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Abstract

In estimation theory, the Kushner equation provides the evolution of the probability density of the
state of a dynamical system given continuous-time observations. Building upon our recent work, we
propose a new way to approximate the solution of the Kushner equation through tractable variational
Gaussian approximations of two proximal losses associated with the propagation and Bayesian update of
the probability density. The first is a proximal loss based on the Wasserstein metric and the second is
a proximal loss based on the Fisher metric. The solution to this last proximal loss is given by implicit
updates on the mean and covariance that we proposed earlier. These two variational updates can be fused
and shown to satisfy a set of stochastic differential equations on the Gaussian’s mean and covariance
matrix. This Gaussian flow is consistent with the Kalman-Bucy and Riccati flows in the linear case and
generalize them in the nonlinear one.

1 Introduction

We consider the general filtering problem where we aim to estimate the state xt of a continuous-time stochastic
system given noisy observations yt . If the state follows a Langevin dynamic f =−∇V with V a potential
function and the observations occur continuously in time, the problem can be described by two stochastic
differential equations (SDE) on xt and zt , where zt is related to the observation by the equation dzt = ytdt:

dxt =−∇V (xt)dt +
√

2εdβ (1)

dzt = h(xt)dt +
√

Rdη . (2)

β and η are independent Wiener processes and Q = 2εI and R play the role of covariance matrices of the
associated diffusion processes. Many dynamical systems can be rewritten in the Langevin canonical form (1),
see for instance [6]. In essence (2) means “yt = h(xt)+noise”, but one has to resort to (2) to avoid problems
related to infinitely many observations. The optimal Bayesian filter corresponds to the conditional probability
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pt of the state at time t given all past observations. This probability satisfies the Kushner equations which can
be split into two parts:

d pt = L (pt)dt +dH (pt), (3)

where L is defined by the Fokker-Planck partial differential equation (PDE)

L (pt) = div[∇V pt ]+ ε∆pt , (4)

whereas the second term corresponds to the Kushner stochastic PDE (SPDE):

dH (pt) = (h−Ept [h])
T R−1(dzt −Ept [h]dt)pt ,

where Ept [h] :=
∫

h(x)pt(x)dx and stochasticity comes from dzt . These equations cannot be solved in
the general case, and we must resort to approximation. In this paper, we consider variational Gaussian
approximation, which consists in searching for the Gaussian distribution qt closest to the optimal one pt for a
particular variational loss. Two variational losses are well suited for our problem.

Jordan-Kinderlehrer-Otto (JKO) [9] showed that the following proximal scheme:

argmin L δ t(p) = argmin
[

KL
(

p
∣∣∣∣∣∣π)+ 1

2δ t
d2

w(pt , p)
]
, (JKO) (5)

is related to the Fokker-Planck (FP) equation associated to (1) where we denote its stationary distribution
π ∝ exp(−V/ε). Indeed, iterating this proximal algorithm yields a curve being solution to FP as δ t → 0.
It is referred to as variational since it is an optimization problem over the function p, and it involves the
Kullback-Leibler divergence defined by KL(p||π) =

∫
p log p

π
, and the Wasserstein (or optimal transport)

distance d2
w(pt , p) [2].

The variational loss associated to the Kushner PDE is the Laugesen-Mehta-Meyn-Raginsky (LMMR)
proximal scheme [14] defined by:

argmin H δ t(p) = argmin
[
Ep

1
2
||δ zt −h(x)δ t||2(Rδ t)−1 +KL(p||pt)

]
, (LMMR) (6)

where δ zt := zt+δ t − zt comes from the Euler-Marayama discretization of the observation SDE: δ zt =
h(xt)δ t +

√
Rδη such that p(δ zt |xt) = N (h(xt)δ t,Rδ t).

For small δ t those schemes generate a sequence of probability distributions that converge to the solutions
of the corresponding PDE in the limit δ t→ 0. We see the KLs in both schemes play a different role, though.
In (5), the proximal scheme shows that the solution to the FP equation follows a gradient of the KL to
the stationary distribution π . This gradient is computed with respect to the Wasserstein metric. In (6), the
proximal scheme defines a gradient over the state prediction p of the expected prediction error. This gradient
is computed in the sense of the metric defined by the KL around its null value, which may be related to the
Fisher metric.

To approximate the solutions, we propose to constrain them to lie in the space of Gaussian distributions.
That can be done by constraining in the proximal schemes the general distribution pt to be a Gaussian
distribution qt = N (µ,P). The proximal problems become finite-dimensional and boil down to minimizing
L δ t and H δ t over (µ,P). The Gaussian approximation of the JKO scheme yields in the limit a set of ODEs
on µ and P as shown in [13]. In this paper, we extend these results showing the Gaussian solution to the
LMMR scheme corresponds to the R-VGA solution [11] which yields in the limit a set of SDEs on µ and P.
Moreover, using a two-step approach, we can fuse the two Gaussian solutions to approximate the Kushner
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equation (3). As shall be shown presently, we find the following SDEs for µ and P:

The fully continuous-time variational Kalman filter
dµt = btdt +PtdCt

dPt = AtPtdt +PtAT
t dt +

1
2

dHtPt +
1
2

PtdHT
t +2εIdt

where bt =−Eqt [∇V (x)]; dCt = Eqt [∇h(xt)
T R−1(dzt −h(xt)dt)]

At =−Eqt [∇
2V (x)]; dHt = Eqt [(xt −µt)(dzt −h(xt)dt)T R−1

∇h(xt)].

(7)

The equation for Pt can be seen as a generalization of the Riccati equation in the nonlinear case. Indeed, if
we replace V and h with linear functions, the ODE on Pt matches the Riccati equations and we recover the
Kalman-Bucy filter, known to solve exactly the Kushner equations.

This paper is organized as follows: Section 2 is dedicated to related works on the approximation of the
optimal nonlinear filter. In Section 3 we derive the variational Gaussian approximation of the LMMR scheme.
In Section 4 we recall the variational Gaussian approximation of the JKO scheme proposed in our previous
work. In Section 5 we combine these two results to obtain the Continuous Variational Kalman filter equations
and show the equivalence with the Kalman-Bucy filter in the linear case.

2 Related works

In 1967, Kushner proposed a Gaussian assumed density filter to solve his PDE [10]. This filter is derived by
keeping only the first two moments of pt in (3) which can be computed in closed form using the Ito formula.
These moments involve integrals under the unknown distribution pt and the heuristic is to integrate them
rather on the current Gaussian approximation qt leading to a recursive scheme. A more rigorous way to
do this approximation was proposed later [8, 4] with the projected filter. In this approach, the solution of
the Kushner PDE is projected onto the tangent space to Gaussian distributions equipped with the Fisher
information metric. This leads to ODEs that are quite different from (7). A third approach is to linearize the
stochastic dynamic process to obtain a McKean Vlasov process that allows for Gaussian propagation [12, Sec
4.1.1]. The connexion between approximated SDEs and projected filters was analyzed in detail earlier in [3].
The latter approach is the one explored in the current paper, i.e., considering proximal schemes associated
with the Kushner PDE where we constrain the solution to be Gaussian. It is equivalent to projecting the
exact gradient flow onto the tangent space of the manifold of Gaussian distributions. This approach is
preferred since it exhibits the problem’s geometric structure and allows convergence guarantees to be proven.
Approximation of gradient flows is an active field and several recent papers have followed this direction:
the connexion between the propagation part of the Gaussian assumed density filter and the variational JKO
scheme [9] was recently studied [13]; the connexion between the update part of the Gaussian assumed density
filter and the variational LMMR scheme [14] was studied in [7] where a connexion with a gradient flow was
first established but limited to the linear case. To the best of our knowledge, the variational approximation of
the LMMR scheme in the nonlinear case has never been addressed. The various ways to obtain the ODEs (7)
lead to nice connexions between geometric projection, constrained optimization, and statistical linearization.
These different approaches are illustrated in Figure 1 which addresses only the approximation of dynamics
(1) without measurements (i.e., propagation only) for which all methods prove equivalent.

3 Variational Gaussian approximation of the LMMR proximal

In this section, we compute the closest Gaussian solution to the LMMR problem (6). The corresponding
Gaussian flow is closely related to natural gradient descent used in information geometry. This flow
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Distribution p Gaussian approx. q(µ,P)

dxt =−∇V (xt)dt SDE linearization [12] dxt = A(t)(xt −µt)dt +b(t)dt
+
√

2εdβ +
√

2εdβ

nonlinear SDE process ⇒ McKean–Vlasov process

∂ p
∂ t = div(∇V p)+ ε∆p µ̇t = b(t)

Riemanian projection [8] Ṗt = A(t)Pt +PtA(t)T +2εI
Fokker-Planck ⇒ Variational Gaussian flow

KL(p||π)+ 1
2δ t dw(p, pt)

2 constrained optim. [13] KL(q||π)+ 1
2δ t dbw(q,qt)

2

proximal JKO ⇒ proximal Bures-JKO

δ p =−∇wKL(p||π) gradient projection [13] δq =−∇bwKL(q||π)
W2 gradient flow ⇒ Bures-W2 gradient flow

where A(t) =−Eqt [∇
2V (x)]; b(t) =−Eqt [∇V (x)]

Figure 1: Various equivalent approaches for Gaussian approximation of the SDE (1). We denote π ∝

exp(−V/ε) as the stationary distribution of the associated Fokker-Planck equation. The left column presents
equivalent definitions of p whereas the right column corresponds to the approximated solution q in the space
of Gaussian distributions. dw denotes the Wasserstein distance whereas dbw denotes the Bures-Wasserstein
distance, which is its restriction to the subset of Gaussian distributions. At the last row, the tangent vector δ p,
respectively (resp. δq) and the gradient ∇w (resp. ∇bw) are defined with respect to the Wasserstein metric
space of distribution

(
P(Rd),d2

w
)

(resp. the Bures-Wasserstein metric space of Gaussians
(
N (Rd),d2

bw

)
).

These geometries are briefly explained in Section 4.2.
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approximates the Kushner optimal filter when the state is static. In the next sections, we will generalize this
result to a dynamic state.

3.1 The recursive variational Gaussian approximation

The proximal LMMR problem (6) where we constrain the solution q to be a Gaussian reads (given qt a
current Gaussian distribution at time t):

qt+δ t = argmin
q∈N (µ,P)

Eq
1
2
||δ zt −h(x)δ t||2(Rδ t)−1 +KL(q||qt) (8)

= argmin
q∈N (µ,P)

−
∫

q(x) log p(δ zt |x)dx+KL(q||qt) (9)

= argmin
q∈N (µ,P)

KL
(

q
∣∣∣∣∣∣ 1

Z
p(δ zt |x)qt

)
, (10)

where we have introduced a normalization constant Z which does not change the problem.
Eq (10) falls into the framework of variational Gaussian approximation (R-VGA) [11]. The solution satisfies
the following updates [11, Theorem 1]:

µt+δ t = µt +PtEqt+δ t [∇x log p(δ zt |x)]
P−1

t+δ t = P−1
t −Eqt+δ t [∇

2
x log p(δ zt |x)],

where the expectations are under the Gaussian qt+δ t ∼N (µt+δ t ,Pt+δ t) making the updates implict. In the
linear case, that is, if we take h(x) = Hx, these updates are equivalent to the online Newton algorithm [11,
Theorem 2]. Computing the Hessian ∇2

x log p can be avoided using integration by part:

P−1
t+δ t = P−1

t −P−1
t+δ tEqt+δ t [(x−µt+δ t)∇x log p(δ zt |x)T ]

By rearranging the terms and using that P is symmetric (see [12, Sec 4.2]) we can let appear an update on the
covariance:

Pt+δ t = Pt +
1
2
Eqt+δ t [(x−µt)∇x log p(δ zt |x)T ]Pt +

1
2

PtEqt+δ t [∇x log p(δ zt |x)(x−µt)
T ].

Finally, using that ∇x log p(δ zt |x) = ∇h(x)T R−1(δ zt −h(x)δ t) we obtain:

µt+δ t = µt +PtδCt , Pt+δ t = Pt +
1
2

δHtPt +
1
2

PtδHT
t , (11)

where:

δCt = Eqt+δ t [∇h(x)T R−1(δ zt −h(x)δ t)]

δHt = Eqt+δ t [(x−µt)(δ zt −h(x)δ t)T R−1
∇h(x)].

Letting δ t→ 0, we obtain the following SDE in the sense of Ito:

dµt = PtdCt , dPt =
1
2

dHtPt +
1
2

PtdHT
t , (12)

where it shall be noted that dHt is non-deterministic owing to dzt . Since the LMMR scheme has been proven
to converge to the solution of the Kushner SPDE [14], this SDE describes the best Gaussian approximation
of the optimal filter when the state is static.
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3.2 Information geometry interpretation

We show here how the LMMR proximal scheme is related to the Fisher information geometry in the general
case. Let’s consider a family of densities: S =

{
p(.|θ);θ ∈Θ;Θ⊆ Rm

}
and let

F(θ) =
∫

∇θ log p(x|θ)∇θ log p(x|θ)T p(x|θ)dx,

be the Fisher information matrix, where θ regroups all the parameters. If we consider now the proximal
LMMR on S, and if we use the second-order Taylor expansion of the KL divergence between these two
distributions, we have:

KL(p(x|θ)||p(x|θt)) =
1
2
(θ −θt)

T F(θt)(θ −θt)+o((θ −θt)
2).

Rather than minimizing the proximal LMMR scheme (6) in the infinite space of distributions, we now search
the minimum in the finite space of parameters:

θt+δ t = argmin
θ∈Θ

Ep(x|θ)

[
1
2
||δ zt −h(x)δ t||2(Rδ t)−1

]
+

1
2
(θ −θt)

T F(θt)(θ −θt).

Considering that the minimum must cancel the gradient of the above proximal loss, we obtain:

0 = ∇θ

(
Ep(x|θ)

[
1
2
||δ zt −h(x)δ t||2(Rδ t)−1

])∣∣
θt+δ t

+F(θt)(θt+δ t −θt)

θt+δ t = θt −F(θt)
−1

∇θ

(
1
2
Ep(x|θ)

[
||δ zt −h(x)δ t||2(Rδ t)−1

])∣∣
θt+δ t

, (13)

which corresponds to a gradient descent of the averaged stochastic likelihood:

θt+δ t = θt −F(θt)
−1

∇θEp(x|θ)[− log p(δ zt |x)]
∣∣
θt+δ t

. (14)

Remarkably, the optimal filer equations with a static state x are given by an implicit Bayesian variant of the
natural gradient descent [1]. Indeed here x plays the role of the parameter of the likelihood distribution. The
original natural gradient should be a descent with the gradient −F(xt)

−1∇x log p(δ zt |x)
∣∣
xt

.

4 Variational Gaussian approximation of the JKO proximal

The canonical Langevin form (1) assumes that the drift term f = −∇V derives from a potential V . This
potential has a physical meaning in filtering (consider a gravity field for example). The evolution of the state
in the filter mimics the true evolution of the physical system. It’s not the case in statistical physics, where the
potential is constructed such that V =− logπ where π is the asymptotic distribution of a variable x which
doesn’t correspond to a physical system. We used this property in our previous work [13] and simulated
a dynamic to approximate the target π with a Gaussian distribution. Here we do not want to estimate a
distribution but to propagate a Gaussian through the nonlinear physical dynamic (1).

4.1 The Bures-JKO proximal

The proximal JKO problem (5) where we constrained the solution q to be a Gaussian distribution writes:

min
q∈N (µ,P)

KL
(

q
∣∣∣∣∣∣π)+ 1

2δ t
dbw(q,qt)

2,
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where dbw(q,qt) is the Bures distance between two Gaussians given by:

dbw(q,qt) = ||µ−µt ||2 +B2(P,Pt), (15)

where B2(P,Pt) = Tr(P+Pt−2(P
1
2 PtP

1
2 )

1
2 ) is the squared Bures metric [5], which has a derivative available

in closed form. After some computation [13, Appendix A] we can obtain implicit equations that the parameters
of the optimal Gaussian solution q must satisfy:

µt+δ t = µt −δ t.Eqt+δ t [∇V (x)]

Pt+δ t = Pt −δ t.Eqt+δ t [∇
2V (x)]Pt −δ t.PtEqt+δ t [∇

2V (x)]T +2εδ t.I, (16)

and at the limit δ t→ 0, we obtain the following ODEs:

µ̇t =−Eqt [∇V (x)] := bt (17)

Ṗt = AtPt +PtAT
t +2εI where At :=−Eqt [∇

2V (x)].

4.2 Wasserstein geometry interpretation

The Wasserstein geometry is defined by the metric space of measure endowed with the Wasserstein distance(
P(Rd),d2

w
)
. The definition of a tangent vector in this space is tedious because the measure µ must satisfy

the conservation of mass
∫

µ(x)dx = 1. To handle this constraint we can use the continuity equation. This
equation allows to represent any regular curves of measures with a continuous flow along a vector field
vt ∈ L2. It is closely related to the Fokker-Planck equation as we show now (see [2] for more details). The
JKO proximal scheme (5) gives a sequence of distribution that satisfies at the limit the Fokker-Planck equation
(4), this equation rewrites as follows:

ṗt = ∇.(∇V pt)+ ε∇.∇pt = ∇.(∇V pt)+ ε∇.(pt∇ log pt)

= ∇.(pt(∇V + ε∇ log pt)) =−div(ptvt), (18)

which is a continuity equation where vt ∈ L2(Rd) plays the role of the tangent vector δ pt along the path pt

and satisfies:
vt =−∇V − ε∇ log pt =−∇wKL(pt ||π),

with π ∝ exp(−V/ε). The last equality comes from variational calculus in the measure space: the Wasserstein
gradient of a functional F is given by the Euclidian gradient of the first variation ∇wF(ρ) = ∇δF(ρ), see [2,
Chapter 10].

Let’s sum up what’s going on: starting from a stochastic state xt following the Langevin dynamic (1)
with drift −∇V , we have rewritten the Fokker-Planck equation which describes the evolution of the density
p(xt) as a continuity equation (18) where the diffusion term has disappeared. At this continuity equation
correspond a deterministic ODE ẋt =−∇wKL(pt ||π). It’s a nice property of the Wasserstein geometry where
PDE can be described by a continuity equation that corresponds to a simple gradient flow.

Following the same track, the sequence of Gaussian distributions satisfying the ODE (17) correspond to a
Wasserstein gradient flow given by the continuity equation: q̇t =−div(qtwt), where wt =−∇bwKL(qt ||π) is
now a gradient with respect to the Bures-Wasserstein distance (15), see [13, Appendix B3] for the analytical
expression of this gradient.

5 Variational Gaussian approximation of the Kushner optimal filter

We have tackled the two proximal problems independently but how to solve them jointly? The simplest
method to do so is to alternate between propagation through dynamics (1) for a small time δ t, and Bayesian
update through LMMR in the light of the accumulated observations δ zt , and let δ t→ 0. This is what we do
presently.
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5.1 The continuous variational Kalman filter

Consider one step of the Euler–Maruyama method with length δ t of SDEs (1) and (2). As the Wiener
processes β and η are independent, we may write:

p(xt ,yt+δ t ,xt+δ t) = p(yt+δ t |xt+δ t ,xt)p(xt+δ t ,xt) = p(yt+δ t |xt+δ t)p(xt+δ t |xt),

denoting yt+δ t = δ zt . In other words, we can solve the proximal LMMR update equation (10) using as prior
qt(x) = N (µt+δ t|t ,Pt+δ t|t), the solution of the proximal JKO. The LMMR/R-VGA discrete-time equations
(11) then become:

µt+δ t = µt+δ t|t +Pt+δ t|tδCt

Pt+δ t = Pt+δ t|t +
1
2

δHtPt+δ t|t +
1
2

Pt+δ t|tδHT
t .

Replacing µt+δ t|t and Pt+δ t|t by their expressions as the solutions to the JKO scheme (16) and putting in a
residual all the terms in δ t2, we obtain:

µt+δ t = µt +δ tbt +PtδCt

Pt+δ t = Pt +δ tAtPt +δ tPtAT
t +δ t2εI+

1
2

δHtPt +
1
2

PtδHT
t +O(δ t2).

By Ito calculus, we obtain the continuous variational Kalman updates (7).

5.2 The Kalman-Bucy filter as a particular case

Let us consider the linear case where the SDEs (1) and (2) rewrite:

dxt = Fxtdt +
√

2εdβ , dzt = Gxtdt +
√

Rdη .

The various expectations that appear in the proposed filter (7) apply either to quantities being independent of
xt or being linear or quadratic in xt , yielding

dµt = Fµtdt +PtGT R−1(dzt −Gµtdt)
d
dt

Pt = FPt +PtFT −PtGT R−1GPt +2εI.

We see we exactly recover the celebrated Kalman-Bucy filter.

Conclusion

We have approximated the Kushner optimal filter by a Gaussian filter based on variational approximations
related to the JKO and LMMR proximal discrete schemes related to the Wasserstein and Fisher geometry
respectively. As the dynamic and observation processes are assumed independent, we can mix the two
variational solutions to form a set of SDEs on the Gaussian parameters generalizing the Riccati equations
associated to the linear systems. In the linear case, the proposed filter boils down to the Kalman-Bucy optimal
filter. It is still unclear, though, which global variational loss is minimized by the optimal filter.
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