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ABSTRACT
The objective of this research is to contribute towards the devel-
opment of an open-source framework for processing large-scale
traceroute datasets. By providing such a framework, we aim to ben-
efit the community by saving time in everyday traceroute analysis
and enabling the design of new scalable reactive measurements [1],
where prior traceroute measurements are leveraged to make in-
formed decisions for future ones [8, 12].

It is important to clarify that our goal is not to surpass proprietary
solutions like BigQuery, which are utilized by CDNs for processing
billions of traceroutes [6, 10]. These proprietary solutions are not
freely accessible to the public, whereas our focus is on creating an
open and freely available framework for the wider community.

Our contributions include (1) sharing the ideas and thinking
process behind building MetaTrace, which efficiently utilizes Click-
House features for traceroute processing; and (2) providing an
open-source implementation of MetaTrace1.

We evaluated MetaTrace using two types of queries: predicate
queries for filtering traceroutes based on conditions, and aggregate
queries for computing metrics on traceroutes. Our results show that
MetaTrace is significantly faster compared to alternative solutions.
For predicate queries, it outperforms a multiprocessed Rust solution
by a factor of 552 and is 3.4 times faster than ClickHouse without
MetaTrace optimizations. For aggregate queries, MetaTrace pro-
cesses 202 million traceroutes in 11 seconds, with its performance
scaling linearly with traceroute volume. Notably, on a single server,
MetaTrace can perform a predicate query on a 6-year dataset of 6
billion traceroutes in just 240 seconds.

Furthermore, MetaTrace is resource-efficient, making it accessi-
ble for research groups with limited resources to conduct Internet-
scale traceroute studies.
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1 METHODOLOGY
Which processing do we want to perform? The initial consid-
eration before selecting a database was determining the common
computations we performed on traceroutes. Our use-cases align
with previous studies [5, 7, 12] that focus on computing aggregated
statistics, such as the RTT between a source and a destination, or
converting IP-level paths from traceroutes into AS-level paths and
analyze specific ASes like Tier 1s or CDNs.

The common use cases can be translated into two general query
types: aggregate queries and predicate queries. On one hand, an
aggregate query calculates summarized information about the data,
such as the minimum RTT among a set of traceroutes. On the
other hand, a predicate query returns only the traceroutes that
meet specific conditions, such as whether the traceroute traverses
a particular AS.
Which database to choose? Optimizing the choice of a database
for performant aggregate and predicate queries is not overly re-
strictive. However, we observed that there is no compelling reason
to modify or delete traceroute data. Consequently, we sought a
database that prioritizes efficient read operations. We found the
ClickHouse database [3] to be a promising candidate as it is pro-
moted as a database optimized for reads and aggregations. More-
over, ClickHouse offers a comprehensive set of convenient features
for expressing complex aggregate queries. Notably, ClickHouse
introduces a powerful feature called “groupArray”, which facilitates
manipulation of data in aggregate queries.

While the benchmark conducted by ClickHouse itself [4] was
compelling, we independently verified its superior performance
over standard solutions likeMySQL and PostgreSQL, even on simple
queries. This confirmed that ClickHouse significantly outperformed
these solutions by orders of magnitude in our specific setup. How-
ever, it is important to clarify that we are not asserting ClickHouse
as the ultimate solution for processing traceroutes. Nevertheless,
based on our experience, ClickHouse has proven to be highly reli-
able and has fulfilled our requirements for several years [8, 12, 13].
We believe it is valuable to share this information with the com-
munity. Furthermore, we emphasize that ClickHouse employs a
SQL-like language that is easy to learn, requiring minimal effort for
the community to adopt such a database. Finally, we have developed
an open-source tool2 that enables the conversion of traceroute data
2https://github.com/dioptra-io/pantrace
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from one commonly used format [2, 11] to another, including the
MetaTrace format, in order to facilitate the integration of multiple
traceroute datasets.
Which schema to represent a traceroute? Now that we have
selected our database, we need to determine an appropriate schema
for storing the traceroutes. Given that ClickHouse is a column-
oriented database, we structure our schema based on the fields
present in an ICMP reply to a traceroute probe (e.g., TTL, RTT).
Additionally, we include fields that uniquely identify the traceroute
that generated the probe, such as the flow identifier and traceroute
timestamp. In this design, a traceroute is represented as a collection
of rows, where each row contains these fields. The flow identifier
within each row enables differentiation between load-balanced
paths, as encountered in per-flow load balancing scenarios [12].

This data format offers several advantages. First, it is compatible
with all existing traceroute tools, serving as the lowest common
denominator for platforms and tools that utilize traceroute tech-
niques. These tools typically send TTL-limited probes to generate
ICMP TTL exceeded messages from routers along the path. Second,
the format is memory-efficient for predicate queries. By loading
only the relevant column(s) for a predicate, it becomes feasible to
identify the rows that match the predicate efficiently.
How to improve the database performance? Finally, we can
leverage ClickHouse’s features to minimize the query time and the
resource usage. To achieve this, we judiciously select how to sort
traceroute data enabling queries to be processed in blocks of rows.
ClickHouse facilitates this through its “sorting key” mechanism.
It enables efficient utilization of RAM while also optimizing disk
usage, as the sorting key also influences the compression quality of
the columns.

However, it is essential to note that a table can have only one
sorting key, limiting the ability to optimize for predicate queries
on arbitrary columns. Assuming we use the sorting key (source,
destination, timestamp), our objective is to have a mechanism to
sort the data by (predicate, source, destination, timestamp), where
the predicate can be a subset of columns or even the result of an
aggregate query per (source, destination, timestamp). ClickHouse
provides a solution for this through the materialized view feature. It
enables us to generate a table from the computed result, thus creat-
ing a materialized view for each predicate, significantly enhancing
predicate query performance. Finally, since the materialized view
is properly sorted, the increase in disk usage remains reasonable.
How to add metadata on traceroutes?Metadata refers to addi-
tional information associated with IP addresses, such as ASes or
geolocation. ClickHouse offers a feature called “dictionary”, which
enables the creation of a table containing mappings from IP ad-
dresses to corresponding values. Specifically, this dictionary can be
implemented as a radix tree that maps IP prefixes to metadata. To
ensure the most relevant metadata is used for each traceroute, the
radix tree can be parameterized by a date.

2 EVALUATION
On a dataset of 202 million traceroutes from one day of RIPE
Atlas[11], MetaTrace takes 25% less disk space than the compressed
JSON source data. MetaTrace is able to serve predicate queries 552x
faster than a multiprocessed Rust solution, and is 3.4x faster than

the ClickHouse database without MetaTrace’s optimizations. On
aggregate queries, MetaTrace is 62x faster than our Rust solution.
Overall, MetaTrace is able to serve both types of queries with a
very reasonable 1.6 GB maximum usage of memory. MetaTrace’s
performance scales linearly with the number of traceroutes. The
technical details of the evaluation of MetaTrace can be found in a
distinct technical report [9].

3 CONCLUSION
This work highlights the advantages of utilizing MetaTrace, an in-
telligent utilization of ClickHouse, for traceroute processing. Meta-
Trace outperforms multiprocessed Python and Rust solutions, as
well as the raw ClickHouse database, in terms of query response
time for both predicate and aggregate queries. Furthermore, this
performance improvement is achieved while utilizing reasonable
amounts of memory, CPU, and disk resources. As a result, Meta-
Trace enables the processing of large traceroute datasets, potentially
in combination, within a local environment. This work will hope-
fully enable us and the community to build reactive traceroute
measurement frameworks at Internet scale.
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