Ridge Detector Localizing Strong
Interference in Multicomponent Signals in the

Time-Frequency Plane
Sylvain Meignen and Marcelo A. Colominas

Abstract—In this paper, we define a new ridge detector that
enables to localize strong interference in multicomponent signals
in the time-frequency (TF) plane. Each mode of a multicompo-
nent signal can usually be associated with a ridge in the TF plane,
but this is no longer the case when strong interferences occur in
the signal. The new ridge detector we propose is thus designed to
determine when such situations happen in the TF plane. We show
that this knowledge helps to determine an appropriate window
length in the definition of the spectrogram, as well as the nature of
the strong interference detected. An application of the proposed
approach to voice signals concludes the paper.

Index Terms—Time-frequency analysis, short-time Fourier
transform, spectrogram ridges.

I. INTRODUCTION

The analysis of multicomponent signals (MCSs) using time-
frequency representations (TFRs) has been the subject of in-
tense research in the last few decades, in particular because the
modes making up an MCS are associated with specific time-
frequency (TF) regions located around curves, called ridges
[1], [2]. These are estimates of the instantaneous frequencies
(IFs) of the modes [3], [4], the quality of which is tightly
related to how well the modes are separated in the TF plane.
To detect such ridges, there exist a whole set of techniques
based on various assumptions on the modes to be extracted,
and on the type of TFR used to represent the signal. For
instance, an algorithm was proposed in [5], using the so-called
B-distribution, and based on the fact that, at each time instant,
a mode corresponds to a local maximum of that TFR along the
frequency axis, and a ridge to a chain linking all these local
maxima. However, in that paper, such a chain is obtained in an
ad-hoc manner. Furthermore, the question of crossing modes
was not addressed. In [6], a similar technique was proposed
that applied precisely to that case, but assuming the modes last
for the whole time-span. At the same time, approaches based
on blind source separation were also introduced [7]. All these
approaches, though interesting, rely on ad-hoc parameters to
link the ridge points. To circumvent this limitation, more
adaptive techniques were proposed, in which the ridge points
are linked using a signal-based modulation operator [8], [9]. In
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these techniques, the question of crossing modes was however
not considered and, for that purpose, a three-dimensional time-
frequency chirp-rate decomposition was introduced in [10].
Indeed, two crossing modes in the TF plane have different
chirp-rates, and, in that context, the ridges associated with
the modes are curves that no longer cross each other in the
three-dimensional space associated with the decomposition. In
spite this approach is definitely of interest, to detect ridges that
way is very complicated in noisy situations, and also time-
consuming. Another important issue faced by ridge detection
is when the modes are close in the TF plane. Indeed, TFRs
commonly depend on an analysis window, the choice of which
is essential to ridge detection. As to consider a single analysis
window may be troublesome, approaches adapting the window
length to time and components were proposed [11], [12].
The separation of close modes was also recently investigated
using fractional wavelet transform [13] or short-time fractional
Fourier transform [14], instead of the classical wavelet or
short-time Fourier transforms.

To introduce the topic of this paper, we first remark that
mode crossings or close modes situations only occur at very
specific location of the TF plane, and, to assume in the ridge
detection model that these may happen everywhere in the TF
plane is definitely not relevant. Our concern in this paper is
thus to characterize precisely where such interferences take
place, using the spectrogram as TFR. Note that the ideas
developed in this paper could certainly be extended to other
types of quadratic TFR, but the theoretical results derived here
would certainly be harder to obtain.

When two modes are close in the TF plane, it is sometimes
impossible to associate a ridge with each of them. A ridge is
often defined as a chain of local maxima of the spectrogram
along the frequency axis (LMFs) [9], and two close modes
may result in a single LMF at some time instant. Similarly,
two crossing modes will result in a single LMF at some time
instant. In the present paper, one of our goals is to find where
such situations occur. To do so, we first build an adaptive
ridge detector (RD) that can follow a chain of LMFs even
when it merges with another chain. We found our new RD on
previous ones that build each ridge point by point, following
a direction in the TF plane given by a modulation operator
based on a local linear chirp approximation for the modes
[8], [9]. However, in those approaches, the detected ridges
cannot merge, and a separability hypothesis has to be enforced
on the modes, which prevents the analysis of very close or
crossing modes in the TF plane. By slightly modifying the RD
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proposed in [9], we allow the detected ridges to merge locally,
the merging points being called singular points. A particular
focus is then put on the ability of our new RD to detect
a special type of interference, called time-frequency bubbles
(TFB), first mentioned in [15], that arise when two modes
are crossing, or are very close in the TF plane. Inspired by a
recent work on the existence of TFBs in simple situations [16],
we analyze the singularities of the modulation operator when
TFBs are present. Then, we propose different applications of
the detection of TFBs to the localization of the crossing of
components and of other types of strong interference. We
finally explain how the proposed TFB detector can be used
to determine an appropriate analysis window length in the
definition of the spectrogram.

The paper is organized as follows. In the following section,
we introduce the notation used throughout the paper, and then
briefly describe adaptive RDs which are the basis to our new
RD [8], [9], defined in Sec. III. After having introduced the
concept of TFBs in Sec. IV, we explain how the new RD we
propose can be used to detect them, in Sec. V-A, but also
singular points, in Sec. V-B. Then, we study the singularities
of the modulation operator used in the definition of our new
RD, in a simple case, when TFBs are present, in Sec. VI.

In the Results section, we illustrate the procedure for the
detection of TFBs in the presence of mode crossings or
other types of interferences, and also in what way to detect
these interferences enables us to find an appropriate window
length to represent the spectrogram of the signal. Finally, we
illustrate the interest of the detection of singular points on
a voice signal to determine an appropriate window length in
the spectrogram, and then to help improve the accuracy of its
reassigned version.

II. NOTATION, RIDGE DEFINITION, AND ADAPTIVE RIDGE
DETECTION BASICS

A. STFT and Model Signal

Considering a signal f ∈ L1(R)∩L2(R) and a real window
h ∈ L1(R) ∩ L2(R), the STFT of f is defined as:

V hf (t, η) =

∫
R
f(τ)h(τ − t)e−2iπ(τ−t)ηdτ

= |V hf (t, η)|e2iπΨ(t,η),

(1)

its spectrogram being the square modulus of V hf . The MCSs
we study in this paper are defined as the superimposition of
P AM-FM components, namely

f(t) =

P∑
p=1

fp(t), with fp(t) = Ap(t)e
2iπφp(t), (2)

in which the instantaneous amplitudes (IAs) Ap(t) are posi-
tive, as well as the instantaneous frequencies (IFs) φ′p(t).

B. Ridge Definition

There exist several ways to characterize the ridges associ-
ated with an MCS in the TF plane. A first characterization

was proposed in [15], stating that a ridge point should be a
solution to

∂tΨ(t, η) = η. (3)

To make the connection between that definition and the more
classical one that views ridge points as LMFs [4], [8], [9],
namely TF points such that ∂η|V hf (t, η)|2 = 0, one remarks

that when h(t) = e−π
t2

σ2 , then h′(t) = − 2π
σ2 th(t), and thus:

∂tΨ(t, η) =
1

2π
=

{
∂tV

h
f (t, η)

V hf (t, η)

}

= η − 1

2π
=

{
V h
′

f (t, η)

V hf (t, η)

}
= η + =

{
1

σ2

V thf
V hf

}

= η −=

{
∂ηV

h
f

2iπσ2V hf

}
= η +

1

4πσ2

∂η|V hf |2

|V hf |2
,

(4)

in which ={X} denotes the imaginary part of the complex
number X . This means that the solutions to Eq. (3) actually
correspond to LMFs. With this in mind, it is natural to define a
ridge as a chain of LMFs in the TF plane. In the next section,
we recall some recent approaches that were used to detect such
ridges, on which we base our new approach.

C. Adaptive Ridge Detector Based on Modulation Operator

The new RD we propose, whose description is detailed
in Sec. III, is inspired by some adaptive RDs respectively
developed in [8] and [9], which we briefly describe hereafter.

The RD called modulation based ridge detector (MB-RD)
introduced in [8], uses the following complex modulation
operator based on a linear chirp approximation for the modes
[17]

q̃f (t, η) =
1

2iπ

V h
′′

f (t, η)V h
f̃

(t, η)− (V h
′

f (t, η))2

V thf (t, η)V h
′

f (t, η)− V th′f (t, η)V hf (t, η)
, (5)

in which V h
′

f , V thf , V h
′′

f , V th
′

f are respectively the STFTs of
f computed with windows h′(t), th(t), h′′(t) and th′(t). It is
shown in [17] that q̂f (t, η) = <{q̃f (t, η)}, where <{X} is
the real part of complex number X , consists of an estimate
of the frequency modulation of the closest mode to the point
(t, η) in the TF plane. Note that when f(t) = A(t)e2iπφ(t)

is a Gaussian modulated linear chirp, then q̂f (t, η) = φ′′(t).
Now, if one considers the model signal described Eq. (2), one
has q̂f (t, η) ≈ φ′′p(t) if the modes are separated at time t, if
(t, η) is in the TF domain associated with fp, and if the latter
is well approximated by a linear chirp at time t.

The idea of MB-RD is then to extract the ridges one after
the other using the modulation operator q̂f . In practice, the
latter is discretized on a TF grid, on which n is the time
index, ranging from 0 to N − 1 and k is the frequency index,
ranging from 0 to M − 1. In that context, q̂f is associated
with an N ×M matrix q̂f . More precisely, if the signal f
lasts for T seconds then the time index n corresponds to the
time n

N T , and then, the frequency index k to the frequency
k
M

N
T . With this in mind, to build the first ridge with MB-RD,
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denoted here by the vector ϕ of frequency indices of length
N , one picks a time index n, and computes

ϕ[n] = argmax
0≤k≤M−1

|Vh
f [n, k]|, (6)

where Vh
f is the matrix corresponding to the discretization of

V hf on the TF grid. Then, the next ridge point is computed
through:

ϕ[n+ 1] := argmax
k, |k−ϕ[n]−MT2

N2 q̂f [n,ϕ[n]]|≤C
|Vh

f [n+ 1, k]|.

(7)
At this stage, it is important to understand the meaning of the
set for the index k in this expression. Indeed, if one performs
a first order Taylor expansion of φ′p, assuming fp is a linear
chirp, one obtains:

φ′p

(
n+ 1

N
T

)
= φ′p

( n
N
T
)

+
T

N
φ′′p

( n
N
T
)
.

Now, if one assumes φ′p(
n
N T ) ≈ ϕ[n]

M
N
T for some p (meaning

the ridge point detected is associated with mode p), one has:

ϕ[n+ 1]

M

N

T
≈ ϕ[n]

M

N

T
+
T

N
φ′′p

( n
N
T
)

≈ ϕ[n]

M

N

T
+
T

N
q̂f [n,ϕ[n]]

⇔ ϕ[n+ 1] ≈ ϕ[n] +
MT 2

N2
q̂f [n,ϕ[n]],

(8)

which justifies the range for k in Eq. (7). The parameter C is
then used to cope with potential errors in the approximation
given by Eq. (8). Then, ridge detection continues from time
index n + 1 until time index N − 1, and then also backward
from time index n− 1 to time index 0.

Unfortunately, the ridge obtained that way is not necessarily
made of discrete LMFs, i.e. local maxima of along the
frequency axis of the discretized spectrogram. In the sequel,
and for the sake of simplicity, we also denote by LMF a
discrete LMF. In addition, q̂f is not necessarily accurate
enough because, strictly speaking, it indicates a good direction
to pursue ridge detection only if the associated mode is a
linear chirp. Furthermore, ridge detection is continued even
if the detected points are irrelevant, and this often happens
in noisy situations. Finally, the detected ridge depends on the
initialization time index n [8].

To deal with all these issues, the concept of relevant ridge
portions (RRPs) was introduced in [9]. In a nutshell, an RRP
is a set of frequency indices associated with a set of successive
time indices, meaning an RRP does not necessarily last for the
whole time-span. Thus, to define a generic RRP, still denoted
by ϕ, one first selects a time index n and a frequency index k,
such that [n, k] is an LMF and sets ϕ[n] := k. Then, following
(8), one defines:

F [k] := k +
MT 2

N2
q̂f [n, k], (9)

meaning that ϕ[n + 1] ≈ F [ϕ[n]], when the modulation
operator accurately estimates the chirp-rate on the ridge (the
letter F being chosen to mean “forward”). Now, assuming
ϕ[n+ 1] is known, and considering as previously a first order

Taylor expansion of the frequency, one also have the relation
ϕ[n] ≈ B[ϕ[n+ 1]], with

B[k] := k − MT 2

N2
q̂f [n+ 1, k], (10)

where the letter B is used to mean “backward”. Using these
notations, ϕ[n + 1] is then defined as satisfying [n,ϕ[n]] ∼
[n + 1,ϕ[n + 1]], where the relation ∼ corresponds to the
following definition [9]:

Definition II.1. Let m be a vector with values in J0,M − 1K,
and [n,m[n]] and [n+ 1,m[n+ 1]] two LMFs, then:

[n,m[n]] ∼ [n+ 1,m[n+ 1]]

⇔


m[n+ 1] := argmin

k, [n+1,k] LMF
|k − F [m[n]]|

m[n] := argmin
k, [n,k] LMF

|B[m[n+ 1]]− k|,

with the functions F and B defined in Eq. (9) and (10),
respectively.

This tells us that [n + 1,ϕ[n + 1]] (resp. [n,ϕ[n]]) is the
closest LMF to [n,ϕ[n]] (resp. [n+1,ϕ[n+1]]) at time index
n + 1 (resp. n) in the direction given by q̂f [n,ϕ[n]] (resp.
−q̂f [n+ 1,ϕ[n+ 1]]). So, [n,ϕ[n]] ∼ [n+ 1,ϕ[n+ 1]] also
means that q̂f computed at these LMFs correspond to a stable
orientation. The relation ∼ is then used to define ϕ iterating
the procedure forward and backward, from time index n. Note
that, when the relation ∼ cannot be satisfied at a time index,
the detection procedure stops, which is why one uses the term
“ridge portion”, hence the notation RRP. In this approach, as
the ridge points are linked by means of relation ∼, the stability
of the modulation operator along a ridge is ensured.

III. DEFINITION OF THE NEW RIDGE DETECTOR

Because RRPs are defined by means of the relation ∼, a
ridge point cannot belong to several RRPs, and we propose,
in the following section, to slightly change the definition of
ridge portions to allow for their merging.

A. Definition of the New Ridge Detector: Noiseless Case

The ridge portions we intend to detect are denoted by
ERRPs (for extended relevant ridge portions) and are slightly
different from RRPs introduced in the previous section, in the
following way. To build the first ERRP, which we denote by
ϕ1, we consider the set

D1 = {[n, k] LMF, n ∈ J0, N − 1K, k ∈ J0,M − 1K} , (11)

and then an initial point:

[n1,ϕ1[n1]] = argmax
[n,k]∈D1

|V h
f [n, k]|. (12)

Starting with [n1,ϕ1[n1]], the associated ERRP corresponds to
the RRP detected using the procedure described in the previous
section, plus the two ending points at which the relation ∼ is
no longer satisfied. Such points can belong to several chains
of LMFs, contrary to the other points on the ERRP. Having
defined ϕ1, its associated TF domain reads:

E(ϕ1) := {[n,ϕ1[n]], ϕ1[n] defined} , (13)
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and then, we introduce

D2 := D1 \ E(ϕ1). (14)

To detect the next ERRP, we first consider

[n2,ϕ2[n2]] := argmax
[n,k]∈D2

|V h
f [n, k]|, (15)

and ϕ2 is detected following the same procedure as for ϕ1,
with its associated TF domain being

E(ϕ2) := {[n,ϕ2[n]], ϕ2[n] defined} . (16)

To compute the following ERRPs (for p ≥ 3), we proceed
iteratively by defining:

Dp := Dp−1 \ E(ϕp−1), (17)

and then, starting with

[np,ϕp[np]] := argmax
[n,k]∈Dp

|V h
f [n, k]|,

the pth ERRP is detected in the same way as for ϕ1, and
E(ϕp) correspond to its TF domain. Such a procedure is
carried out until the detected ERRP have a length below some
predefined threshold.

An illustration of the behavior of the detector of ERRPs
is given in Fig. 1 (a) and (b) on a signal made of the sum
of two parallel linear chirps, respectively when the two modes
are sufficiently far apart to enable separate ridge detection and
when the latter are so close that the ridges associated with the
modes merge for some time indices (in that case, the minimal
length that stops the detection procedure is set to 10). From
now on, we denote by ERRP-RD (for ERRP ridge detector)
the just introduced RD. It is important to recall here that local
minima of the spectrogram are necessarily zeros, since the
spectrogram can be viewed as an analytic function [18]. The
zeros in Fig. 1. (a) and (b) are computed that way.

spectrogram

time

fr
e

q
u

e
n

c
y

upper ridge

lower ridge

zeros

local maxima

spectrogram

time

fr
e

q
u

e
n

c
y

zeros

local maxima

(a) (b)

Fig. 1: (a): Spectrogram of two parallel linear chirps with the
same amplitude, when each of them can be associated with a
chain of LMFs (upper and lower ridges); (b): Spectrogram of
two parallel linear chirps when TFBs are present. We plot the
ERRPs computed with ERRP-RD detailed in Sec. III, as well
as the zeros and the local maxima of the spectrogram.

B. Definition of the New Ridge Detector: Noisy Case
In the case of noisy signals, we consider f̃ = f + ε, with

ε a complex Gaussian white noise. To adapt ERRP-RD to
that context, we propose to initialize the detection of ERRPs
using only LMFs that are associated with the signal part of
the spectrogram with a high probability. To do this, we first
recall that, as the added complex noise ε is Gaussian white
with variance σ2

ε , V h
ε [n, k] is also Gaussian with zero mean

and satisfies [19]:

Var
(
<{V h

ε [n, k]}
)

= Var
(
={V h

ε [n, k]}
)

= σ2
ε‖h‖22,

with ‖h‖2 the l2-norm of h. Then, remarking that |V
h
ε |

2

σ2
ε‖h‖22

is
χ2 distributed with two degrees of freedom, and assuming
the variance of the noise σ2

ε is known, the probability that
|V h
ε [n, k]| ≥ βσε‖h‖2 is lesser than 10% and 1% if β = 2

and 3, respectively. To estimate γ = σε‖h‖2, we use the robust
estimator proposed in [20]:

γ̂ :=

median
∣∣∣∣<{V h

f̃
[n, k]

}
n,k

∣∣∣∣
0.6745

,

where median represents the median of the coefficients. Based
on this analysis, we define:

S(β) :=
{

[n, k], |V h
f̃

[n, k]| ≥ βγ̂
}
, (18)

and, referring to [9], we consider that the LMFs involved in
the detection of ERRPs belong to S(3), which guarantees that
the detected ERRPs do not propagate inside the noisy part of
the spectrogram. Thus, to detect the first ERRP, we use the
same algorithm as previously, but starting this time with

[n1,ϕ1[n1]] := argmax
[n,k]∈D̃1

|V h
f̃

[n, k]|, (19)

with D̃1 = D1 ∩ S(3), and then performing ERRP detection
as previously with the additional constraint that the points on
the ERRP belong to D̃1. The set E(ϕ1) being defined as in
the noiseless case, we put:

D̃2 = D̃1 \ E(ϕ1). (20)

Then the detection of ϕ2 follows the same procedure as that
in the noiseless case, replacing D2 by D̃2 to find the initial
points, and bearing in mind that the LMFs on the detected
ERRP have to be all in D̃1. Finally, the detection of the next
ERRPs (p ≥ 3) involves points in D̃1 and is based on the
same framework as in the noiseless case, replacing Dp by
D̃p := D̃p−1 \ E(ϕp−1). From now on, we denote this RD by
ERRP-RDnoise.

IV. TIME-FREQUENCY BUBBLES DEFINITION

A particular type of strong interference in the TF plane
corresponds to the notion of Time-Frequency Bubbles (TFBs),
first mentioned in [15], but without a clear definition. They
occur when the signal is locally associated with a “circular”
set of LMFs in the TF plane. Note that such structures can
also be present in noise, as a result of the interaction between
two logons [21]. To clarify this notion of TFBs in our discrete
TF setting, we propose the following definition using ERRPs:
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Fig. 2: (a): spectrogram of a three mode signal along with the ridges superimposed, in the definition of the Gaussian window
σ = 0.03, the stars correspond to TFB points (ERRP-RD is used as RD); (b): same as (a) but with σ = 0.04 ; (c): same as
(a) but with σ = 0.05.

Definition IV.1. Two ERRPs create a TFB when they have
two points in common, and when, in the region delimited by
these ERRPs between these two points, there is a single zero
of the spectrogram.

As the zeros correspond to local minima of the spectrogram,
in Definition IV.1, we could have alternatively said that, in the
region delimited by the two RRPs between the two merging
points, there is a unique local minimum. An illustration of
such TFBs is given in Fig. 1 (b), in the case of two close
parallel linear chirps (ERRPs are detected using ERRP-RD).

When the signal is the sum of two pure tones, the existence
of TFBs on the spectrogram is equivalent to the two modes
being associated with a single LMF for some time instant.
In a continuous TF setting, and for the Gabor transform, the
condition for such a situation to occur was studied in detail in
[16], and lead to:

Proposition IV.1. Assume f(t) = f1(t) + f2(t) with f1(t) =
Aei2πξ1t and f2(t) = ei2πξ2t, where ξ1 < ξ2, and h(t) =

e−π
t2

σ2 . Then |V hf (t, ·)|2 has two LMFs and a local minimum
if and only if α :=

√
π
2σ(ξ2 − ξ1) > 1 and

| log(A)| < −2 arcosh(α) + 2α
√
α2 − 1.

In any other cases, there exists some time t where |V hf (t, ·)|2
has a unique extremum which is an LMF.

In Proposition IV.1, |V hf (t, ·)|2 means one considers the
spectrogram with respect to the frequency variable at time
t. The proof of this proposition is available in [16]. Though
this result is derived for a specific Gaussian window h, it
can be generalized to any Gaussian window using an ap-
propriate renormalization. To better understand the meaning
of Proposition IV.1, we may say that as soon as α ≤ 1
or | log(A)| < −2 arcosh(α) + 2α

√
α2 − 1, TFBs appear.

In particular, whatever the amplitude A, if the frequency
difference between the two modes is smaller than 1

σ

√
2
π , then

TFBs are present, and, if this condition is not fulfilled, TFBs
also appear provided A is large enough. Note that it was also

shown in [16] that such a result can easily be extended to
parallel linear chirps.

Nevertheless, the conditions put forward in Proposition IV.1
are of limited practical interest, since they are restricted to
the case of pure tones (or parallel linear chirps), of which
the parameters are known. On the contrary, Definition IV.1,
is interesting from a practical point of view, since it is only
based on the detected ERRPs and does not need the knowledge
of the parameters of the modes. To prove the relevance of
Definition IV.1, we will check later that it is in accordance
with Proposition IV.1, in the case of the sum of two pure
tones with known parameters.

V. DETECTING STRONG INTERFERENCE WITH ERRP-RD

Interference between the modes of an MCS are ubiquitous
in the TF plane. Here, we investigate the detection of strong
interference, corresponding to the case where some ERRPs
associated with the signal merge.

A. TFBs Detection Using ERRP-RD

In this section, we explain how to use ERRP-RD to detect
TFBs. To find out the pairs of TF points associated with a TFB
following Definition IV.1, we apply the following procedure:
• Find the ERRPs that have two points in common.
• Compute the number of zeros of the spectrogram inside

the TF domain delimited by these two points and the
associated ERRPs.

• If this number equals one, this pair of points is associated
with a TFB.

We coin such a pair of points TFB points, as they localize a
TFB in the TF plane. An illustration of the detection of TFBs
using such an approach is given in Fig. 2, in which we see
that, depending on σ, the number of TFB points vary. A small
σ, i.e. a small window length, leads to more TFB points in
the vicinity of crossing or close modes than a large σ. But,
as σ increases, one also notices that new TFB points appear,
associated with the mode with an oscillating phase. Indeed,
in that latter case, interferences arise where the IF of that
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mode passes through an extremum. In the Results section, we
are going to investigate more in detail the detection of TFB
points in relation with the choice for σ.

B. Singular Points Detection in Spectrograms of Polyharmonic
Signals

Another application of ERRP-RD is to localize singular
points in polyharmonic signals, such as voice signals, that a
priori do not contain any mode crossings. By singular points,
we recall that we mean TF locations where two ERRPs merge
(without being necessarily a TFB point). ERRP-RD enables to
localize such points, the number of which varies with respect
to σ, and we will see that to study this variation is of great
practical interest.

VI. ON THE RELATION BETWEEN SINGULARITIES OF THE
MODULATION OPERATOR AND TFBS

In this section, we propose to investigate the singularities
of the modulation operator q̂f , when TFBs are present, and in
the simple situation of two interfering pure tones. Considering
that the analysis window is the same as in the previous section
(though a similar result could be obtained with any Gaussian
window), one has h′(t) = − 2π

σ2 th(t), and then the following

Proposition VI.1. Let f(t) = f1(t) + f2(t) with f1(t) =
Aei2πξ1t and f2(t) = ei2πξ2t, where ξ1 < ξ2, the singularities
of q̂f are the zeros of the denominator in Eq. (5), namely the
TF points (t, η) satisfying:

V hf (t, η)V t
2h
f (t, η)− (V thf (t, η))2 = 0. (21)

Now, if we further assume that α :=
√

π
2σ(ξ2 − ξ1) ≤ 1, the

singularities of q̂f are located at (tk,1, η
∗) or (tk,2, η

∗), with

η∗ =
ξ1 + ξ2

2
+

log(A)

2πσ2(ξ2 − ξ1)

tk,1 =
k − arccos(−1+2α2)

2π

ξ2 − ξ1
and tk,2 =

k + arccos(−1+2α2)
2π

ξ2 − ξ1
with k ∈ Z.

The proof is available in Appendix A. Then, it is interesting
to analyze where these singularities are located with respect
to the zeros and the local maxima of the spectrogram. As, for
the signal f of Proposition VI.1, the spectrogram reads:

|V hf (t, η)|2 =A2ĥ2(η − ξ1) + ĥ2(η − ξ2)

+ 2Aĥ(η − ξ1)ĥ(η − ξ2) cos(2π(ξ2 − ξ1)t),
(22)

we can derive the following:

Proposition VI.2. Considering the signal f of Proposition
VI.1, the zeros of its spectrogram are located at (t̃k, η

∗),
with t̃k = k+1/2

ξ2−ξ1 , k ∈ Z, meaning they are aligned with the
singularities of q̂f .

The proof is available in Appendix B. Now, investigating
the position of the singularities of q̂f with respect to that of
local maxima, we show the following:

Proposition VI.3. Considering the signal f of Proposition
VI.1, the zeros and the local maxima of its spectrogram are
aligned only if A = 1.

The proof is given in Appendix C. This means that the
singularities of q̂f are never aligned with local maxima except
if A = 1.

Now, investigating further the singularities of q̂f we show
that they correspond to LMFs only when A = 1. For that
purpose, we first show that at times tk,i the spectrogram has
a unique maximum along the frequency axis, since we have
the following

Proposition VI.4. Assume α is defined as in Proposition VI.1
and define γ = cos(2π(ξ2 − ξ1)t), then |V hf (t, ·)|2 has three

local extrema if and only if α >
√

1+γ
2 and

| log(A)| < − arcosh(X2) + 2α2

√
X2

2 − 1

X2 + γ
,

with X2 = γ(α2−1)+α
√
γ2(α2 − 2) + 2. In any other case,

|V hf (t, ·)|2 has a unique extremum (which is a maximum).

The proof is available in Appendix D. In the case of
Proposition VI.1, at t = tk,i, i = 1 or 2, we have that γ :=

cos(2π(ξ2− ξ1)tk,i) = −1 + 2α2 or equivalently α =
√

1+γ
2 ,

which means that, from Proposition VI.4, |V hf (tk,i, ·)|2 has a
single maximum whatever the value of A, which corresponds
to a LMF. Then, we show the following:

Proposition VI.5. Considering the signal of Proposition VI.1,
then (tk,i, η

∗) is not an LMF except if A = 1.

The proof is available in Appendix E.
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Fig. 3: (a): Spectrogram of two close pure tones where TFBs
are present and when A = 1. The locations of the singularities
of q̂f , of the zeros and of the local maxima of the spectrogram
are also displayed, as well as the ERRPs computed with the
algorithm detailed in Sec. III; (b): Same as in (a), except that
the amplitude of the high-frequency mode is larger than that
of the low-frequency mode.

This proposition means, that when A = 1, (tk,i, η
∗) is the

unique LMF at time tk,i, and when A 6= 1 the unique LMF at
time tk,i is not a singularity of q̂f . To illustrate this, we display,
in Fig. 3 (a), the spectrogram of two pure tones with the same
amplitude in a case such that

√
π
2σ(ξ2 − ξ1) ≤ 1, meaning
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Fig. 4: (a): spectrogram of the signal defined in Eq. (23), for t ∈ [0.4, 0.5], the frequency range for the plot is [210, 280], and
σ = 0.03. The ridges associated with the two modes are also superimposed; (b): TFB detection for the signal defined in Eq.
23, using either R or the ground truth. The results are averaged over 30 noise realizations; (c): number of TFB points detected
as a function of σ for different SNRs.

TFBs are present (ERRPs are computed using ERRP-RD in-
troduced in the previous section). In that case, the singularities
of the modulation operator are LMFs and correspond to the
TF points where two ERRPs merge. On that figure, we also
display the local maxima and zeros of the spectrogram. These
are all aligned with the singularities of q̂f . In Fig. 3 (b), we
display the spectrogram of two pure tones exhibiting TFBs,
and in which case the amplitude of f2 is larger than that of
f1. We notice that, as expected, the singularities of q̂f are not
LMFs, they are aligned with the zeros of the spectrogram,
but not with its local maxima (ERRPs are computed using
ERRP-RD introduced in the previous section). From this study,
one can also estimate the time width of TFBs as the distance
between two successive singularities surrounding a zero, as
well as the distance separating the TFBs. Indeed, we have the
following:

Proposition VI.6. Considering the signal f of Proposition
VI.1, assuming α ≤ 1, then the time interval between the
end and the beginning of two successive TFBs has length
arccos(−1+2α2)

π(ξ2−ξ1) , and each TFB is almost centered around a

zero with respect to time and its time width is 1− arccos(−1+2α2)
π

ξ2−ξ1 .

The proof is available in Appendix F. Analyzing the result
of the above proposition, it transpires that when σ tends to 0,
then α tends to 0 and thus the time width of the TFBs goes
to 0, while when α tends to 1, the distance between the end
and the beginning of two successive TFBs tends to 0 and its
width to 1

ξ2−ξ1 .

VII. RESULTS

To start with we shall remark that a repository enabling
the reproduction of all the figures of the paper is available at
https://github.com/meignen/interference detection.

A. Validation of TFB Detector
Before we use the TFB detector based on TFB points

proposed in Sec. V-A on complex examples, it is wise to check

its accuracy on a simple example. For that purpose, consider
the two-tone signal

f(t) = e2iπ240t + e2iπ260t, (23)

for t ∈ [0, 1] whose spectrogram is displayed in Fig. 4 (a),
for t ∈ [0.4, 0.5]. In such a case, we know from Proposition
IV.1 that TFBs are present when α :=

√
π
2σ(ξ2 − ξ1) ≤ 1

and not otherwise. As ξ1 and ξ2 are fixed parameters, this
defines a function of σ equal to 1 when a TFB is present and
to 0 otherwise. This function is denoted by ground truth (GT)
hereafter. Then, we define a function R such that, R(σ) equals
1 if at least one TFB is detected by means of the algorithm
described in Sec. V-A, and zero otherwise. So R should be
close to GT if it is relevant to detect the presence of TFBs.
To check this, we display, in Fig. 4 (b), R along with GT,
in noiseless and noisy cases (ERRP-RD and ERRP-RDnoise
being used as RD respectively). We notice that R equals GT
in the noiseless case, which is precisely what we expected. We
also remark that the spectrograms of noisy interfering modes
may contain TFB points when there are none in the noiseless
case. To investigate the stability of the detected TFBs, we
also compute in Fig. 4 (c) the number of TFB points as a
function of σ for different noise levels. We notice that most
TFBs detected in the noiseless case are still detected when
noise is added (behavior for σ ≤ 0.026), while for σ larger
than 0.03, no TFBs are detected, and this remains the case
when noise is added. This study also highlights the fact that
in the range between these two values of σ, the noise can
create TFBs that are not present in the noiseless case.

B. Detecting Mode Crossings with TFB points

In this section, we investigate in what way the knowledge
of TFB points can help us determine whether there are some
mode crossings in the TF plane, and find an appropriate
window length parameter σ. To do this, let us consider the
signal of Fig. 2, for which we determine the number of TFB
points when both σ and the input SNR varies.
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The results depicted in Fig. 5 (b) tell us that, in the noiseless
case, the number of TFB points attains a minimum when σ =
0.04, and equals 4 (see Fig. 2 (b)). We remark that these TFB
points correspond to the location of the crossing of the two
modes (see Fig. 2 (b)) and that they are stable as the noise
level increases, provided the latter is not too strong, that is the
SNR is larger than 0 dB. When σ is smaller than this value, the
crossing of the two modes as well as the interference between
the oscillatory modes and the linear chirp generate more TFB
points (see Fig. 2 (a)), which are stable under the addition of a
reasonable amount of noise (SNR larger than 0 dB). For these
values of σ and when the SNR equals 0 dB, we notice that
the domain S(3) does not contain, for some noise realizations,
the ridge portions involved in the definition of the TFBs at a
lower noise level, therefore fewer TFB points are detected in
that case. On the contrary, when σ is larger than 0.04, many
TFB points arise due to interference in the oscillatory mode
(see Fig. 2 (c)), but these mostly disappear when some noise
is added. We shall also remark that as the number of TFB
points is not null for all the tested σ, and, by considering
the regions where TFB points are present regardless of σ,
one can localize mode crossings. Furthermore, we get from
this study that to choose the value of σ that minimizes the
number of detected TFB points leads to an appropriate window
length, because it minimizes the number of locations where
mode mixing arise, and thus corresponds to the value that best
separates the modes.
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Fig. 5: (a): Average Rényi and Shannon entropies computed
on the spectrogram corresponding to the signal of Fig. 2 for
different values of σ and input SNRs; (b): Number of TFB
points with respect to σ and noise level still for the signal of
Fig. 2. The results are averaged over 30 noise realizations.

In most applications, the window length parameter σ is
however found by considering the value minimizing the Rnyi
entropy over a certain range of the length parameter [22]. The
main motivation for such an approach is that the Rnyi entropy
is an overall measure of the dispersion of the information
in the TF plane [23]. Also, when considering a linear chirp,
the window length associated with the minimal Rnyi entropy
automatically adapts to the chirp rate of the signal [24].
However, when the signal is made of modes with different
frequency modulations, what matters most is not the dispersion
but the separability. Furthermore, it is not guaranteed that the

Rnyi entropy actually passes through a minimum in the range
of interest for σ. In order to check the difference between
separability and dispersion, we also compute the Rnyi entropy,
for the signal depicted in Fig. 2, under the same conditions as
for TFB points. The results depicted in Fig. 5 (a) reveals that
the parameter value leading to the minimal Rnyi entropy over
the studied range for σ is irrelevant in that case. Note finally
that to consider other types of entropies, like the Shannon
entropy, leads to the same conclusion.

C. Finding the Best Window Length Based on TFBs Detection
in the Case of Interfering Modes

In this section, our goal is first to show that to choose the
value for σ that minimizes the number of TFB points is a good
strategy for mode separation also in situations where there are
no mode crossings.

To illustrate the impact of the value of σ on a signal
containing close but not intersecting modes, we display in
Fig. 6, the spectrogram, for different σ, of the sum of a
sinusoidal mode and a linear chirp. In each case, we also
plot the ERRPs computed with ERRP-RD along with the TFB
points. We notice that a small value of σ results in TFB
points associated with strong interferences between the two
modes, while for intermediate values of σ, no TFB points are
detected, and larger values of σ generate TFB points associated
with self-interferences in the oscillatory mode. For such a
signal, σ = 0.018 seem to ensure the separation of the two
modes while avoiding interference in the oscillatory mode.
To investigate this more in depth, we study as previously the
number of TFB points with varying σ and input SNR, the
results being depicted in Fig. 7 (b). We notice that, when σ is
small, there are many TFB points related to inferences between
the two modes and that these are stable under the addition of
a reasonable amount of noise. For intermediate values of σ the
number of TFB points is null and this remains true for all the
tested noise levels, while for large values of σ, interference
in the oscillatory mode creates many TFB points, which are
unstable through noise addition. From this study, we conclude
that the values of σ that correspond to the absence of TFB
points are good choices to well separate the modes and avoid
interference in the oscillatory mode. The fact that the minimal
number of TFB points is zero also means there are no ridge
crossings. Though it is not the purpose of the present paper,
it is worth also noting here that such values of σ lead to two
separated ridges associated with the two modes making up the
signal, which is a crucial point if one wants to perform mode
reconstruction from ridge detection.

To compare with, we also plot the Rnyi entropies of the
spectrogram corresponding to the same noise level and values
of σ, and we notice that it keeps decreasing when σ increases.
From this, one can draw the conclusion that to use the minimal
Rnyi entropy in the relevant range for σ is not a good strategy.
To consider other entropies, like the Shannon entropy, would
lead to the same results, which are therefore not displayed
here.
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Fig. 6: Spectrogram of a sum of a sinusoidal chirp and a linear chirp for different values of σ, along with the detected ERRPs
(ERRP-RD is used as RD), the red stars corresponding to TFB points.
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Fig. 7: (a): Average Rényi entropy computed on the spectro-
gram corresponding to the signal of Fig. 6; (b): Number of
TFB points. The results are averaged over 30 noise realiza-
tions.

D. Singular Points Detection: Application to Voice Signals

In this section, our goal is to give an illustration on a voice
signal of the potential interest of the procedure we propose in
Sec. V-B to detect singular points to determine an appropriate
window length to analyze such a signal. Indeed, for that kind
of signals, it is of interest to have access to its different
harmonics, which can be done by extracting the ERRPs. A
natural question one then asks is to what extent the extracted
ERRPs are related to the harmonics. We are going to show
that, by finding the value of σ that minimizes the number of
detected singular points, we obtain a satisfactory answer to
that question.

Let us consider the voice signal of a 22-year-old female
taken from the recording 62 of the Saarbruken Voice Database
[25]. This signal contains 126902 samples for a length of
2.538 seconds and for efficiency purpose, we downsample it
by a factor of 10. It contains a sustained /a/ vowel of the type
“low-high-low” meaning there is a change on the pitch of the
signal. The spectrograms of such a signal for different values
of σ are depicted on the first column of Fig. 8, along with
the detected ERRPs, the singular points corresponding to red
stars. We notice that when σ = 0.007, ERRP-RD detects 6
uninterrupted and meaningful ridges, which is not the case for
the other displayed cases, in which the harmonics interfere,

creating singular points. So, we check that this value of σ
actually corresponds to the detection of a minimal number of
singular points even in noisy situations. To do so, we compute
the number of singular points as a function of σ in Fig. 9
(b), and for different input SNRs. We notice that when this
number equals 0 in this absence of noise, it corresponds to
cases where the harmonics are well separated, and that, in such
cases, the number of singular points remains small in noisy
situations. Finally, it is important to remark that the sharp
increase in the number of singular points when σ is small is
due to interference appearing between the modes where these
are not modulated.

To compare with, the values of the Rényi entropy as a
function of σ are shown in Fig. 9 (a), and, as expected,
the value of σ corresponding to the minimum of the Rényi
entropy over the tested range is not associated with the best
result in terms of mode separability. We are now interested
in reassigning the STFT of this signal using second order
synchrosqueezing transform (FSST2) [17], [26] (see in that
paper for the details of the technique), to obtain a sharper
TFR. The key point for FSST2 to be successful is that the
STFT of the signal can be locally accurately approximated
by that of a linear chirp. However, when the harmonics are
interfering due to a wrong window choice, some interferences
appear in the spectrogram, causing the failure of FSST2.
We investigate visually the effect of a wrong choice for σ
on the spectrogram and FSST2 in an area of interference.
Zoomed in versions of the spectrogram and FSST2 around the
interference area are shown in the second and third columns
of Fig. 8. In that case, we see that, when no singular points
are detected, as in the case σ = 0.007, FSST2 leads to a
much sharper representation in the area of interference. On the
contrary, when σ = 0.003 (first row of Fig. 8), interference
along the frequency axis creates undesirable oscillations on
the synchrosqueezed representation, while for σ = 0.013
(third row of Fig. 8), interference along the time axis are
present, creating spurious horizontal structures that make ridge
detection difficult, and therefore mode separation. This simple
study confirms that what monitors the quality of FSST2 locally
is whether singular points are present in the TF area of interest.
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Fig. 8: Left column: spectrogram of a voice signal (recording 62 of the Saarbruken Voice Database [25]) along with the
ERRPs associated with different values of σ; Middle and right columns : zoomed in versions of the spectrogram and FSST2
corresponding to the green rectangular regions of the spectrogram on the left column.
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Fig. 9: (a): Rnyi entropies corresponding to the signal of Fig.
8, when σ varies; (b): Number of singular points detected
using ERRP-RD or ERRP-RDnoise depending on whether
some noise is present. The results are averaged over 10 noise
realizations.

VIII. CONCLUSION

In this paper, our goal was to introduce a new ridge detector
to enable the detection of strong interference in the time-
frequency plane. We found our analysis on some existing

adaptive ridge detectors that used a modulation operator to
construct the ridges. We explained how the intersection of the
different ridges could help us localize some specific structures
called time-frequency bubbles, which proved to be useful to
detect crossing modes and where two modes are strongly
interfering in the TF plane. Application to voice signals on
how to use singular points to find an appropriate window
length in the definition of the spectrogram was also presented.
In a near future, such a window determination technique will
be applied to find locally the best window length and improve
the behavior of synchrosqueezing transforms.

APPENDIX

A.Proof of Proposition VI.1

Let us write:

q̂f (t, η) = − 1

2π
=

{
(V hf (t, η))2

V t
2h
f (t, η)V hf (t, η)− (V thf (t, η))2

}

= − 1

2π
=
{
N(t, η)

D(t, η)

}
.
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For the signal f of the proposition, one has:

D(t, η) =
σ2

2π

(
f2

1 (t)ĥ2(η − ξ1) + f2
2 (t)ĥ2(η − ξ2)

+2f1(t)f2(t)ĥ(η − ξ1)ĥ(η − ξ2)
)

−σ4(ξ2 − ξ1)2f1(t)f2(t)ĥ(η − ξ1)ĥ(η − ξ2)

=
σ2

2π
N(t, η)− σ4(ξ2 − ξ1)2f1(t)f2(t)ĥ(η − ξ1)ĥ(η − ξ2)).

Then, N(t, η) and D(t, η) have no common zeros, since
N(t, η) = 0 implies that D(t, η) 6= 0, since ξ1 6= ξ2.
Therefore, the singularity of q̂f , located at (t∗, η∗) corresponds
to D(t∗, η∗) = 0.

Then, we may write

D(t, η) = 0

⇔ A2ei4πξ1tĥ2(η − ξ1) + ei4πξ2tĥ2(η − ξ2)

+2(1− πσ2(ξ2 − ξ1)2)Aei2π(ξ1+ξ2)tĥ(η − ξ1)ĥ(η − ξ2) = 0

⇔ A2ĥ2(η − ξ1)ei2π(ξ1−ξ2)t + ĥ2(η − ξ2)ei2π(ξ2−ξ1)t

+2(1− πσ2(ξ2 − ξ1)2)Aĥ(η − ξ1)ĥ(η − ξ2) = 0

A necessary condition for the equality to be true is that
A2ĥ2(η− ξ1)ei2π(ξ1−ξ2)t + ĥ2(η− ξ2)ei2π(ξ2−ξ1)t belongs to
R, which is true if and only if Aĥ(η − ξ1) = ĥ(η − ξ2). Due
to the choice for h, it is easy to check that this equation in η
has a unique solution corresponding to:

η∗ =
ξ1 + ξ2

2
+

log(A)

2πσ2(ξ2 − ξ1)
.

For η = η∗, the zeros of D(η∗, t) would be such that:

2ei2π(ξ1+ξ2)t(cos(2π(ξ2 − ξ1)t) + 1− πσ2(ξ2 − ξ1)2) = 0

meaning cos(2π(ξ2 − ξ1)t) = −1 + πσ2(ξ2 − ξ1)2. Since we
further assume that 0 <

√
π
2σ(ξ2 − ξ1) ≤ 1, the solutions to

this equation correspond to:

tk,1 =
k − arccos(−1+πσ2(ξ2−ξ1)2)

2π

ξ2 − ξ1

tk,2 =
k + arccos(−1+πσ2(ξ2−ξ1)2)

2π

ξ2 − ξ1
for k ∈ Z.

B. Proof of Proposition VI.2

The function |V hf (·, η)|2, where ‘·’ means we consider this
variable, attains its minimum at t̃k = k+1/2

ξ2−ξ1 , at which:

|V hf (t̃k, η)|2 = (Aĥ(η − ξ1)− ĥ(η − ξ2))2.

Then, the zeros of the spectrogram correspond to frequencies
η such that Aĥ(η − ξ1) = ĥ(η − ξ2), meaning η = η∗.

C. Proof of Proposition VI.3

|V hf (·, η)|2 attains its maximum at tk = k
ξ2−ξ1 , k ∈ Z at

which:

|V hf (tk, η)|2 = σ2(Ae−πσ
2(η−ξ1)2 + e−πσ

2(η−ξ2)2)2.

Now, local maxima of the spectrogram correspond to frequen-
cies η such that |V hf (tk, η)|2 passes through a local maximum.
Computing the derivative of |V hf (tk, η)|2, one obtains:

−2π(A(η − ξ1)ĥ(η − ξ1) + (η − ξ2)ĥ(η − ξ2))

(Aĥ(η − ξ1) + ĥ(η − ξ2)).

The second term never vanishes and, for the first term, at
η = η∗, one has:

A(η∗ − ξ1)ĥ(η∗ − ξ1) + (η∗ − ξ2)ĥ(η∗ − ξ2)

= [(η∗ − ξ1) + (η∗ − ξ2)] ĥ(η∗ − ξ2),

which is null only if A = 1, in which case η∗ = ξ1+ξ2
2 .

D. Proof of Proposition VI.4

Let us consider the function:

l(η) = A2e−2πσ2(η−ξ1)2 + e−2πσ2(η−ξ2)2

+2Ae−πσ
2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t),

and then put γ = cos(2π(ξ2 − ξ1)t). Making the change of
variables η = ν + ξ1+ξ2

2 and putting ξ = ξ2−ξ1
2 , one may

define:

f1(ν) =l(ν +
ξ1 + ξ2

2
)

=e−2πσ2(ν2+ξ2)(A2e−4πσ2ξν + e4πσ2ξν + 2Aγ).

Putting ν = log(A)+µ
4πσ2ξ , enables us to define:

f1(ν) =f2(µ)

=e
−2πσ2

[(
log(A)+µ

4πσ2ξ

)2
+ξ2

]
2A(cosh(µ) + γ).

The derivative of f2 reads:

f ′2(µ) =e
−2πσ2

[(
log(A)+µ

4πσ2ξ

)2
+ξ2

]

2A

[
− log(A) + µ

4πσ2ξ2
(cosh(µ) + γ) + sinh(µ)

]
which has the sign of (assuming γ 6= −1):

g(µ) = − log(A) + µ

2α2
+

sinh(µ)

cosh(µ) + γ
.

Differentiating g we get

g′(µ) = − 1

2α2
+

1 + γ cosh(µ)

(cosh(µ) + γ)2

which has the same sign as

h(cosh(µ)) = − (cosh(µ) + γ)2

2α2
+ 1 + γ cosh(µ)

=
1

α2

(
−cosh(µ)2

2
+ γ(α2 − 1) cosh(µ) + α2 − γ2

2

)
.

The factor inside the parentheses is a second order polynomial
in cosh(µ) whose discriminant reads: ∆ = α2(γ2(α2 −
2) + 2) > 0. The roots of this polynomial are denoted
by X1 and X2 with X1 < X2, and h(X) < 0 if X ∈
] − ∞, X1[

⋃
]X2,+∞[ and h(X) > 0 if X ∈]X1, X2[. To

know the location of cosh(µ) with respect to X1 and X2, one



12

first compute h(1) = (γ+1)(1− γ+1
2α2 ) which has the same sign

as α2 − γ+1
2 . Assuming α ≤

√
γ+1

2 , h(1) ≤ 0 and 1 belongs
to ] − ∞, X1] or [X2,∞[. As X1+X2

2 = γ(α2 − 1) < 1, 1
belongs to ]X2,+∞[. Finally, as cosh(µ) ≥ 1, h(cosh(µ))
and thus g′(µ) are negative. From this study one deduces the
following table of variations:

µ

g(µ)

f ′2(µ)

f2(µ)

−∞ µ1 +∞

+∞+∞
−∞−∞

+ 0 −

and l(η) has a unique extremum which is a maximum when

α ≤
√

γ+1
2 .

If one now assumes that α >
√

γ+1
2 , then h(1) > 0 and thus

1 belongs to ]X1, X2[. As cosh(µ) ∈ ]X1, X2[ is equivalent
to |µ| < arcosh(X2), h(cosh(µ)) < 0 if

µ ∈]−∞,− arcosh(X2)[
⋃

] arcosh(X2),+∞[,

and h(cosh(µ)) is positive otherwise, leading to the following
table of variations:

µ

g′(µ)

g(µ)

−∞ − arcosh(X2) arcosh(X2) +∞
− 0 + 0 −

+∞+∞
−∞−∞

g(µ) vanishes with a change of sign only once at some µ = µ1

if and only if g(− arcosh(X2)) ≥ 0 or g(arcosh(X2)) ≤ 0.
In this case, we deduce that

µ

f ′2(µ)

f2(µ)

−∞ µ1 +∞
+ 0 −

meaning l(η) has a unique extremum (which is a maximum).
If g(− arcosh(X2)) < 0 and g(arcosh(X2)) > 0, g(µ)

vanishes and changes signs three times at some µ = µ1, µ2

and µ3 leading to the following table of variations for f2:

µ

g(µ)

f2(µ)

−∞ µ1 µ2 µ3 +∞
+ 0 − 0 + 0 −

In such a case, l(η) has three extrema: 2 maxima and a
minimum.

Finally, to specify in which situations l has three extrema,

we remark that

g(arcosh(X2)) > 0

⇔ log(A) < − arcosh(X2) + 2α2

√
X2

2 − 1

X2 + γ

g(− arcosh(X2) < 0

⇔ − log(A) < − arcosh(X2) + 2α2

√
X2

2 − 1

X2 + γ
.

So l(η) has three extrema if and only if α >
√

1+γ
2 and

then if | log(A)| < − arcosh(X2)) + 2α2

√
X2

2−1

X2+α with X2 =

γ(α2 − 1) + α
√
γ2(α2 − 2) + 2.

E. Proof of Proposition VI.5

Let us consider γ = cos(2π(ξ2 − ξ1)tk,i) = −1 + 2α2. We
shall then remark that

∂η|V hf (tk,i, η)|2 =

−4πσ2
[
(η − ξ1)A2ĥ2(η − ξ1) + (η − ξ2)ĥ2(η − ξ2)

+γ(2η − ξ1 − ξ2)Aĥ(η − ξ1)ĥ(η − ξ2)
]

Evaluating this quantity at η = η∗, and since Aĥ(η∗ − ξ1) =
ĥ(η∗ − ξ2), we get:

∂η|V hf (tk,i, η
∗)|2

= −4πσ2(2η∗ − ξ1 − ξ2)(1 + γ)A2ĥ2(η∗ − ξ1)

= −8 log(A)

ξ2 − ξ1
α2A2ĥ2(η∗ − ξ1)

which is null if A = 1 and non-zero otherwise.

F. Proof of Proposition VI.6

Let us recall that the zeros are located at time t̃k = k+1/2
ξ2−ξ1 ,

and that the local maxima are located at tk = k
ξ2−ξ1 , for k ∈ Z.

Since 0 <
√

π
2σ(ξ2 − ξ1) ≤ 1, we have π > arccos(K) ≥ 0,

then we have tk,1 ≤ tk ≤ tk,2, which means that the distance
between the end and the beginning of two successive TFBs is

tk,2 − tk,1 =
arccos(−1 + 2α2)

π(ξ2 − ξ1)
.

Thus, the width is tk+1,1 − tk,2 =
1− arccos(−1+2α2)

π

ξ2−ξ1 .
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in 2017 and 2018. He joined the Department of
Mathematics, Faculty of Engineering UNER, in
2008, became a Teaching Assistant in 2011, and
an Adjunct Professor in 2019. Since 2019, he is an
Assistant Researcher with the Consejo Nacional de

Investigaciones Cientificas y Técnicas (CONICET, Argentina). His research
interests are time-frequency/time-scale signal analysis, synchrosqueezing,
data-driven methods and biomedical signal processing.


