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ABSTRACT

In this work, we explore the problem of making synchrosquee-
zing transform adaptive. To deal with multicomponent sig-
nals, existing methods use a fixed order N , thus assuming
all the modes making up the signal have order N polynomial
phases. To go beyond this limitation, we introduce a new
criterion based on the concentration of the representation to
locally choose the best order for the synchrosqueezing trans-
form. We study the performance of the proposed approach
in terms of the error with respect to the ideal time-frequency
representation, both on synthetic and real signals.

Index Terms— Synchrosqueezing transforms, nonsta-
tionary signals, time-frequency, multicomponent signals

1. INTRODUCTION

Nonstationary signals are encountered in many scientific
fields, and are often represented as the superimposition of
time-varying amplitude and frequency modes. A common
way to analyze these multicomponent signals (MCSs), is to
use linear time-frequency representations (TFRs), which en-
able to estimate the instantaneous frequencies (IFs) present in
the signal. Among them, the probably most commonly used
is the so-called short-time Fourier transform (STFT), which
uses an analysis window (hence the short-time) to perform a
local frequency analysis. The presence of this window, how-
ever, limits the resolution of the representation, introducing
an uncertainty principle [1, 2]. To overcome this limitation,
reassignment methods were introduced [3, 4]. A special form
of reassignment, that allows for signal reconstruction, called
synchrosqueezing transform [5, 6], was originally developed
for the continuous wavelet transform, and then extended
to the STFT to obtain the Fourier-based synchrosqueezing
transform (FSST) [7]. Reconstruction is important for tasks
such as time-frequency (TF) filtering [8, 9].
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FSST in its original formulation is, however, known to
perform well only on MCSs made of modes with small fre-
quency modulations. To overcome this limitation, the second-
order synchrosqueezing transform (FSST2) was first intro-
duced [10], and then the high-order synchrosqueezing trans-
form (FSSTN) [11]. The idea behind FSSTN (considering
the original FSST as FSST1) is to assume the phases of the
modes can locally be approximated by polynomials of order
N . Departing from this ideal situation, and also the pres-
ence of noise, introduce inaccuracies that harm the final re-
sult. Moreover, the presence of different modes with different
modulations challenges the approach that uses a fixed N .

Our goal in this paper is to investigate a way to adaptively
and locally choose the best order for the synchrosqueezing
transform ; and we propose to do that by maximizing the con-
centration of the TFR using a greedy approach time by time.
The rest of the paper is organized as follows. In Sec. 2 we in-
troduce the notation and basic definitions we use throughout
the paper. Our proposal, along with a step-by-step algorithm,
is presented in Sec. 3. Sec. 4 proposes some numerical results
on both synthetic and real data, illustrating the advantages of
our approach over those based on fixed order FSSTs, and Sec.
5 concludes the paper.

2. NOTATION AND BASIC DEFINITIONS

We introduce in this section the notation and basic definitions
that will be used throughout the paper. Given a signal x ∈
L1(R) ∩ L2(R) and a real and even window g ∈ L∞(R) ∩
L2(R), we define the modified short-time Fourier transform
(STFT) as

F g
x (t, f) =

∫ +∞

−∞
x(u)g(u− t)e−i2πf(t−u)du, (1)

where t ∈ R and f ∈ R are interpreted as time and frequency
respectively. The STFT offers a TF analysis of MCSs made
of a superimposition of P modes:

x(t) =

P∑
p=1

Ap(t)e
i2πϕp(t), (2)



where Ap(t) and ϕp(t) are, respectively, the instantaneous
amplitude and phase of the p-th mode. We assume Ap > 0
and slowly varying, and ϕ′

p > 0 is called the instantaneous
frequency (IF) of the p-th mode. For this type of signal, the
ideal TFR reads

IT (t, f) =

P∑
p=1

Ap(t)δ(f − ϕ′
p(t)), (3)

where δ(·) is the Dirac delta distribution.
FSSTN “sharpens” the STFT by vertically reassigning the

coefficients using the following formula :

T g,N
x (t, f) =

1

g(0)

∫
Γ

F g
x (t, v)δ(f − ω̃[N ]

x (t, v))dv, (4)

such that the new TFR is “closer” to the ideal one. Here,
ω̃
[N ]
x (t, f) is the N -th order IF estimation built assuming the

phase of the modes of x locally behaves as a polynomial of
order N [11], and Γ = {(t, f)/|F g

x (t, f)| > 3γ}, where γ is
estimated as γ̃ =

√
2median(|R{F g

x (t, f)}|)/0.6745 [12, 13,
14]. These definitions can be directly extended to the discrete
TF setting, by defining

F g
x [n, k] ≈ F g

x

(
n

L
, k

L

M

)
, (5)

where L is the length of the signal, M the number of fre-
quency bins and L/M the frequency resolution. In this con-
text, the discrete FSSTN reads

T g,N
x [n, k] =

1

g(0)

M−1∑
q=0

F g
x [n, q]χ[k − ⌊ω̃[N ]

x [n, q]⌉], (6)

where χ[c] = 1 if c = 0 and 0 otherwise. Definition (6) leads
to the following implementation for synchrosqueezing:

T g,N
x [n, ⌊ω̃[N ]

x [n, k]⌉]← T g,N
x [n, ⌊ω̃[N ]

x [n, k]⌉] + F g
x [n, k],

(7)
for n = 0, 1, . . . , L − 1 and k = 0, 1, . . . ,M − 1. This
means that each coefficient F g

x [n, k] is reassigned according
to ω̃

[N ]
x [n, k].

3. LOCALLY ADAPTING THE
SYNCHROSQUEEZING ORDER

The stability and robustness to noise of IF estimation with
SST was studied in [15]. Regarding the use of FSSTN for
that purpose, one can identify at least three sources of errors:
(i) modes with phases that locally depart from a polynomial of
order N ; (ii) ubiquitous noise, which alters the computation
of the reassignment operators (the higher the order, the more
affected they are by noise); and (iii) the distance to the ridge
corresponding to a mode (ideally to the IF), since |F g

x [n, k]|
decreases when one moves away from that ridge the impact
of noise is greater.

Previous efforts have tried to adapt the order N of the syn-
chrosqueezing transform. In [16], for instance, the authors
defined N = F[n, p], i.e. as a function of the discrete time in-
stant n and of the mode p. Though, with such an approach, N
is no longer fixed, it requires the knowledge of the TF ridges
associated with each mode, which is not relevant when the
signal contains crossing modes, for instance.

Considering that, for a given n, we propose to define N =
G[n, k], i.e. as a function of both discrete time and frequency,
and no longer make any reference to TF ridges in the defini-
tion of G. More precisely, we first calculate for an n, N0 such
that:

N0 = argmin
1≤N≤4

RE1D(T g,N
x [n, :]), (8)

with

RE1D(v) =
1

1− α
log

(∑
k

v[k]α

(
∑

a v[a])
α

)
. (9)

where v stands for a generic vector. By finding N0 min-
imizing the Rényi entropy as described in (8), one obtains
the order of the FSST that maximizes the TF concentration.
Though there exist many different measures to study TF con-
centration, to consider the minimal Rényi entropy is a com-
mon choice for that purpose [17]. Then, still considering a
fixed n, one orders the coefficients of the spectrogram at that
time instant in descending order, and starting from the coef-
ficient with the highest magnitude, one considers the order of
FSST used to reassign the corresponding TF point that leads
to the smaller Rényi entropy, the reassignment order of the
other spectrogram points at n being left unchanged. Then,
the same approach is applied to all the sorted spectrogram
points at time n, and finally one makes the time index vary.
The algorithm is summarized as follows:

Algorithm 1 Adaptive Synchrosqueezing

1: Input: F g
x [n, k], T

g,N
x [n, k] and ω̃

[N ]
x [n, k] for N ∈ N =

{1, . . . , 4}.
2: for n = 0, . . . , L− 1 do
3: Set N0 = argminN∈N RE1D(T g,N

x [n, :]).
4: Set T g,A

x [n, :] = T g,N0
x [n, :].

5: Sort |F g
x [n, :]| defining the vector m s. t.

|F g
x [n,m[:]]| is decreasing.

6: for i = 0, . . . , L− 1 do
7: Undo the reassignment: T g,A

x [n, ⌊ω̃[N0]
x [n,m[i]]⌉]←

T g,A
x [n, ⌊ω̃[N0]

x [n,m[i]]⌉]− F g
x [n,m[i]].

8: for P ∈ N do
9: Define T

g,A(P )
x [n, :] = T g,A

x [n, :].
10: Compute

T g,A(P )
x [n, ⌊ω̃[P ]

x [n,m[i]]⌉]
← T g,A(P )

x [n, ⌊ω̃[P ]
x [n,m[i]]⌉] + F g

x [n,m[i]].



11: end for
12: Set order N∗ = argminP∈N RE1D(T

g,A(P )
x [n, :]).

13: Define T g,A
x [n, :] = T

g,A(N∗)
x [n, :].

14: end for
15: end for
16: Output: T g,A

x [n, k].

In terms of complexity, the algorithm needs the knowl-
edge of 4 FFSTN. Then, at each TF point one computes 4
Rényi entropies of vectors of length M , which is the most
important computational cost of the algorithm.

4. NUMERICAL RESULTS

In this section, we offer some numerical results on both syn-
thetic and real signals. In order to assess the quality of the
obtained TFRs, we use two measures. For the error with re-
spect to the ideal TFR (according to Eq. (3)), we use the
Earth mover’s distance (EMD), also called the optimal trans-
port distance [18]. EMD is computed as a sliced Wasserstein
distance in order to compare probability distributions, and it
was already used in the TF context [19, 20]. For the overall
TF concentration, we use the 2D Rényi entropy

RE2D =
1

1− α
log

(∑
n

∑
k

Rx[n, k]
α

(
∑

a

∑
b Rx[a, b])α

)
, (10)

where Rx[n, k] stands for a generic TFR. A lower value of
this measure would indicate a more concentrated representa-
tion. In the figures, we call our proposal ‘FSSTa’.

4.1. Monocomponent signal

As a first example, we study a sinusoidal chirp of the form

x(t) = cos (2π (256t

−100e−t(10π sin(10πt)− cos(10πt))/1 + 100π2
))

,
(11)

for t ∈ [0, 1] and sampled at 1024 Hz. For all TFRs, we used
512 frequency bins. The results can be appreciated in Fig. 1,
where we used Nmax = 4. Zoomed-in versions of FSST3,
FSST4, and FSSTa evidence that our proposal achieves a bet-
ter representation, more concentrated and closer to the ideal
TFR. Most of the inaccuracies present in FSST3 and FSST4
are absent in FSSTa. Errors and 2D Rényi entropies are dis-
played for 3 different SNRs (error bars with means and stan-
dard deviations). It is clear that our new proposal outperforms
the fixed order FSSTN both in concentration and error, in the
range of tested SNRs.

To better illustrate this, we show the optimum orders se-
lected by our algorithm for a SNR of 30 dB and 50 dB. We
can observe here the action of noise. For a low level of noise
(SNR equal to 50 dB), the algorithm usually selects N = 4.

For moderate noise (30 dB) we observe that the algorithm
adapts the order to the local modulation. Indeed, for those
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Fig. 1. Results for the monocomponent signal defined by Eq.
(11). First row: modulus of the STFT and zoomed in ver-
sion of the modulus of FSST3. Second row: zoomed-in ver-
sions of the moduli of FSST4 and FSSTa. Third row: 2D
Rényi entropy and errors for the different methods, and for
3 SNRs. Fourth row: optimum orders for each TF point for
which |F g

x (t, f)| > 3γ̃, and proportions for each time instant.

portion where the mode oscillates as a linear chirp (ascending
and descending parts of the sinusoidal) the algorithm gives
preponderance to N = 2 (suitable for linear chirps). On the
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Fig. 2. Results for the multicomponent signal of Eq. (12).

other hand, for those portions where the sinusoidal frequency
presents local extrema, the algorithm favors N = 3 and N =
4.

4.2. Multicomponent signal with crossing modes

As a second challenging example we study

y(t) = cos(2π(100t2 + 150t− sin(10πt)))

+ cos(2π(−400e−t)),
(12)

for t ∈ [0, 1] and sampled at 1024 Hz. As before, we used
512 frequency bins and Nmax = 4. The results are presented
in Fig. 2. For this example, FSSTN (with N = 1, . . . , 4)
show undesirable behavior since the entropies associated
with FSSTN with different orders “cross” each other when
the noise level varies: while at 10 dB FSST2 has the lowest
entropy, at 50 dB it is FSST4. Our proposal, on the other
hand, achieves better results for all cases. The concentration
of FSSTa is clearly the best, and it can be observed how the
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Fig. 3. Results for the bat signal.

IF of the frequency-decreasing mode is much better recon-
structed. The “hairy” effect of FSSTN (that tends to create
false ridges) is evidently alleviated in FSSTa.

4.3. Real signal

To deal with a real-world signal, we revisit the classical ex-
ample of the bat echolocation call. The results are in Fig. 3,
where we compute the 2D Rényi entropy for all four TFRs.
Once again, FSSTa corresponds to the more concentrated
TFR, which can be confirmed not only by its lowest entropy
but also by visually inspecting the representations, where
one can observe that FSSTa does not present the “blurring”
present in FSST3 and FSST4.

5. CONCLUSIONS

In this work, we proposed a novel criterion to locally choose,
in the time-frequency plane, the best order in the syn-
chrosqueezing transform in terms of concentration and er-
ror with respect to the ideal TFR. Our proposal is based on
the maximization of the concentration by means of a greedy
algorithm that works time by time. We hypothesize the high-
est amplitude coefficients should be reassigned first, since
those are dominant in terms of concentration and error. This
approach resulted in better results than existing fixed order
FSSTs. Future works will be related to deepen the mathemat-
ical aspects of this problem.
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