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Abstract

We consider extension variants of some edge optimization problems in graphs contain-
ing the classical Edge Cover, Matching, and Edge Dominating Set problems and
generalizations thereof. Given a graph G = (V,E) and an edge set U ⊆ E, it is asked
whether there exists an inclusion-wise minimal (or maximal, respectively) feasible solu-
tion E′ which satisfies a given property, for instance, being an edge dominating set (or
a matching, respectively) and containing the forced edge set U (or avoiding any edges
from the forbidden edge set E \ U , respectively). We present hardness results for these
problems, for restricted instances such as bipartite or planar graphs. We counter-balance
these negative results with parameterized complexity results. We also consider the price
of extension, a natural optimization problem variant of extension problems, leading to
some approximation and inapproximability results.

Keywords: Extension problems, Edge Cover, Matching, Edge Domination,
NP-completeness, Parameterized Complexity, Approximation
2020 MSC: 68Q17, 68Q25, 68Q27

1. Introduction

We consider extension problems related to several classical edge optimization prob-
lems in graphs, namely Edge Cover, Maximum Matching and Edge Dominating
Set. Informally, in an extension version of an edge optimization problem, one is given a
graph G = (V,E) as well as a subset of edges U ⊆ E, and the goal is to extend U to a
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minimal (or maximal) solution (if possible). More precisely, for a minimization problem
like Edge Dominating Set, given G = (V,E) and U ⊆ E, we ask if there is some
inclusion-wise minimal edge dominating set D in G with U ⊆ D. In contrast, for a
maximization problem like Maximum Matching, on input G = (V,E) and U ⊆ E, we
ask if there is some inclusion-wise maximal matching M in G with M ⊆ U .

The notion of extension might sound somewhat counter-intuitive in the case of max-
imization problems, but can be understood better in a more general setting, considering
optimization problems in NPO with an additionally specified set of partial solutions which
we call pre-solutions (including the set of solutions) and a partial order � on those. The
partial order reflects not only the notion of extension but also of minimality as follows.
For a pre-solution U and a solution S, S extends U if U � S. A solution S is minimal
if there exists no solution S′ 6= S with S′ � S. The resulting extension problem is for-
mally defined as the task to decide, for a given pre-solution U , if there exists a minimal
solution S which extends U . In the cases considered in this paper, we always have the
power-set 2E of the set of edges E of a given graph defining the set of pre-solutions,
and � is either ⊆ in the case of minimization problems, and ⊇ in the case of maximiza-
tion problems. Different orderings are considered in [1], where also a general setting for
extension problems is described.

In general, extension variants of combinatorial problems are interesting for efficient
enumeration algorithms or for branching algorithms in general, as efficient algorithms
for extension problems would allow to cut off search tree branches at an early stage of
the branching. In branching algorithms, solutions are often built gradually; the partial
or pre-solutions U can then be associated to the nodes of the search tree. A quick “no”
to the extension question would avoid diving deeper into a branch where no solution
can be found. Also, this could help develop enumeration algorithms with polynomial
delay, relating to so-called flashlight algorithms [2]. There are further intimate relations
to greedy strategies and (in this way) also to approximation algorithms. More details of
these applications are described in [3, 1].

Clearly, the idea of extensions is not restricted to edge optimization problems. Ex-
tension versions have been studied for classical optimization problems, for example, the
minimal extension of 3-Hitting Set [4], minimal Dominating Set [5, 6] or Vertex
Cover [7]. Extension of Hitting Set was also discussed recently in the context of
database theory, see [8].

Another area where extension problems show up is linked to Latin squares [9] (and
similar combinatorial questions), or also coloring extensions in graphs [10]. In this con-
text, also a connection to graph drawing is worth mentioning considering the problem to
lay out a graph after having fixed the positions of certain vertices [11]. The difference of
this type of extension problems to the ones considered in this paper lies in the fact that
with the mentioned settings, it is asked if there is any valid solution that contains the
pre-set part of the solution: is there any way to fill in the cells of a square-of-numbers
where certain cells are already pre-filled, so that the whole square is a Latin square, is
there any valid coloring that obeys the given assignment of some colors to vertices, is
there any way to find a planar drawing of a graph where certain vertices are already
positioned, etc.

In contrast, we assume a certain partial order provided on the solution space, and
we are interested in finding an extension that is minimal with respect to this ordering.
In [3, 1], we provide a systematic study of this type of problems, giving quite a number
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of different examples of extension problems, based on different partial orders. In [12], we
investigated the complexity of extension versions of Vertex Cover and Independent
Set, i.e., classical vertex graph problems, while this paper focuses on edge problems. For
extension variants of automata-theoretic problems, see [13].

An extended abstract of this paper appeared in [14]. Since its appearance as a
conference paper, some of the results that are proven in this paper have been also obtained
independently in the literature. For instance, in [15], it was shown that a problem
called Maximal Matching Extension is NP-complete. Notice that our results are
more general; more specifically, the mentioned problem is called Ext 1-DCPS in this
paper. As explained in [15], also the extension complexity results concerning cliques as
established in [16] relate to the questions studied in this paper: Ext Clique is clearly
equivalent to Ext IS (referring to the extension variant of Independent Set), so that
Ext Matching can be viewed as a variation thereof in the context of edge problems.

Organization of the paper. Aside from general notation, Section 2 contains the formal
definitions of the extension problems discussed in this paper. Specifically, we introduce
extension problems related to generalized versions of matching, edge cover and edge
domination. Also, that section summarizes the main results of the paper. In Section 3
we show that these problems remain NP-complete, even in bipartite graphs of bounded
degree and with some constraints on the forced set of edges. Having a planar embedding
does not help much either, as we show in Section 4 that these problems remain hard
on subcubic bipartite planar graphs. Motivated by these negative results, we study the
parameterized complexity of these problems in Section 5 and the approximability of a
natural optimization version in Section 6.

2. Definitions

In the following, we collect all definitions that we need in this paper. The graph-
theoretic notions that we are using are standard and may be consulted by the reader if
doubts arise at any point, but the problem definitions are rather specific to our setting.

Graph definitions. We consider simple undirected finite graphs only, to which we refer
to as graphs. A graph can be specified by the set V of vertices and the set E of edges;
every edge has two endpoints and these two endpoints are called adjacent ; if v is an
endpoint of e, we also say that e and v are incident and two edges e and e′ are adjacent
if they share a common endpoint. Let G = (V,E) be a graph and S ⊆ V ; NG(S) =
{v ∈ V : ∃u ∈ S, vu ∈ E} denotes the neighborhood of S in G and NG[S] = S ∪NG(S)
denotes the closed neighborhood of S. For singleton sets S = {s}, we simply write NG(s)
or NG[s], even omitting G if clear from context. The cardinality of NG(s) is called degree
of s, denoted dG(s). Vertices of degree zero are called isolates. If three upper-bounds the
degree of all vertices, we speak of subcubic graphs. For a subset S of edges, V (S) denotes
the vertices incident to S. A vertex set S induces the graph G[S] with vertex set S and
e ∈ E being an edge in G[S] if and only if both endpoints of e are in S. If S ⊆ E is
an edge set, then S induces the graph G[V (S)], while GS = (V, S) denotes the partial
subgraph induced by S; in particular, GS = (V,E \S) with S = E \S. If G is a graph, we
also refer by V (G) to its set of vertices and by E(G) to its set of edges. A vertex set S
of the graph G = (V,E) is independent if the induced graph G[S] constitutes of isolated
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vertices, or equivalently, if S is a set of pairwise non-adjacent vertices. An edge set S is
called an edge cover if for each vertex v ∈ V , there is an edge e ∈ S that is incident to
v, i.e., that has v as one of its endpoints, and it is a matching if S is a set of pairwise
non-adjacent edges. An edge set S is minimal (or maximal, respectively) with respect
to a graph property Π if S satisfies the graph property and any proper subset S′ ⊂ S
of S (or any proper superset S′ ⊃ S of S, respectively) does not satisfy Π. A graph
G = (L ∪R,E) is called bipartite if its vertex set decomposes into two independent sets
L and R. The line graph L(G) = (V ′, E′) of a graph G = (V,E) is a simple graph where
each vertex of L(G) represents an edge of G and two vertices of L(G) are adjacent if
and only if their corresponding edges share a common vertex in G. Hence, it is exactly
the intersection graph of the edges of G. It is well known the class of line graphs is a
subclass of claw-free graphs (i.e., not possessing the claw K1,3, a star with three rays, as
an induced subgraph).

Problem definitions. Let G = (V,E) be a graph where the minimum degree is at least
r ≥ 1. We assume r is a fixed constant (but all results given here hold even if r depends
on the graph). An r-degree constrained partial subgraph is defined by an edge subset
S ⊆ E such that none of the vertices in V is incident to more than r edges in S. The
problem of finding such a set S of size at least k is termed r-Degree Constrained
Partial Subgraph, abbreviated as r-DCPS. An r-degree edge-cover1 is defined as a
subset S of edges such that each vertex of G is incident to at least r ≥ 1 distinct edges
e ∈ S, leading to the decision problem r-Degree Edge-Cover, or r-EC for short,
which asks for determining if such a set of size at most k exists in a given graph. For
the particular cases of r = 1, 1-DCPS corresponds to the famous Matching problem
and 1-EC is also known as the Edge Cover problem. Inclusion-wise minimal r-degree
edge-covers are also called tight r-tolerant edge-covers in [18].

The optimization problem associated to r-DCPS, denoted Max r-DCPS, consists
of finding an edge subset E′ of maximum cardinality that is a solution to r-DCPS. Max
r-DCPS is known to be solvable in polynomial time even for the edge weighted version
(here, we want to maximize the weight of E′) [19]. When additionally the constraint
r is not uniform and depends on each vertex (i.e., at most b(v) = rv edges incident to
vertex v), Max r-DCPS is usually known as Simple b-Matching and remains solvable
in polynomial time even for the edge-weighted version (Theorem 33.4, Chapter 33 of
Volume A in [20]).

A well-studied optimization version of a generalization of r-EC, known as the Min
lower-upper-cover problem (MinLUCP), is the following. Given a graph G =
(V,E) and two functions a, b : V → N such that for all v ∈ V , 0 ≤ a(v) ≤ b(v) ≤ dG(v),
find a subset M ⊆ E such that the partial subgraph GM = (V,M) induced by M satisfies
a(v) ≤ dGM

(v) ≤ b(v) (such a solution will be called a lower-upper-cover), minimizing its
cardinality |M | among all such solutions (if any). Hence, an r-EC solution corresponds
to a lower-upper-cover with a(v) = r and b(v) = dG(v) for every v ∈ V . MinLUCP is
known to be solvable in polynomial time even for edge-weighted graphs (Theorem 35.2
in Chapter 35 of Volume A in [20]).

1A different generalization of edge cover was considered in [17], requiring that each connected com-
ponent induced by the edge cover solution contains at least t edges. Clearly, if every vertex is incident
to at least r edges from the cover, then each connected component induced by the edge cover solution
contains at least r edges.
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We are considering the following extension problems associated to r-DCPS and r-EC.

Ext r-DCPS
Input: A graph G = (V,E) and U ⊆ E.
Question: Does there exist an edge set S ⊆ E with S ⊆ U such that the partial
subgraph GS has maximum degree at most r and is maximal in G?

Ext r-EC
Input: A graph G = (V,E) and U ⊆ E.
Question: Does there exist an edge set S ⊆ E with S ⊇ U such that the partial
subgraph GS has minimum degree at least r and is minimal in G?

An r-edge dominating set S ⊆ E of a simple graph G = (V,E) is a set S of edges
such that for any edge e ∈ E of G, at least r edges of S are incident to e (by definition,
an edge dominates itself one time). The Minimum r-Edge Dominating Set problem
(Min r-EDS for short) consists in finding an r-edge dominating set of minimum size.
Notice that there is a feasible solution if and only if r ≤ minxy∈E(dG(x) + dG(y) − 1).
Obviously, 1-EDS is the classical Edge Dominating Set problem (EDS), which is
NP-hard in general graphs (problem [GT2] in [21]). The generalization to r-EDS has
been studied in [22, 23] (under the name b-EDS) from an approximation point of view.
However, to the best of our knowledge, r-EDS for every r ≥ 2 was not proved NP-hard
so far. As associated extension problem, we formally study the following problem.

Ext r-EDS
Input: Given a simple graph G = (V,E) and U ⊆ E.
Question: Is there a subset S ⊆ E such that U ⊆ S and S is a minimal r-edge
dominating set?

For an edge extension problem π, extπ(G,U) denotes the set of extremal exten-
sions of U (i.e., minimal or maximal depending on the context). For a minimization
version, U corresponds to a subset of forced edges (i.e., each minimal solution has to
contain U) while for a maximization version, E \ U corresponds to a subset of for-
bidden edges (i.e., each maximal solution has to contain no edges from E \ U), while
we could call U the set of permitted edges. Sometimes, the set extπ(G,U) is empty,
which makes the question of the existence of such extensions interesting. Hence, for π ∈
{Ext r-DCPS,Ext r-EC,Ext r-EDS}, the extension problems ask if extπ(G,U) 6= ∅.
We call |U | the standard parameter when considering these problems as parameterized.
We may drop the subscript π if clear from context.

Summary of important results

After we have defined the combinatorial problems, we can now summarize our most
important results on these problems in the sequence of their presentation. Notice that we
can further restrict our instances by putting additional constraints to the pre-solutions,
but we refrain from making this explicit in this summary. Also, from our results con-
cerning “edge problems”, we can mostly also derive results for “vertex problems” when
restricted to line graphs. We make this more explicit throughout the paper, but not in
this summary.

5



Ext r-DCPS (Theorem 1) NP-complete in bipartite graphs with maximum degree max{3, r+
1} for any fixed r ≥ 1.

Ext r-EC (Theorem 4) NP-complete in bipartite graphs with maximum degree r + 2
for any fixed r ≥ 1.

Ext 1-DCPS and Ext 1-EC (Theorems 8 and 7) NP-complete for planar bipartite
subcubic graphs.

Ext r-EDS (Theorem 5) NP-complete for planar bipartite graphs of maximum degree
r + 2 for any fixed r ≥ 1.

These hardness results motivated us to study these extension problems with the
toolboxes of parameterized complexity and approximation.

Ext r-DCPS (Theorem 14) FPT (parameterized by the number of forbidden edges col-
lected in U) for any fixed r ≥ 1.

Ext r-DCPS (Proposition 15) FPT with respect to the number of isolated edges in
U for r ≥ 2 and on graphs with maximum degree r + 1; even polynomial-time
decidable when r = 1.

Ext r-EC (Theorem 10) FPT (with standard parameter) for any fixed r ≥ 1.

Ext r-EDS (Theorem 16) W [1]-hard (with standard parameter) for any fixed r ≥ 1,
even when restricted to bipartite graphs.

Notice that the parameterization by the size of the set U of forbidden edges can be
seen as the dual of the standard parameter |U |. By cycling through all subsets of U , it
is clear that Ext r-DCPS is also FPT with the standard parameter. A similar trivial
argument shows that Ext r-EC and Ext r-EDS are FPT with the dual parameter |U |.

As indicated above, we could also prove some non-approximability results and oc-
casionally also give some approximation algorithms, but these approximation problems
will only formally introduced in Section 6, so that we refrain from explaining them here.

3. Complexity results

The results given in this section are based on a reduction from 2-balanced 3-SAT,
or (3, B2)-SAT for short. An instance (C,X ) of (3, B2)-SAT is given by a set C of CNF
clauses defined over a set X of Boolean variables such that each clause has exactly three
literals and such that each variable appears exactly twice as a negative and twice as a
positive literal in C. (3, B2)-SAT is NP-hard by [24, Theorem 1].

Theorem 1. For every fixed r ≥ 1, Ext r-DCPS is NP-complete in bipartite graphs
with maximum degree max{3, r + 1}, even if U is an induced matching for r ≥ 2, or
G[V (U)] is a collection of paths of length at most two for r = 1.

Proof. Let us first consider the case when r = 1. Consider an instance of (3, B2)-sat
with clauses C = {c1, . . . , cm} and variables X = {x1, . . . , xn}. We build a bipartite
graph G = (V,E) of maximum degree three as follows:
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H(c) for c = x ∨ y ∨ z

xc yc zc

1c 2c 3c

H(x)

1x

1c1x 1c2x

xc1 xc2

2x

2c3x 2c4x

¬xc3 ¬xc4

3x

4x

ex e¬x

Figure 1: The gadgets H(c) and H(x). Edges not in U are drawn as thicker lines.

• For each clause c = x ∨ y ∨ z, where x, y, z are literals, introduce a subgraph
H(c) = (Vc, Ec) with 8 vertices and 9 edges. Vc contains three specified vertices xc,
yc and zc corresponding to literals of the clause c. Moreover, U c = {xc1c, yc2c, zc3c}
is a set of three forbidden edges included in H(c). The gadget H(c) is illustrated
in the left part of Figure 1.

• For each variable x, introduce 12 new vertices. They induce the subgraph H(x) =
(Vx, Ex) illustrated in Figure 1. The vertex set Vx contains four special vertices xc1 ,
xc2 , ¬xc3 and ¬xc4 , where it is implicitly assumed that variable x appears as a pos-
itive literal in clauses c1, c2 and as a negative literal in clauses c3, c4. Finally, there
are two sets of free edges (non-forbidden edges): Fx = {ex} ∪ {2c3x ¬xc3 , 2c4x ¬xc4}
and F¬x = {e¬x} ∪ {1c1x xc1 , 1c2x xc2}. Hence, the forbidden edges Ux in H(x) are
given by Ux = Ex \ (Fx ∪ F¬x).

• We interconnect H(x) and H(c), where x is a literal of clause c, by adding edge
xcx

c if x appears as a positive literal and edge xc¬xc if x appears as a negative
literal. We call these edges crossing edges.

We set U = E \
(
(
⋃
c∈C U c) ∪ (

⋃
x∈X Ux)

)
. This construction is computable within

polynomial time and G is a bipartite graph of maximum degree three. Gadget H(c) is
designed such that any maximal matching excluding U has to find other edges to match
each of the literal-vertices 1c, 2c, 3c, and such that only two of them can be matched
within H(c) with an edge in U . This in turn means, at least one literal-vertex needs to
be matched by a crossing edge, indicating that the corresponding literal is satisfied by
the variable assignment. Gadget H(x) ensures that either xc1 and xc2 or ¬xc3 and ¬xc4
have to be matched within H(x). Consequently, all crossing-edges connecting to H(x)
are either to only positive (xc1 and xc2) or to only negated occurrences (¬xc3 and ¬xc4)
of x; thus the set of all crossing-edges to the sets H(x) properly corresponds to a valid
variable assignment.

We claim that there is a truth assignment of I which satisfies all clauses if and only
if there is a maximal matching S ⊆ U of G.

If T is a truth assignment of I which satisfies all clauses, then we add the set of edges
xcx

c and Fx if T (x) = true; otherwise, if T (x) = false, we add the edge xc¬xc and all
edges in F¬x. For each clause c, we choose one literal lc which satisfies the clause; then, we
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add two edges saturating vertices 1c, 2c and 3c and which are not incident to the edge of
U c saturating lc. For instance, assume it is y; then, we add two edges saturating vertices
1c and 3c and the white vertices in the gadget clause H(c). The resulting matching S is
maximal with S ∩ U = ∅.

Conversely, assume the existence of a maximal matching S with S ⊆ U . Hence, for
each variable x ∈ X exactly one edge between ex and e¬x is in S (in order to block edge
3x4x). If it is ex ∈ S (or e¬x ∈ S, respectively), then Fx ⊂ S (or F¬x ⊂ S, respectively).
Hence, S does not contain any crossing edges saturating ¬xc (or xc, respectively). Now
for each clause c = x ∨ y ∨ z, at least one vertex among xc, yc, zc must be adjacent to
a crossing edge of S. In conclusion, by setting T (x) = true if at least one vertex xc1 or
xc2 of H(x) is saturated by S and T (x) = false otherwise, we get a valid assignment T
satisfying all clauses.

Assume now r ≥ 2. The construction is an adaptation of the previous proof. A main
building block of our construction is a subgraph, denoted Bk(v) with k < r, containing
(kr) + 1 vertices which are arranged as a tree of depth two with root v such that v has
k children within this gadget, and each child w of v has r children. For each child w of
v one edge connecting w to a leaf in Bk(v) will be forbidden in our construction, and
we will use FBk(v) to denote a fixed set of k edges in Bk(v) such that each child of v is
adjacent to an edge in FBk(v) and v is not adjacent to an edge in FBk(v). The left part of
Figure 2 gives an illustration of Bk(v). The purpose of this construction is that the root
v will connect to other parts of the graph, and the structure of Bk(v) with the forbidden
edges will make sure that a maximum r-degree constrained partial subgraph contains all
edges between v and its children in Bk(v), and can consequently only contain r−k edges
connecting v to a vertex outside Bk(v). Namely, if one edge e would be missing from the
edges incident to v in Bk(v) in any maximal edge set E′, say, e = vv′, then E′ would
have to include the forbidden edge incident to v′ by maximality.

Consider now an instance I of (3, B2)-SAT with clauses C = {c1, . . . , cm} and vari-
ables X = {x1, . . . , xn}. We build a bipartite graph G = (V,E) of maximum degree r+1,
together with a set U of permitted edges (among which a maximal partial subgraph of
degree at most r should be chosen) as follows:

• For each clause c ∈ C, build a clause gadget H(c) = (Vc, Ec) which is a B(r−2)(c)
(the root c of B(r−2)(c) has r−2 children). Hence, we denote by Uc = Ec\FB(r−2)(c)

the set of permitted edges in H(c).

• For each variable x, introduce 3r new vertices which induce the primary sub-
graph denoted H ′(x) = (V ′x, E

′
x). The vertex set V ′x contains four special vertices

x, x′,¬x,¬x′. The vertices x and ¬x have r− 2 distinct vertices in their neighbor-
hoods and x′ and ¬x′ are connected to r common vertices v1

x, v
2
x, . . . , v

r
x. Also, we

connect x,¬x to x′,¬x′, respectively, with two forbidden edges in H ′(x). The right
part of Figure 2 gives an illustration of H ′(x). By adding a component B(r−1)(y)
for each vertex y ∈ {vix : 1 ≤ i ≤ r} and identifying the root of B(r−1)(y) with y, we
construct a new subgraph H(x) = (Vx, Ex). We define the set of forbidden edges in
H(x) by Fx = {xx′,¬x¬x′}∪ (

⋃
1≤i≤r FB(r−1)(vix)) and hence Ux = Ex \Fx denotes

the set of permitted edges in H(x).

• We interconnect H(x) and H(c) by adding edge xc if x appears positively in clause
c and ¬xc if x appears negatively. These crossing edges are always permitted and
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Bk(v)

v

...

...

...

...

r

k

H ′(x)

x

¬x

x′

¬x′

v1
x

v2
x

...

vrx

. . .

r − 2

. . .

Figure 2: The gadgets Bk(v) and H′(x). Edges from the forbidden subset in FBk(v)
are marked with

bold lines of the left side and more generally, edges not in U are marked with bold lines.

collected in the set Ucross.

Let U = (
⋃
c∈C Uc) ∪ (

⋃
x∈X(Ux) ∪ Ucross be the global set of permitted edges. This

construction is computable in polynomial time, yielding a graph G that is a bipartite
graph of maximum degree r + 1.

We claim that there is a truth assignment T of I which satisfies all clauses if and
only if there is a maximal r-degree constrained partial subgraph GS = (V, S) of G, where
S ⊆ U .

If T is a truth assignment of I which satisfies all clauses, a maximal r-degree con-
strained partial subgraph GS = (V, S) with S ⊆ U can be constructed as follows:

1. For each variable gadget H(c), by maximality Uc ⊆ S.

2. For each variable x, we add edges according to the assignment as follows: If T (x) =
true, we add vixx

′ for all 1 ≤ i ≤ r and the two crossing edges connecting ¬x with
their respective clause gadgets. If T (x) = false, we add vix¬x′ for all 1 ≤ i ≤ r and
the two crossing edges connecting x with their respective clause gadgets. In both
cases, by maximality we add 2(r− 2) pendent edges incident to x and ¬x and also
all permitted edges in B(r−1)(y) for all y ∈ {vix : 1 ≤ i ≤ r}.

3. At last, for each variable c which has more than one true literal in assignment T ,
add some arbitrary crossing edges to c such that dGS

(c) = r.

The resulting subgraph is a maximal r-degree constrained partial subgraph GS =
(V, S) with S ⊆ U .

Conversely, assume the existence of a maximal r-degree partial subgraph GS = (V, S)
with S ⊆ U . First, recall that for every gadgetBk(v), we must have E(Bk(v))\FBk(v) ⊆ S
for k ∈ {r − 1, r − 2}. Moreover, for each variable gadget H(x), at least one of the pairs
of crossing edges incident to x and ¬x have to be in S (by maximality). Hence, we
set T (x) = true if both crossing edges incident to ¬x are in S and otherwise we set
T (x) = false. This assignment is valid and since for each clause c, at most two crossing
edges incident to vertex c are in S (GS is a subgraph with maximum degree r), then T
satisfies all clauses of I. �

In Theorem 1, we showed that, for every fixed r ≥ 2, Ext r-DCPS is hard even
when the set of forbidden edges E \U is an induced matching. In the following, we prove
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the same result does not hold when r = 1, by reducing this problem to the problem of
finding a maximum matching in a weighted graph.

Proposition 2. Ext 1-DCPS is polynomial-time decidable when the forbidden edges
U = E \ U form a matching.

Proof. Let G = (V,E) with U ⊆ E be an instance of Ext 1-DCPS where the partial
subgraph GU is a collection of disjoint edges and isolated vertices. Construct an edge-
weighted graph G′ from G as follows. First subdivide each edge in U , i.e., for each
uv ∈ U , add a new vertex suv and replace edge uv by two new edges usuv and vsuv,
each with weight W = |E|+ |V |. Then assign weights to the remaining edges, by setting
the weight for edge xy ∈ E to 1, W + 1 or 2W + 1 if |{x, y} ∩ V (U)| equals, 0, 1 or 2,
respectively.

We claim that with this construction, G = (V,E) with U ⊆ E is a yes-instance of
Ext 1-DCPS if and only if G′ contains a maximum weighted matching of weight at
least 2W |U |. To this end, first assume that G = (V,E) with U ⊆ E is a yes-instance.
This means that there exists a maximal matching M in G that contains no edge from U .
Observe that M is also a matching in G′, and we will extend it to a matching M ′ in G′

of weight at least 2W |U |. Since M is maximal in G, it follows that {u, v} ∩ V (M) 6= ∅
for each uv ∈ U . For each uv ∈ U such that |{u, v} ∩ V (M)| = 1, add to M ′ the
corresponding new edge, i.e., if u /∈ V (M), add edge usuv, and otherwise add vsuv. After
this, M ′ contains for each u ∈ V (U) one edge eu in G′ that contains u. The summed
weight of these edges is at least W |{eu = ux | x /∈ V (U)}|+ 2W |{uv | eu = uv = ev}| =
W |V (U)| = 2W |U |.

Conversely, assume that there exists a matching M ′ in G′ of weight at least 2W |U |.
We claim that M = M ′∩E is a maximum matching in G with M ⊆ U . Since G′ contains
no edge from U it immediately follows that M ⊆ U . It remains to show maximality.
Assume towards contradiction that there exists an edge e ∈ E \M such that M ∪ {e} is
still a matching.

If e ∈ U , then e is also an edge in G′. Since M ′ is maximal, it follows that there is
at least one edge e′ ∈ M ′ such that e ∩ e′ 6= ∅. Since e′ /∈ M , e′ has to be an added
edge involving suv for some uv ∈ U . If e intersects only e′ in M ′, then M ′ \ {e′} ∪ {e} is
also a matching in G′, and its weight is larger than the weight of M ′ - note that e′ is an
added edge of weight W , while e is an original edge involving at least one vertex from
V (U), thus of weight at least W + 1. This means that M ′ \ {e′} ∪ {e} is a matching in
G′ of strictly larger weight than M ′, a contradiction to the choice of M ′. Similarly, if e
intersects more edges, then it intersects exactly one more edge e′′ ∈ M ′, and again e′′

contains some added vertex sxy 6= suv. Let, w.l.o.g., e′ = usuv and e′ = xsxy. Since U is
a matching, we know that u 6= x and thus, the only edge in G that intersects both e′ and
e′′ in G′ is e = ux. Since both u and x are in V (U), e has weight 2W + 1 in G′, while
both e′ and e′′ have weight W . Again, we see that M ′ \ {e′, e′′}∪ {e} is a matching with
weight more than M ′ in G′, contradicting the choice of M ′.

If e /∈ U , then e does not exist in G′. Let e = xy and note that in M ′ only one of the
endpoints xy can be matched with sxy while the other remains unmatched; otherwise,
this edge would also be in M . (Note that here again it is important that U is a matching.)
By the definition of W , for M ′ to have weight at least 2W |U |, it has to contain at least r
edges of weight 2W + 1 and t = 2|U | − 2r edges of weight W for some r ∈ N. Edges
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of weight at least W and 2W + 1 contain one, respectively two, vertices from V (U),
so all vertices in V (U) need to be matched in order to reach the claimed weight. So in
particular, there cannot be an edge xy ∈ U such that only one of its endpoints is matched
in M ′. �

In [12], several results are proposed for the extension variant of the Independent Set
problem (Ext IS for short) in different classes of graphs like bipartite graphs, planar
graphs, chordal graphs, etc. Here, we deduce a new result for a subclass of claw-free
graphs.

Corollary 3. Ext IS is NP-complete restricted to line graphs of subcubic bipartite
graphs.

Proof. Let G = (V,E) be a subcubic bipartite graph and L(G) = (V ′, E′) be its line
graph. It is well known that any matching S of G corresponds to an independent set
S′ = L(S) of G′ and vice versa. In particular, S is a maximal matching of G if and only
if L(S) is a maximal independent set. Hence, (G,U) is a yes-instance of Ext 1-DCPS
if and only if (L(G), L(U)) is a yes-instance of Ext IS. Theorem 1 with r = 1 concludes
the proof. �

A reduction from (3, B2)-SAT can also be used to show the following.

Theorem 4. For every fixed r ≥ 1, Ext r-EC is NP-complete in bipartite graphs with
maximum degree r + 2, even if the forced edge set U is a matching.

Proof. The proof is based on a reduction from (3, B2)-SAT. A main building block
B2r(v) (or B2r+1(v)) in our construction is based on a complete bipartite subgraph of
2r (or 2r+ 1) vertices where one specified edge between two special vertices v and v′ has
been deleted. So, B2r(v) = Kr,r−{vv′} and B2r+1(v) = Kr+1,r−{vv′}. Except for these
two vertices v, v′, the other vertices of B2r(v) are not linked to any other vertex in the
whole construction, while for B2r+1(v), it is only the case of v (i.e., only v is also linked
outside B2r+1(v)). Block B2r(v) will appear five times in each variable gadget and block
B2r+1(v) will correspond to each clause gadget (see Figure 3 for an illustration). By
construction, all edges of B2r(v) will belong to any r-EC solution (in fact, vertices v and
v′ still need one more edge to satisfy the minimum degree constraint) and for B2r+1(c),
it will be almost the case (except for few edges of B2r+1(c) incident to c, as all neighbors
of c in B2r+1(c) have degree r+1, and all edges between N(c) and N(N(c))\{c} have to
be in the edge cover; c will need one more incident edge in the edge cover besides (some
of) the edges from B2r+1(c)).

Now, consider an instance I of (3, B2)-SAT with clauses C = {c1, . . . , cm} and vari-
ables X = {x1, . . . , xn}. We build a bipartite graph G = (V,E) of maximum degree r+2,
together with a set U of permitted edges as follows:

• For each clause c ∈ C, we build a clause gadget B2r+1(c) which is a component
Kr,r−1 plus two vertices c, c′. An illustration of B2r+1(c) is given in the left side of
Figure 3.

• For each variable x ∈ X , we construct a subgraph H(x) = (Vx, Ex) as follows:
build two P5 denoted P = (x, l,m, r,¬x) and P ′ = (x′, l′,m′, r′,¬x′), respectively;
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c

...
...c′

Kr,r−1

B2r+1(c)

x l m r ¬x

· · ·

· · ·

x′

· · ·

· · ·

l′

· · ·

· · ·

m′

· · ·

· · ·

r′

· · ·

· · ·

¬x′

H(x)

Figure 3: Block B2r+1(c) for clause c is depicted on the left-hand side. The subgraph H(x) = (Vx, Ex)
is shown on the right-hand side. Edges of U are drawn in bold.

then between each pair of vertices v, v′ of P and P ′ a block B2r(v) is added for
each v on P ; this interconnects v on P with the corresponding vertex v′ on P ′, as
v and v′ are special to B2r(v). The variable gadget H(x) = (Vx, Ex) is illustrated
to the right of Figure 3.

• We interconnect H(x) and B2r+1(c), where x is a literal of clause c by adding edge
xc if x appears positively in c and the edge ¬xc if x appears negated. Such edges
will be called crossing.

Now, it is easy to see that G is bipartite of maximum degree r + 2. Finally, let
U = {xili,¬xiri : 1 ≤ i ≤ n}, picking the corresponding vertices and edges in each H(xi).
Gadget H(x) guarantees that for any minimal r-EC containing U , crossing edges can
only be incident to either x or ¬x, but not both, meaning that these edges correspond to
variable assignments. Block B2r+1(c) guarantees that for any minimal r-EC containing
U , there is at least one crossing edge incident to vertex c. By construction, and the role
of the crossing edges to H(x), any crossing edge incident to c has to correspond to a
variable assignment that satisfies a literal of c.

We claim that there is a truth assignment T of I which satisfies all clauses if and only
if G admits a minimal r-EC solution H = (V, S) of G, where U ⊆ S.

If T is a truth assignment of I which satisfies all clauses, a minimal r-EC solution
H = (V, S) can be constructed as follows:

• For each variable x, if T (x) = true, then

{xc : x appears positively in c} ∪ (Ex \ {lm, l′m′}) ⊆ S ,

and if T (x) = false, then

{¬xc : x appears negatively in c} ∪ (Ex \ {mr,m′r′}) ⊆ S .

• Since T is a satisfying assignment, we have already added in the previous step k ≥ 1
crossing edges connected to block B2r+1(c) for each clause c. Then, we arbitrarily
delete k − 1 edges Sc of B2r+1(c) incident to c, and we add E(B2r+1(c)) \ Sc to S.

Conversely, assume that H = (V, S) is a minimal r-EC solution of G containing U .
By considering the variable gadget H(x) and in order to keep minimality, S contains
either lm or rm but not both, since {xl,¬xr} ⊂ S by hypothesis and since all edges in
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the block B2r(v) for v ∈ {l,m, r} have to be included into the edge cover by our previous
observations. Hence, we set T (xi) = true if rm ∈ S and T (xi) = false if lm ∈ S. Since H
has to get a minimum degree at least r for each vertex and vertex c has a degree r− 1 in
clause gadget B2r+1(c), then the partial subgraph H contains at least one crossing edge
incident to each c and hence T is a valid assignment of I. �

4. Complexity results for planar graphs

In this section, we turn our attention to planar graphs. Hence, we need a specific
problem that can cope with this restriction. All reductions given in this section are hence
from 4-Bounded Planar 3-Connected SAT (or 4P3C3SAT for short), the restric-
tion of exact 3-satisfiability2 to clauses in C over variables in X where each variable
occurs in at most four clauses (at least one time but at most two times negated while
it appears one time unnegated and at most three times unnegated) and the associated
bipartite graph BP is planar of maximum degree four. (The bipartite graph associated
to (C,X ) is the graph BP = (C ∪ X,E(BP )), where vertex set C = {c1, . . . , cm} rep-
resents the clauses in C, vertex set X = {x1, . . . , xn} represents the variables in X , and
E(BP ) = {cjxi : variable i occurs in clause j}.) This restriction is also NP-complete [25];
in the following, we always assume that the planar graph comes with an embedding in the
plane. This gives us a planar variable-clause-graph G, corresponding to the original SAT
instance I. The additional technical difficulties come with the embeddings that need to
be preserved. Suppose that a variable xi appears in at most four clauses c1, c2, c3, c4
of I such that in the induced (embedded) subgraph Gi = G[{xi, c1, c2, c3, c4}], c1xi,
c2xi, c3xi, c4xi is an anti-clockwise ordering of edges around xi. By looking at Gi and
considering how variable xi appears as a negative or positive literal in the four clauses
c1, c2, c3, c4 in I, the construction should handle the three following cases: (1): xi ∈ c1, c2
and ¬xi ∈ c3, c4; (2): xi ∈ c1, c3 and ¬xi ∈ c2, c4; (3): xi ∈ c1, c2, c3 and ¬xi ∈ c4. All
other cases are included in these cases by rotations and / or interchanging xi with ¬xi.

Theorem 5. For any r ≥ 1, Ext r-EDS is NP-complete for planar bipartite graphs of
maximum degree r + 2.

Proof. Consider first r = 1, corresponding to Ext EDS. Given an instance I = (C,X )
of 4P3C3SAT with clause set C = {c1, . . . , cm} and variable set X = {x1, . . . , xn}, we
build a planar subcubic bipartite graph H = (VH , EH) together with a set U ⊆ EH of
forced edges as an instance of Ext EDS.

For each variable xi, we introduce a corresponding gadget H(xi) as depicted in Fig-
ure 4, the forced edge set Uxi contains {miri, ripi} for case (1), {pji r

j
i , r

j
im

j
i : 1 ≤ j ≤ 4}

for case (2) and {p1
i p

2
i , p

2
i p

3
i , p

5
i p

6
i , p

6
i p

7
i ,m

2
i fi} for case (3).

For each clause cj ∈ C, we construct a clause gadget H(cj) as
depicted on the right, and a forced edge set Ucj , each clause
gadget H(cj) contains 8 vertices and 7 edges, with |Ucj | = 2.
Edges in U are drawn in bold.

H(c) for clause c = `1 ∨ `2 ∨ `3

1′c

2′c

1c

2c

3c4c5c6c

2addressing the problem to decide whether there is a truth assignment setting exactly one literal in
each clause to true
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i

l2i
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i
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p4
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i

m4
i

l4i

H(c1) H(c2) H(c3) H(c4)

case (2)

t1i

p1
i

p2
i

p3
i

p4
i

l2i

l1i

t2i

p5
i

p6
i

p7
i

p8
i

r2
i

r1
i

m1
i

m2
i

fi

H(c2) H(c3) H(c1)H(c4)

case (3)

Figure 4: Variable gadgets H(xi) of Theorem 5. Cases (1), (2), (3) are corresponding to H(xi), depending
on how xi appears (as a negative or positive literal) in the four clauses (here, case 3 is rotated). Bold
edges denote elements of Uxi . Crossing edges are marked by dashed lines.

Moreover, we interconnect with some crossing edges the subgraphs H(xi) and H(cj)
by linking xi (or ¬xi) to cj according to how it appears in the clause. More precisely, each
clause gadget H(cj) is connected to the rest of the graph via two (or one, respectively)
crossing edges incident to 2′cj (or to 1′cj , respectively). We also set the forced edge set
U = (

⋃
xi∈X Uxi

) ∪ (
⋃
cj∈C Ucj ). This construction is built in polynomial time, giving a

planar subcubic bipartite graph.
Note that by minimality, for any edge of U , there exists at least one private edge to

dominate it. So, let S be a minimal edge dominating set with S ⊇ U , then for each
clause gadget H(c), at least one of the crossing edges incident to it is in S. Further,
for each variable x, let cxt (or cxf , respectively) be the set of crossing edges incident to

ti (or to fi, respectively), {t1i , t2i } (or to {f1
i , f

2
i }, respectively), and {t1i , t2i } (or to fi,

respectively) for the cases 1, 2 and 3 of H(x), respectively, then by minimality of S,
at most one of (S ∩ cxt ) or (S ∩ cxf ) is non-empty. Therefore, it can be easily checked
that I has a satisfying assignment T if and only if H has a minimal edge dominating set
containing U .

For r ≥ 2, we start with the instance I = (H,U) given in the
construction above for r = 1. Recall that H = (VH , EH) is a
bipartite graph with bipartition VH = L ∪ R, while U ⊆ EH
is a subset of forced edges. Now, for each vertex v of the left
part L, we add the gadget Br(v) depicted to the right. Denote
by H ′ the resulting bipartite graph and consider I ′ = (H ′, U)
as an instance of Ext r-EDS.

Br(v)

v

...

...

...

...

r − 1

r − 1

Let B =
⋃
v∈LBr(v) be the added edges from H to H ′. Note that any r-EDS S′ of

H ′ must contain B. Moreover, S′ is a minimal r-EDS of H ′ if and only if S′ \ B is a
minimal edge dominating set of H. �
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case 2
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f2
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case 3

t1i

t2i

l1i

l2i

m1
i

m2
i

rifi

c1

c2

c3

c4

Figure 5: Construction for Ext EC (planar). On the left: A variable xi appearing in four clauses
c1, c2, c3, c4 in I. On the right, cases 1, 2, 3: The gadgets H(xi) in the constructed instance depend on
how xi appears (negated or non-negated) in the four clauses. Bold edges denote elements of U .

Remark 1. Reconsidering the previous construction that reduces the case when r > 1
to the case when r = 1, and using the NP-hardness of EDS in bipartite graphs [26, 27],
we deduce NP-hardness of r-EDS for all r ≥ 1.

In [28], several results are proposed for the enumeration of minimal dominating sets in
line graphs. Here, we strengthen these results by showing that extending a given vertex
set to a minimal dominating set (a problem we call Ext DS) in line graphs of a planar
bipartite subcubic graphs is already a hard problem.

Corollary 6. Ext DS is NP-complete, even when restricted to line graphs of planar
bipartite subcubic graphs.

Proof. Let G = (V,E) be a bipartite subcubic graph and L(G) = (V ′, E′) be its line
graph. It is well known that any edge dominating set S of G corresponds to a dominating
set S′ = L(S) of G′ and vice versa. In particular, S is a minimal edge dominating set
of G if and only if L(S) is a minimal dominating set. Hence, (G,U) is a yes-instance
of Ext EDS if and only if (L(G), L(U)) is a yes-instance of Ext DS. Theorem 5 with
r = 1 concludes the proof. �

The two next statements appear to be only strengthening Theorems 1 and 4 in the
particular case of r = 1, but the proof details behind are different indeed.

Theorem 7. Ext 1-EC is NP-complete for planar bipartite subcubic graphs.

Proof. The proof is based on a reduction from 4P3C3SAT. We illustrate how these
cases are used in the reductions explicitly for Ext 1-EC. While the interconnections
of the clause gadgets and the variable gadgets are similar to the non-planar case, the
variable gadgets differ according to the cases listed above, see Figure 5.

We start from a variable-clause graph G = (C ∪X,E) corresponding to an instance
I = (C,X ) of 4P3C3SAT and transform it into a planar bipartite graph H = (VH , EH)
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by replacing every node xi in G with one of the three variable gadgets H(xi) which are
illustrated in Figure 5. The forced edge set Ui, corresponding to variable gadget H(xi),
contains

• tili, rifi for case 1,

• t1i l1i , r1
i f

1
i , t

2
i l

2
i , r

2
i t

2
i for case 2 and

• t1i l1i , t2i l2i , rifi for case 3.

Let U =
⋃

1≤i≤n Ui be the set of forced edges of H. This construction can be undertaken
in polynomial time and the final graph H is planar, bipartite and subcubic. We now
claim that I is satisfiable if and only if H admits a minimal edge cover containing U .

Suppose T is a truth assignment of I which satisfies all clauses. For each clause cj , let
h(j) be an index such that variable xh(j) satisfies clause cj for T and let J = [n] \ h([m])
be the indices unused by the mapping h. We construct a minimal edge cover S of H by
considering all possibilities of H(xi):

• for each variable gadget H(xi) which complies with “case (1)”, we set:

S1 :={th(j)cj ,mh(j)rh(j) : T (xh(j)) = true, xh(j) appears positively in cj}
∪{fh(j)cj ,mh(j)lh(j) : T (xh(j)) = false, xh(j) appears negatively in cj}
∪{miri : i ∈ J}.

• for each variable gadget H(xi) which complies with “case (2)” by assuming h(j) =
k, we set S2 to:

{t1kcj (t2kcj),m
1
kr

1
k, r

1
kp

1
k,m

2
kr

2
k, r

2
kp

2
k : T (xk) = true ∧ t1kcj ∈ EH (t2kcj ∈ EH)}

∪{f1
k cj (f2

k cj),m
1
kl

1
k, l

2
kp

1
k,m

2
kl

2
k, l

1
kp

2
k : T (xk) = false ∧ f1

k cj ∈ EH (f2
k cj ∈ EH)}

∪{l1i p2
i , l

1
im

1
i , l

2
im

2
i , l

2
i p

1
i : i ∈ J}.

• for each variable gadget H(xi) which complies with “case (3)” by assuming h(j) =
k, we set:

S3 :={t1kcj (t2kcj),m
1
krk,m

2
krk : T (xk) = true ∧ t1kcj ∈ EH (t2kcj ∈ EH)}

∪{fkcj ,m1
kl

1
k,m

2
kl

2
k : T (xk) = false}

∪{l1im1
i , l

2
im

2
i : i ∈ J}.

Finally we set S := S1 ∪ S2 ∪ S3 ∪ U . One can easily check that S is a minimal edge
cover of H.

Conversely, suppose S is a minimal edge cover of H containing U . By minimality
of S, we propose an assignment T of I depending on different types of variable gadgets
of H as follows:

• If H(xi) complies with case (1), in order to cover vertex mi, the edge cover S
either contains miri or mili (not both by minimality). This means that we set
T (xi) = true (or T (xi) = false, respectively) if miri ∈ S (or mili ∈ S, respectively).
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• If H(xi) complies with case (2), in order to cover vertices m1
i ,m

2
i , p

1
i , p

2
i , the edge

cover S contains exactly one of edges in the pairs (l1im
1
i , r

1
im

1
i ), (l2im

2
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im

2
i ),
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2
i , r

2
i p

2
i ) and (r1
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1
i , l

2
i p

1
i ). Hence, we set

– T (xi) = true if {l1im1
i , l

1
i p

2
i , l

2
i p

1
i , l

2
im

2
i } ∩ S = ∅, and

– T (xi) = false if |{l1im1
i , l

1
i p

2
i , l

2
i p

1
i , l

2
im

2
i } ∩ S| ≥ 1.

• If H(xi) complies with case (3), in order to cover vertices m1
i ,m

2
i , S contains exactly

one of edges in the pairs (rim
1
i , l

1
im

1
i ), (rim

2
i , l

2
im

2
i ). This means that we set

– T (xi) = true if S ∩ {l1im1
i , l

2
im

2
i } = ∅ and

– T (xi) = false if |S ∩ {l1im1
i , l

2
im

2
i }| ≥ 1.

We obtain a valid assignment T . Since S covers all vertices of C, T satisfies all clauses
of I. �

Theorem 8. Ext 1-DCPS is NP-complete even for planar bipartite subcubic graphs.

Proof. The proof is based on a reduction from 4P3C3SAT. For an instance I = (C,X )
of 4P3C3SAT with clause set C = {c1, . . . , cm} and variable set X = {x1, . . . , xn}, we
build a planar bipartite subcubic graph H = (VH , EH), together with a set U ⊆ EH of
permitted edges as an instance of Ext 1-DCPS as follows.

• For each clause cj , we introduce a clause gadget H(cj) together with a permitted
edge set Ucj which is already explained in detail in Theorem 1 for r = 1.

• For each variable xi depending on how xi appears (negated or non-negated) in
clauses, we introduce three different gadgets H(xi) together with a set of permitted
edges Uxi

, which is depicted in Figure 6.

• We also interconnect H(xi) to H(cj), where xi appears positively or negatively in
clause cj by crossing edges like in the proof of Theorem 1. Let Ucross be the set of
all crossing edges.

Let U = (
⋃m
j=1 Ucj )∪ (

⋃n
i=1 Uxi

)∪Ucross. This construction computes in polynomial
time a planar bipartite subcubic graph. We claim that (H,U) is a yes-instance of Ext
1-DCPS if and only if T is a satisfying assignment of I.

Suppose T is a truth assignment of I which satisfies all clauses. We produce a maximal
edge matching S ⊆ U as follows: the method of choosing edges from clause gadgets and
crossing edges is already explained in Theorem 1 for r = 1, so we here just show which
edges of each H(xi) should be in S:

• If H(xi) complies with case (1), we add {mil
1
i , h

1
i f

1
i , h

2
i f

2
i } if T (xi) = true and we

add {mil
2
i , g

1
i t

1
i , g

2
i t

2
i } if T (xi) = false.

• If H(xi) complies with case (2), we add {f1
i h

1
i , p

1
i p

3
i ,m

2
i r

2
i , f

2
i h

2
i , p

5
i p

7
i , l

1
im

1
i } if

T (xi) = true; if T (xi) = false, we add {p2
i p

3
i , t

1
i g

1
i , l

2
im

2
i , p

6
i p

7
i , t

2
i g

2
i ,m
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• If H(xi) complies with case (3), we add {l1im1
i , l

2
im

2
i , l

3
im

3
i , fihi} if T (xi) = true;

otherwise, if T (xi) = false, we add
⋃

1≤j≤3{r
j
im

j
i , t

j
ig
j
i }.
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Figure 6: Variable gadgets H(xi) of Theorem 8. Cases (1), (2), (3) are corresponding to H(xi), depending
on how xi appears (negated or non-negated) in the four clauses. Edges not in Uxi are drawn bold.
Crossing edges are marked with dashed lines.

Conversely, suppose S ⊆ U is a maximal edge matching of H. Because of maximality,
for each clause gadget H(xj) there exists at least one crossing edge in S incident to a
vertex of H(xj). This means that there is an assignment T which satisfies all clauses
of I. We now show that T is a valid assignment:

• If H(xi) complies with case (1), by maximality either l1imi or l2imi (not both) is in
S, hence we set T (xi) = true if l1im

1
i ∈ S and T (xi) = false if l2imi ∈ S.

• If H(xi) complies with case (2), by maximality either S1 = {p1
i p

3
i ,m

2
i r

2
i , p

5
i p

7
i ,

l1im
1
i } or S2 = {p2

i p
3
i , l

2
im

2
i , p

6
i p

7
i ,m

1
i r

1
i } (not both) is in S, so we set T (xi) = true

if S1 ∈ S and T (xi) = false if S2 ∈ S.

• If H(xi) complies with case (3), by maximality either S1 =
⋃

1≤j≤3{l
j
im

j
i} or

S2 =
⋃

1≤j≤3{r
j
im

j
i} (not both) is in S, hence we set T (xi) = yes if S1 ∈ S and

T (xi) = false if S2 ∈ S. �

5. Parameterized perspective

The next result is quite simple and characterizes the yes-instances of Ext r-EC.

Lemma 9. There is an r-EC solution G′ = (V,E′) where E′ ⊇ U such that SG′ = {v ∈
V (U) : dG′(v) > r} is an independent set of GU if and only if ext(G,U) 6= ∅.

Proof. (⇐) An edge among two vertices x, y ∈ U of a minimal extension X ⊇ U
certifying that ext(G,U) 6= ∅ can only exist if x or y is, or both x and y are, incident to
at most r edges from X because of minimality.

(⇒) Let us look into the other direction. Let G′ = (V,E′) be a partial subgraph of G
with U ⊆ E′ and dG′(v) ≥ r for all v ∈ V . Moreover, assume SG′ = {v ∈ V (U) : dG′(v) >
r} is an independent set of GU . Consider any minimal partial subgraph H = (V,EH)
of G′ = (V,E′) maintaining the property dG′(v) ≥ r for all v ∈ V . Since SG′ is an
independent set of GU , U ⊆ EH and therefore, EH ∈ ext(G,U). �
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This structural property can be used to design an FPT-algorithm for Ext r-EC. More
precisely, our proposed algorithm lists all 3|U | many independent sets of G[U ] included in
V (U) from an instance I = (G,U) of Ext r-EC. In each case, we produce an equivalent
instance of Min lower-upper-cover problem (MinLUCP), the optimization version
of a generalization of r-EC, that can be solved in polynomial time which gives the
following result.

Theorem 10. For every fixed r ≥ 1, Ext r-EC, with standard parameter, is in FPT;
more precisely, the running time can be upper-bounded by O∗(3|U |).

Proof. Let us establish a relation between the instances of the two problems Ext r-EC
and MinLUCP. Let (G,U) be a yes-instance of Ext r-EC, where G = (V,E) is a graph
of minimum degree at least r and U ⊆ E. So, ext(G,U) 6= ∅ which implies by Lemma 9
the existence of a particular independent set S of GU . We build an instance (GU , a, b),
U = E \ U , of MinLUCP, where a, b are two non-negative functions defined as follows:

a(v) :=

{
r if v ∈ V \ V (U)

r − dGU
(v) if v ∈ V (U),

and

b(v) :=

{
dG(v) if v ∈ (V \ V (U)) ∪ S
r − dGU

(v) if v ∈ V (U) \ S.

The next property is rather immediate.

Property 11. If there is a solution of MinLUCP for the instance (GU , a, b), then
ext(G,U) 6= ∅.

Proof. Assume that instance (GU , a, b) of MinLUCP admits a feasible solution and
let G∗ = (V,E∗) be an optimal solution. Then, the partial subgraph H = (V,E∗ ∪ U)
satisfies the hypothesis of Lemma 9 (actually, H is already minimal with respect to the
property ∀v ∈ V , dH(v) ≥ r). ♦

Using the outcome given in Property 11, consider the algorithm that lists all possible
instances (G[U ], a, b) for MinLUCP by checking all independent sets of G[U ] included
in V (U) from an instance I = (G,U) of Ext r-EC. This means that we try different
values for function b. Since MinLUCP is solvable in polynomial time [20], then the
running time is dominated by the procedure that lists all possible independent sets of
G[U ], i.e., there are 3|U | possibilities: each vertex of each edge in U can be either included
or excluded of the independent set, except for taking both endpoints in. �

For Ext r-DCPS, we can also exploit some structural properties of yes-instances and
then use the polynomial solvability of Simple b-Matching to show that Ext r-DCPS,
with dual parameter, is in FPT. It is sometimes more convenient to think about this
problem as follows: Given a graph G = (V,E) and an edge set U , the question is if there
exists an inclusion-wise maximal edge subset S ⊆ E of G such that the partial subgraph
GS has maximum degree r and avoids U , i.e., S ∩U = ∅. Our parameter is |U |. Assume
there is an inclusion-wise maximal partial subgraph GE′ = (V,E′) of G with maximum
degree r such that E′ ∩ U = ∅. The next property is quite immediate.
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Figure 7: Graph G = (V,E) and forbidden set U ⊂ E (edges are marked with bold line). A vertex cover
V ′ of GU (vertices with a bold border) is shown on the left side. On the right side, the weighted graph
G′ = (V, U) built from G and V ′ is displayed.

Lemma 12. The set {v ∈ V : v is incident to U and to r edges in E′} is a vertex cover
of GU = (V,U).

Proof. By contradiction, suppose there is an edge xy ∈ U such that x and y are both
incident to less than r edges in E′. Then E′ ∪ {e} is a new solution of r-DCPS; this is
a contradiction to the maximality of E′. �

We now introduce some notations useful in the following. For a minimal vertex
cover V ′ of GU , let (G′, w′) be the edge-weighted graph of (V,U) defined as follows: for
v ∈ V , d′(v) = 0 if v /∈ V ′, and d′(v) = 1 if v ∈ V ′. We define the edge weight w′ by:
w′(e) = d′(x) + d′(y) for e = xy ∈ U . Figure 7 illustrates the construction of (G′, w′)
from an original graph G and a specified vertex cover V ′ of GU .

Theorem 13. Let r ≥ 1. There is a maximal r-DCPS set S for G such that S ∩U = ∅
if and only if there is a vertex cover V ′ of GU such that there exists an r-DCPS set S′

for the corresponding weighted graph G′ such that w′(S′) ≥ |V ′| × r.

Proof. Let G = (V,E) be a graph and let U ⊆ E. Let GS = (V, S) be any maximal
partial subgraph with maximum degree r of G such that S∩U = ∅ (if any). First observe
that since S is an r-DCPS set for G which avoids U , it is also an r-DCPS set for G′.
From Lemma 12, we know V ′ = {v ∈ V : v is incident once to U and r times to S} is
a vertex cover of GU , and let V ′′ ⊆ V ′ be a minimal vertex cover of GU . Hence, for
the graph G′′ with edge-weight w′′ associated to the minimal vertex cover V ′′ of GU , it
follows that w′′(S) ≥

∑
v∈V ′′ dGS

(v) = |V ′′| × r.
Conversely, assume that V ′ is a minimal vertex cover of GU such that there exists

an r-DCPS set S′ for G′ such that w′(S′) ≥ |V ′| × r. By the definition of the edge-
weights w′, it follows that w′(S′) =

∑
v∈V ′ dGS′ (v). As the subgraph GS′ has maximum

degree r, the weight w′(S′) ≥ |V ′| × r is only possible if dGS′ (v) = r for all v ∈ V ′.
Greedily extending S′ to an r-DCPS set for the original graph G hence gives a solution
for Ext r-DCPS on (G,U); observe that the edges in U can not be chosen by the greedy
procedure, as each edge in U is already incident to at least one vertex in V ′ which already
has degree r. �
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Using the characterization given in Theorem 13, the next result is rather straightfor-
ward.

Theorem 14. For every fixed r ≥ 1, Ext r-DCPS, parameterized by the number of
forbidden edges collected in U , is in FPT. More precisely, the running time can be upper-

bounded by O∗(2|U |). If the graph GU is connected, then this upper bound improves to

O∗(1.4423|U |).

Proof. Given an instance (G,U) of Ext r-DCPS, consider an algorithm that lists all
minimal vertex covers V ′ of GU and checks if the optimal value of Max r-DCPS on
(G′, w′) is at least |V ′| × r. According to Theorem 13, this procedure suffices to decide
if there exists an r-DCPS set S with S ∩ U = ∅, i.e., if (G,U) is a yes-instance for Ext
r-DCPS.

The running time is dominated by the procedure that lists all minimal vertex covers,
as solving Max r-DCPS can be done in polynomial time by [19]. As the number of
edges in a graph is an upper bound on any minimal vertex cover of that graph, it is clear

that we can enumerate all minimal vertex covers of GU in time O∗(2|U |) by [29, 30, 31].
Using our approach, the running time estimate cannot be improved; consider for

instance the case when E(GU ) is a perfect matching. However, if GU is connected, then
we know that the number of vertices |V (GU )| is upper-bounded by |E(GU )| − 1. Hence,
the classical results of Moon and Moser [32] on enumerating maximal independent sets
show the last claim on the running time. �

When bounding the degree of the graphs, we can consider an even smaller parameter
and obtain feasibility results.

Proposition 15. For graphs with maximum degree r + 1, Ext r-DCPS is polynomial-
time decidable when r = 1 and is in FPT with respect to the number ι of isolated edges
in U for r ≥ 2. More precisely, we can upper-bound the running time by O∗(2ι).

Proof. Consider the partial subgraph G′ = GU = (V,E \U), i.e., the graph induced by
the forbidden edges. Since the maximum degree of G is r + 1, if G′ contains a triangle
or a path of length at least 3, then then answer is no. Therefore, we can suppose that
G′ is a collection of stars. If one leaf of a star of G′ has a degree at most r in G, then
this star must be an isolated edge in G′ and it is exactly for one of these two endpoints
(otherwise, the answer is no). Hence, let PG′ be the set of the stars which are isolated
edges in G′ and such that both endpoints are of degree r + 1 in G.
• For r ≥ 2, for the set of stars of G′ with more than one edge, leaves and center are

clearly determined and for each single edge of G′ not in PG′ , the endpoint with degree less
than r is chosen as a center. Now, for each star in PG′ we have to determine one of the
endpoints as a center and the other one as a leaf. This determines the claimed running
time. We can now build the set L of leaves for all stars of G′. Let E′L = {uv ∈ E : u ∈ L}
and G′L = (V,E′L). We check for all possible labelings, if there is a label which satisfies
two following conditions the answer is yes, else the answer is no.

1. for each v ∈ L, dG′L=(v) = r + 1.

2. for each vertex v ∈ V \ L, dG′L(v) ≤ r.
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• For r = 1, we construct a new graphH by omitting all sets of vertices {u′i, ui, vi, wi, w′i}
for the stars [ui, vi, wi] of G′ (with center vi) where u′i, w

′
i are neighbors of the leaves ui, wi

(without vi). Notice at each time u′i, v
′
i have to be disjoint from one star to another one,

otherwise the answer is no. Now, H is a collection of paths (maybe trivial) and cycles
where the forbidden edges induce a matching. Remove from H all cycles and the paths
where both end edges are in U . Now, H is a collection of paths where at least one of end
edges is forbidden. For all of these paths, start from one side and satisfy the maximality
by assigning the first possible edge to a forbidden edge; if there is a path that does not
satisfy the maximality, the answer is no, else the answer is yes. �

Remark 2. For graphs with maximum degree r + 1, Ext r-DCPS with r ≥ 2 is pa-
rameterized equivalent to SAT with respect to the number of isolated edges in E \ U
and variables, respectively.

v1 v2

v3v4

v5 v6 v5 v1 v2 v6

v3v4

x1 y1 z1

x2 y2 z2

Figure 8: (G,U) as an instance of Ext VC is shown on the left, with V1 = {v2, v4, v5} and V2 =
{v1, v3, v6} and U = {v2}. The constructed instance (G′, U ′) of Ext EDS is shown on the right. The
vertices and edges of U and U ′ are marked with bold lines.

Theorem 16. For any r ≥ 1, Ext r-EDS (with standard parameter) is W [1]-hard,
even when restricted to bipartite graphs.

Proof. We only consider r = 1. For r ≥ 2, we can use the gadget Br(v) as in Theorem 5.
The hardness result comes from a reduction from Ext VC on bipartite graphs, the
extension version of Vertex Cover; see [12]. Let I = (G,U) be an instance of Ext
VC, where G = (V,E) is a bipartite graph with partition (V1, V2) of V and U ⊆ V , the
question of Vertex Cover is to decide if G has a minimal vertex cover S with U ⊆ S.
We build an instance I ′ = (G′, U ′) of Ext EDS as follows. Let us first construct a new
graph G′ = (V ′, E′) with V ′ = V ∪ {xi, yi, zi : i = 1, 2} and

E′ = E ∪
⋃
i=1,2

(
{xiyi, yizi} ∪ {vxi : v ∈ Vi}

)
.

G′ is bipartite with partition into V ′1 = V1 ∪ {x2, y1, z2} and V ′2 = V2 ∪ {x1, y2, z1}. Set
U ′ = {ux1 : u ∈ U ∩ V1} ∪ {ux2 : u ∈ U ∩ V2} ∪ {x1y1, x2y2} so, |U ′| = |U | + 2. This
construction is illustrated in Figure 8. We claim that (G′, U ′) is a yes-instance of Ext
EDS if and only if (G,U) is a yes-instance of Ext VC.

Suppose (G,U) is a yes-instance for Ext VC; so there exists a minimal vertex cover S
for G with U ⊆ S. The set S′ = {vx1 : v ∈ V1∩S}∪{vx2 : v ∈ V2∩S}∪{x1y1, x2y2} is an
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edge dominating set of G′ which includes U ′ because S contains U . Since S is minimal,
S′ is minimal, too; observe that private edges of a vertex v ∈ S ∩ V1 (i.e. an edge vu
with u /∈ S ∩ V1) translate to private edges of vx1 ∈ S′, analogously for x ∈ S ∩ V2. By
construction, yizi is a private edge for xiyi, i = 1, 2.

Conversely, suppose S′ is a minimal edge dominating set of G′ containing U ′. Since
S′ is minimal, then for each e ∈ S′ there is a private edge set Se ⊆ E′, Se 6= ∅, which is
dominated only by e. Moreover, we have, for i ∈ {1, 2}:

∀v ∈ Vi ((vxi ∈ S′) ⇐⇒ (∀u ∈ V3−i(vu /∈ S′ ∩ E)) ,

since S′ is minimal and {x1y1, x2y2} ⊆ U ′. We now show how to safely modify S′ such
that S′∩E = ∅. If it is not already the case, there is some edge, w.l.o.g., e = uv ∈ S′∩E
with u ∈ V1 and v ∈ V2. In particular from the above observations, we deduce u /∈ U ,
v /∈ U and Se ⊆ E. Modify S′ by the following procedure.

• If the private solution set Se\{e} contains some edges incident to u and some edges
incident to v, then e ∈ S′ will be replaced by ux1 and vx2;

• if every edge in the private solution Se is adjacent to u, replace e in S′ by ux1,
otherwise if every edge in the private solution Se is adjacent to v, replace e in S′

by vx2.

The case distinction is necessary to guarantee that S′ stays a minimal edge dominating
set after each modification step. We repeat this procedure until S′ ∩ E = ∅. At the end
of the process, every vertex v ∈ V covers the same set of edges as vx1 or vx2 dominates.
Hence, by setting S = {v ∈ V : vx1 ∈ S′ or vx2 ∈ S′}, we build a minimal vertex cover
of G containing U . �

Remark 3. Note that the procedure of local modifications given in Theorem 16 does
not preserve optimality, but only inclusion-wise minimality.

6. Price of extension

Considering the possibility that some set U might not be extensible to any minimal
solution, one might ask how far U is from an extensible set. This concept, introduced
in [3], is called Price of Extension (PoE). A similar approach has already been studied
in the past called the Price of Connectivity in [33] in the context of connectivity. This
notion has been introduced in [33] for Min VC which is defined as the maximum ratio
between the connected vertex cover number and the vertex cover number. Here, the
goal of studying PoE is to measure how far efficiently computable extensible subsets of
the given presolution U are to U or to the largest possible extensible subsets of U . To
formalize this, we define optimization problems corresponding to Ext r-EC and Ext
r-EDS. Actually, since we mainly propose negative results, we only focus on r = 1 by
introducing and considering the following problems:

Max Ext EC
Input: A graph G = (V,E) and a set of edges U ⊆ E.
Solution: Minimal edge cover S of G.
Output: Maximize |S ∩ U |.
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Figure 9: On the left side, an instance of Max IS and on the right side, the corresponding instance of
Max Ext EC. Bold edges of H are the set of forced edges U .

Max Ext EDS
Input: A graph G = (V,E) and a set of edges U ⊆ E.
Solution: Minimal edge dominating set S of G.
Output: Maximize |S ∩ U |.

For Π = Max Ext EC or Π = Max Ext EDS, we denote the value of an optimal solu-
tion by optΠ(G,U). Since for both problems optΠ(G,U) ≤ |U |, with equality if and only
if (G,U) is a yes-instance of the extension variant, we deduce from our previous results
that Max Ext EC and Max Ext EDS are NP-hard. In the particular case U = E,
Max Ext EDS is exactly the problem called Upper EDS where the goal is to find the
largest minimal edge dominating set; Upper EDS can be also viewed as Upper DS in
line graphs. In [34], it is shown that Upper EDS is NP-hard in bipartite graphs. Very re-
cently, an NP-hardness proof for planar graphs of bounded degree, an APX-completeness
result for graphs of maximum degree six and a tight Ω

(
nε−1/2

)
-inapproximability result

for general graphs and for any constant ε ∈ (0, 1
2 ), are given in [35].

The price of extension PoE is defined exactly as the ratio of approximation, i.e., apxopt .

We say that Π admits a polynomial ρ-PoE if for every instance (G,U), we can compute
a solution S of G in polynomial time which satisfies PoE(S) ≥ ρ.

Theorem 17. For any constant ε ∈ (0, 1
2 ) and any ρ ∈ Ω

(
∆ε−1

)
and ρ ∈ Ω

(
nε−

1
2

)
,

Max Ext EC does not admit a polynomial ρ-PoE for general graphs of n vertices and
maximum degree ∆, unless P = NP.

Proof. The proof is based on a reduction from the Maximum Independent Set
problem (Max IS for short). Given a graphG = (V,E) with n vertices andm edges where
V = {v1, . . . , vn}, as an instance of Max IS, we build a bipartite graph H = (VH , EH)
as follows: for each vi ∈ V , add a P3 with edge set {viv′i, v′iv′′i }, and for each edge
e = vivj ∈ E with i < j, add a middle vertex vi,j and connect vi to vj via vi,j . Consider
I = (H,U) as an instance of Max EXT EC, where the forced edge subset is given by
U = {viv′i : 1 ≤ i ≤ n}. Clearly, H is a bipartite graph with |VH | = 3n + m vertices,
|EH | = 2(m + n) edges and ∆(H) = ∆(G) + 1. An example of this construction is
illustrated in Figure 9.

We claim that there is a solution of size k for Max Ext EC on (H,U) if and only
if G has an independent set of size k. Suppose that S is a maximal independent set
of G of size k. For each e ∈ E, let ve ∈ V \ S be a vertex which covers e. Clearly,
S′ = {vi,jve : e = vivj ∈ E} ∪ {v′iv′′i : vi ∈ V } ∪ {viv′i : vi ∈ S} is a minimal edge cover
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of H with |S′ ∩ U | = k. Conversely, suppose S′ is a minimal edge cover of H such that
|S′ ∩ U | = k. Let us make some simple observations about every minimal edge cover
of H. {v′iv′′i : vi ∈ V } is a part of every edge cover since, v′′i for vi ∈ V are leaves of H.
Moreover, for each e = vivj ∈ E with i < j, at least one edge between vivij or vjvi,j
belongs to any edge cover of H. Furthermore, if vivi,j ∈ S, by minimality we deduce
that viv

′
i /∈ S′. Hence, for each vivj ∈ E, at most one of viv

′
i, vjv

′
j can be in S′. Hence,

S = {vi : viv
′
i ∈ S′} is an independent set of G with size k.

Using the strong inapproximability results for Max IS given in [36, 37], observing
∆(H) = ∆(G) + 1 and |VH | ≤ 2|V |2, we obtain the claimed result. �

Using result given in [35], an Ω
(
nε−1/2

)
-inapproximability result can be immediately

deduced for Max Ext EDS, as well. The next result is obtained by a simple approxi-
mation preserving reduction from Max EXT VC to Max Ext EDS and improves on
the mentioned immediate inapproximability result.

Theorem 18. For any constant ε ∈ (0, 1) and any ρ ∈ Ω
(
nε−1

)
, Max Ext EDS does

not admit a polynomial ρ-PoE for general graphs of n vertices, unless P = NP.

Proof. we propose a simple approximation preserving reduction from Max EXT VC
to Max Ext EDS similar to Theorem 16. In [12], it is shown that Max EXT VC
is hard to approximate within ratio nε−1 for any constant ε ∈ (0; 1) for a graph of
order n. Let (G = (V,E), U) be an instance of Max Ext VC, we build an instance
(G′ = (V ′, E′), U ′) of Max Ext EDS such that V ′ = V ∪{v′} and E′ = E∪{uv′ : u ∈ V }.
Let U ′ = {uv′ : u ∈ U}. So G′ is a graph with |V ′| = |V |+ 1 and |U ′| = |U |.

We claim that there is a solution of size k for Max Ext VC on (G,U) if and only if
Max Ext EDS has a solution of size k on (G′, U ′). Without loss of generality, suppose
that U 6= ∅. Furthermore, suppose that S is a minimal vertex cover of G such that
|S ∩U | = k, so S′ = {uv′ : u ∈ S} is a minimal edge dominating set where |S′ ∩U ′| = k.
Since S is a minimal vertex cover, for any u ∈ S, there exists at least one private edge
eu ∈ E which is only covered by u, hence eu will be a private edge for any uv′ ∈ S′.
Conversely, suppose that S′ is a minimal edge dominating set of G′ containing k edges
of U ′. In the following, we will show that how we replace any minimal edge dominating
set S′ of G′ with a new minimal solution S′′ including just some edges incident to v′

such that S′ ∩ U ′ = S′′ ∩ U ′′. The procedure is completely analogous to what we did in
Theorem 16, keeping all edges incident to v′ in S′ and replacing any edges non-incident
to v′ with some edges incident to v′ as follows. For an non-incident edge e = xy ∈ S′,
not incident to v′:

• if the private solution set Se \{e} contains some edges incident to x and some edges
incident to y, then e ∈ S′ will be replaced by xv′ and yv′;

• if every edge in the private solution Se is adjacent to x, replace e in S′ by xv′,
otherwise if every edge in the private solution Se is adjacent to y, replace e in S′

by yv′.

Now, by setting S = {u : uv′ ∈ S′′}, we make a minimal vertex cover of G, such that
|S′′ ∩U ′| = |S ∩U |. Since |V ′| = |V |+ 1 and considering the inapproximability result of
Max Ext VC from [12], the proof is complete. �
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In contrast to the last hardness result, we give a simple approximation depending on
the maximum degree ∆(G).

Theorem 19. Max Ext EDS is 1
∆(GU )+1 -approximable for instance (G,U) of maxi-

mum degree ∆.

Proof. Let (G = (V,E), U) be an instance of Max Ext EDS, where the maximum
degree of partial subgraph GU induced by U is bounded by ∆. Compute a maximum
matching M of GU and transform it into a maximal matching M ′ of G containing M .
It is well known that any maximal matching is an edge dominating set. Obviously,
(∆(GU ) + 1)|M | ≥ |U | ≥ optMax Ext EDS(G,U) since GU is (∆(GU ) + 1)-edge colorable.
�

Considering Ext 1-DCPS, we need to adapt the notion of the price of extension
because we have to consider subset of forbidden edges (i.e., U); more precisely, we want
to increase |U | as little as possible. Hence, the optimization problem, called Min Ext
1-DCPS, is defined as follows:

Min Ext 1-DCPS
Input: A graph G = (V,E) and a set of edges U ⊆ E.
Solution: Maximal matching S of G.
Output: Minimize |U ∪ S|.

Recall that PoE is meant to measure how far efficiently computable extensible subsets
are from the given presolution U or to the largest possible extensible subsets of U . We say
that Min Ext 1-DCPS admits a polynomial ρ-PoE if for every instance (G,U), we can
compute a solution S of G in polynomial time which satisfies PoE(S) = apx

opt ≤ ρ. In the

particular case U = ∅, Min Ext 1-DCPS is exactly the well known problem Minimum
Maximal Matching, where the goal is to find the smallest maximal matching. In
[38, 39], it is shown that Minimum Maximal Matching is hard to approximate with a
factor better than 2 and 1.18, respectively, assuming Unique Games Conjecture (UGC)
and P 6= NP, respectively. We complement this bound by showing the following.

Theorem 20. A 2-approximation for Min Ext 1-DCPS can be computed in polynomial
time.

Proof. Let (G = (V,E), U) be an instance of Min Ext 1-DCPS. The approximate
solution for Min Ext 1-DCPS consists in outputting a maximal matching M ′ of G in
the following way: we build first a maximum matching in GU and then we extend it into
a maximal matching of the whole graph. Let M∗ be an optimal solution of Min Ext
1-DCPS with value optMin Ext 1-DCPS(G,U) = |U ∪M∗|, i.e., a maximal matching of G
containing a minimum number of edges outside of U . For A ∈ {U,U}, and a matching M ,
define MA = A∩M . Now, we claim that M ′ is a 2-approximation solution for Min Ext
1-DCPS.

By the decrease of PoE in term of U , and considering that |M∗U | ≤ |U | together with
|M∗U | ≤ |M ′U | (M ′U is a maximum matching in GU ), we deduce:

PoE =
|U |+ |M ′

U
|

|U |+ |M∗
U
|
≤
|M∗U |+ |M ′U |
|M∗U |+ |M∗U |

≤ |M
′|

|M∗| (1)
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It is well known that that |M1| ≤ 2|M2| for any pair M1,M2 of maximal matchings.
So in particular, putting this inequality with M1 = M ′ and M2 = M∗ in inequality (1),
gives the expected result. �

7. Conclusions

We have undertaken some study on several complexity aspects of extension variants of
edge graph problems. Our results should be useful in particular to the (input-sensitive)
enumeration algorithms community that has so far not put that much attention on
edge graph problems; we are only aware of [40] in this direction. Conversely, output-
sensitive enumeration algorithms, e.g., for matchings have been around for more than
twenty years [41]. Some thoughts on edge cover enumeration can be found in [42]. Our
research might also inspire to revisit exact and / or parameterized algorithms on Edge
Domination; previous papers like [31] or [43] did not focus on special graph classes,
where we see some potential for future research.
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