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This paper focuses on a two-stage coordination strategy for distributed storage systems located at 

the end-user level. A first day-ahead commitment stage lies on the Alternating Direction Method 

of Multipliers adapted to a decentralized problem in which the followers and leaders exchange 

prices (Lagrangian)/quantities information over iterations. Then a three-step coordination is 

proposed for real-time control to guarantee a fast convergence while trying to remain as close as 

possible to the profiles scheduled  in the look-ahead stage. Specific attention is attached to the end-

users’ objective function and their willingness to respond to coordinator signals. A layout of up to 

100 households is simulated with the performances assessed regarding the trade-off between loss 

of revenue and global objective improvements. The impacts of load and solar generation forecasts 

errors are also investigated along with the effect of storage parameters. Obtained results highlight 

the need for a trade-off between the targeted objective in the look-ahead phase, and the confidence 

that it can be fulfilled in real-time. 

Table 1: Nomenclature of the main symbols 

Sets: Parameters: 

t T  set of time steps (both day-ahead or real-time) 
0

,n tg  available generation at house n at time t (kW) 

n N  set of households ,n ns e  battery capacity at house n (kW, kWh) 

Variables: ,soc soc  lower/upper bound for the state of charge (%) 

, ,,n t n tg g−  generation and curtailment at house n at time t (kW) 0soc  initial state of charge (%) 

, ,,n t n ts s+ −  battery charge/discharge at house n at time t (kW)   battery efficiency (-) 

,

s

n tu +  battery charging at house n at time t {0,1} ,t t + −  Purchase/sell price at time t (€/kWh) 

,n tsoc  state of charge at house n at the end of timestep t (%) dt time step – day-ahead: 30 min, real-time: 5 min 

, ,,n t n tp p+ −  grid import/export at house n at time t (kW) .da values predicted/computed in the day-ahead phase 

tP  PCC power at time t (kW) .rt values measured/computed in the real-time phase 

xn,t , Xt local and aggregated control vectors at time t (-) Δsoc state of charge bandwidth in the real-time phase (%) 

1. Introduction 

While they allow reduced carbon emissions and higher self-sufficiency ratios for electricity usage, 

renewable energy resources challenge the management of legacy power systems due to volatile generation 

profiles and the difficulty of predictability/controllability. One envisioned way to cope with those 

shortcomings is the integration of flexibilities in the form of energy storage, demand response, and/or partially 

controllable distributed generation [1]. Those flexibilities means can consist of both distribution scale assets 

(in the MVA range) connected to the MV networks and small-scale installations at the end-user level (‘behind 

the meter’) [1]. As an example of single house energy management strategy [2] provides a comprehensive 

optimization-based home energy management strategy (HEMS), while considering flexible electrical 

appliances. Also, the work introduces a trade-off between users’ preferences (e.g. minimum energy bill), and 
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values for grid operators (e.g. smoothened power profiles). More flexibilities and interesting tradeoff can be 

leverage when considering a pool of users with assets ‘behind the meter’. In such cases flexibility management 

can be challenging due to a potentially great number of resources and the need to deal with third-party owners 

-i.e. privacy by design for the control schemes.  

Typically, coordination schemes are proposed to uptake the benefits of the resources, ranging from 

fully distributed (peer-to-peer) approaches [3] to more decentralized strategies (leader-followers) [4]. In 

practice, an equilibrium has to be found between the individual owners’ objectives (e.g., electricity bill) and 

the global system targets/constraints (e.g., losses, voltage, transformer loading). Decomposition techniques 

with the use of complementarity problems can be implemented to estimate the system equilibrium. Typically, 

approaches take advantage of the convexity and differentiability of the considered functions (objective and 

constraints) to represent the lower-level problems (e.g., end-users) by their equivalent Karsh-Kuhn-Tucker 

conditions [5]. If those methods allow identifying the equilibrium, they cannot be used in the operational phase 

to reach this equilibrium – as they ultimately rely on centralized formulations of multi-level problems. In 

practice, iterative processes shall be implemented with the exchange of information between the stakeholders 

(typically price/quantity signals). For instance, [4] proposes a decentralized strategy in which different users 

coordinate to minimize their bills and maximize the share of renewable at the community level while paying 

attention to the forecast errors. In [6], a decentralized scheme is adopted for voltage regulation in the 

distribution grid with successive back-and-forth communication between roots and leaves. Among the 

distributed optimization techniques, the Alternating Direction Method of Multipliers (ADMM) has gained 

interest in the field of distributed energy resource management in the past years [7]. This algorithm proceeds 

in iterations where the agents optimize their individual objectives while converging toward consensus (we talk 

here of C-ADMM). In this paper, the consensus algorithm is adapted to a decentralized strategy with one 

coordinator agent driving the consensus values before forwarding them to the followers. The method is 

implemented for a set of households that minimize their energy bill while the global objective is to smooth the 

overall power (e.g., minimize the delivery transformer loading and back-feed power). Attention is also paid to 

the pricing policy and control abilities at the house level. Especially, the paper investigates the willingness of 

users to respond to coordinator signals and their impact on the overall objectives. 

If the previous approaches can be applied in a look-ahead phase (e.g., day-ahead scheduling) where 

the computational time is not a concern, real-time (or near real-time) management requires faster convergence. 

Similar to typical microgrid control architectures, hierarchical methodologies can be considered with a day-

ahead phase followed by an online adaptation of the scheduled controller. As explained in [8] the objective of 

such a real-time procedure is to cope with unavoidable forecast errors, or unpredicted events (e.g., loss of 

equipment). One particular objective of real-time operations can be to remain as close as possible to the power 

profiles scheduled and committed in the look-ahead phase. This is especially of interest for power system 

operators with a reduced need for carbon-intensive energy reserves to fulfill the demand/load balance in real-

time thanks to more predictable power profiles at the end-user level. Both [9] and [10] adopt ADMM for the 

real-time coordination of users paying attention to the fulfillment of distribution grid constraints (i.e., 

current/voltage limitation). However, the number of iterations before convergence cannot be controlled with 

regular ADMM implementations. Thus, this paper proposes a three-step coordination strategy to ensure 

convergence in real-time operation. Inspired by the recent literature (e.g., [11]) on the coordination between 

Transmission and Distribution System Operators (TSO-DSO), the idea is to coordinate the real-time operation 

of a set of users based on their declaration of ‘feasible region’ in terms of reachable values of active grid power 

at their meter level (i.e., import/export). The main contributions of the papers are: 

▪ The implementation of a two-stage decentralized management strategy for day-ahead and near real-

time operations of a pool of users with privacy by design. 
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▪ The ability to account for user preferences and a global objective from the DSO’s perspective based 

on power profile smoothing and predictability. 

▪ Scalability tests up to one hundred coordinated users and sensitivity analysis on systems settings, 

control parameters and quality of forecasts.  

The rest of the paper is organized as follows. Section 2 describes the main model equations for the 

operation of solar and storage assets along with both household and coordinator’s objectives. Section 3 presents 

the ADMM based coordination for the look-ahead operational scheduling of the users’ assets. Section 4 

describes the real-time management strategy that adapts the scheduled controls. Results are presented in 

Section 5 with scalability tests and sensitivity analysis before conclusions are drawn in Section 6. 

2. Case Study and Generic Model 

2.1. Considered System and Two-stage Management Strategy 

The case study investigated in this paper consists of the decentralized control of a set of households 

(𝑛 ∈ N). Each house is equipped with a solar generator and an energy storage system and controls its assets 

over a given time horizon T (𝑡 ∈ T) with fixed time steps dt (Figure 1). The different households are controlled 

to fulfill an arbitrage between their objectives (inner problem) and the overall coordination targets (upper 

problem). This coordinator can be located at the feeder level (or point of common coupling - PCC). The 

proposed management consists of a two-stage strategy with i) the day-ahead commitment on the grid power 

profiles (at both the household and coordinator levels) and ii) a real-time adaption of the controls to fulfill the 

commitment as much as possible (a deviation metric will be specifically introduced further). Both stages rely 

on the coordination between individuals and the coordinator with the exchanges of prices/quantity/reference 

signals. Specific attention is attached to privacy concerns with a coordinator that cannot access user 

information ‘behind the meter’ (i.e., individual load or generation profiles and individual asset controls). Note 

that the distribution grid connecting houses is not considered – i.e., no load flow analysis, voltage concerns, 

and/or losses minimization issues. The management lies in the optimization of the active load flows only. 

 
Figure 1: Considered case study and two-stage management strategy. 
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2.2. Generic Model Equations 

The controls and state variables of each household over the time horizon are stored in a matrix xn,t 

with the storage discharge/charge power (sn,t
− , sn,t

+ ) and energy (en,t), the export/import power with the main grid 

(p
n,t
− , p

n,t
+ ), computed for a given load (ln,t) and generation profiles (gn,t). The generation results from the 

available resources g
n,t
0  and the ability to curtail part or totality of the production(g

n,t
− ). As furtherly developed, 

the households’ objective depends on the control phase considered (i.e., day-ahead or real-time) and on the 

investigated scenario for the billing mechanisms. A generic objective is denoted fn(xn,t). The management 

problem at the house level ultimately takes the form of an optimization problem expressed in (1). Traditional 

linear constraints account for the power balance at each time step, (2), and the storage operating limitations 

(3), and energy, (4), about the maximum power sn̅ and capacity en̅. A conventional periodicity constraint is 

introduced to ensure that the storage returns to its initial value at the end of the simulated period, (5) [12] with 

the stored energy computed with the round trip efficiency η, (6). Note that the state of charge is given at the 

beggining of the corresponding time step. Finally, potential curtailment of generation is represented by 

constraints (7) and (8). In practice, curtailment is possible with a degradation of the MPPT (maximum power 

point tracking) of the solar generator, which translates in a modified voltage reference at the level of the 

photovoltaic modules [13]. Also, Note that taking into account this storage efficiency consists of accounting 

for both charging and discharging losses while disaggregating two operating modes thanks to a binary variable 

un,t
s+ (for charging in (3)) which requires the implementation of mixed integer programming problems. For 

faster computational time and the simulation of longer time horizons, the storage efficiency can then be set to 

unity, at the cost of model simplification. A nomenclature of the main symbols used is given in Table 1. 

 
( )

, , , , , ,, , , , ,

obj : min
n t n t n t n t n t n t

n
s s e g p p

f
− + − − +=n,t

n,t
x

x  (1) 

Subject to : 

, , , , , ,+       n t n t n t n t n t n tp g s l s p t T+ − + −+ + = +    (2) 

( ), , , ,0  ,   0 1     s s

n t n n t n t n n ts s u s s u t T+ + − +      −    (3) 

,     n tsoc soc soc t T     (4) 

0 0= =     t t Tsoc soc soc= =  (5) 

( ), 1 , ,

100
= + s s /     {1}t n t n t n t

n

dt
soc soc t T

e
 + −

−


 −    −  (6) 

0

, ,0     n t n tg g t T−     (7) 

0

, , ,    n t n t n tg g g t T−= −    (8) 

Once all the controls in the subsystems are defined (matrices xn,t aggregated in Xt), it is possible to 

compute the objective at the coordination layer. In practice, the coordination can be performed at an energy 

community level, or more concretely at the point of common coupling (PCC) of the different users (i.e., 

MV/LV transformer). The DSO may then be in charge of the communication exchanges with the individual 

houses in the course of the coordination strategy. One typical objective at the delivery transformer level is the 

peak-to-average ratio (PAR) which targets smooth imported power profiles [14]. In this paper, and to penalize 

both upstream and downstream flows, the overall objective is defined as the square of the power exchanged at 

the PCC (9), at each time interval, computed as the aggregation of net grid power of individuals p
n,t

, (10). 

( )
2

{ }
obj : min ( )   t

t T

F P dt
=



= 
t 1,t n,t

t
X x ,..,x

X  (9) 

subject to: 
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,    , ,     t n t n t n t

n N n N

P p p p t T+ −

 

= = −     (10) 

2.3. Household Objectives Scenarios 

This section describes the operational objective at the end-user level. Different assumptions can be 

made, mostly depending on the considered pricing policy for the consumers. Typical approaches then consist 

in minimizing the energy bill about the purchase prices (time-dependent πt
+) and the potential selling of 

electricity (fixed feed-in tariff π- ) – cost driven function fn in (11).  

 
( )

, , , , , ,

, ,
, , , , ,

obj : min ( )       
n t n t n t n t n t n t

n n t t n t t
s s e g p p t T

f p p dt 
− + − − +

+ + − −

= 

=  −  
n,t

n,t
x

x  (11) 

Three scenarios are investigated in this paper for the house operational strategy: 

▪ S1: fn with the time-of-use purchase price (day/night) and no possibility to curtail the generation 

(i.e. g
n,t
− = 0). 

▪ S2: fn with the time-of-use purchase price, and the possibility to curtail the generation. 

▪ S3: fn with the time-of-use purchase price, possibility to curtail the generation, and no feed-in 

tariff (i.e., π− = 0). 

As explained in the next section, users may not be willing to deviate from their local optimal solution 

in the course of the coordination strategy. Thus, an additional constraint is introduced at the house level for the 

day-ahead phase to represent the potential willingness of a user to respond to the coordinator’s signals. This 

degree of response is computed as an acceptable deviation from the individual optimum (denoted fn
0) with the 

coefficient α in (12). 

0 0( ) ( ) ( )n n nf f f−  
n n n

x x x  (12) 

3. Decentralized Optimization for Day-Ahead Commitment 

3.1. Consensus Alternating Direction Method of Multipliers 

Initially introduced in [15], ADMM has gained much interest in solving optimization problems in a 

distributed fashion. One typical ADMM variation consists of the determination of a consensus in a multi-agent 

environment (e.g., N agents with associated controls xi) with convex objective functions (fi) – derived from a 

global separable function. In (13), zi denotes global variables that correspond to the expected system optimum, 

subject to potential constraints (not represented here). There is a need for consensus in the sense that different 

agents may compute different values for the same set of variables xi based on their available information 

(expected match between xi and zi). Consensus ADMM (C-ADMM) then lies on the optimization of separated 

sub-problems inherited from the augmented Lagrangian of the original problem about the dual variables λi and 

with a convergence rate ρ (typically between 0 and 1), as expressed in (14). 

1

obj: min ( )   s.t:   0 
i N

i i i i

i

f x x z
=

=

− =  (13) 

( ) ( )
2

2
, , ( ) +   

2

T

i i i i i i i i i iL x z f x x z x z


 = − + −  (14) 
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Table 2: C-ADMM algorithm 

C-ADMM  

Initialize : λi = 0 , zi =0  

Repeat : 

( )

( )

2
( 1) ( ) ( ) ( )

2
( 1) ( 1)

( 1) ( ) ( 1) ( 1)

arg min ( ) +  / 2   for 1,..,

  - average over all agents

 / 2

k k T k k

i i i i i i i i

k k

i i

k k k k

i i i i

 x f x x z x z i N

z x

x z

 

  

+

+ +

+ + +

= − + − =

=

= + −

1.

2. 

3. 

 

 

Until one stopping criterion is met 

The algorithm then proceeds in iterations (upperscript .(k)) with the optimization of the agent function 

(potentially subject to individual constraints) in step 1 and successive updates of the Lagrangian multipliers λi 

(step 3) and consensus variables (step 2) (refer to Table 2). The estimation of the consensus variables is the 

most important step in the coordination scheme and depends on the communication topology and the 

information exchanged between the different actors [7]. As an example, in typical ADMM for distributed 

optimal power flow, the voltage at a given node is a consensus variable, estimated as the average value of this 

voltage computed by all the neighboring electrical buses [16]. Typical stopping criteria can consist of a 

maximum number of iterations or sequences with no improvement of the objectives, or no significant changes 

in the variables values – i.e., primal residual ‖xi
(k)

− zi
(k)

‖ < ε and/or dual residual ‖zi
(k)

− zi
(k−1)

‖ < ε. 

3.2. Proposed Implementation 

In this paper, C-ADMM is adapted to solve the considered problem in a decentralized way, starting 

with the sub-problem for every house n. The consensus values are denoted p̂
n,t

 in the agent problem (15) and 

relate to the grid power at the user meter level. Similarly to [17], the computation of the consensus value relies 

on an optimization problem solved by a coordination agent (e.g., at the PCC), once the controls are individually 

computed for each agent (all pn,t are then known). The goal is to minimize the Lagrangian function based on 

the original overall objective F, (16). Following the conventional last step of the ADMM iterations, multipliers 

are finally updated as expressed in (17). 

( )
2

, , , , 2
obj: min ( ) +   

2

T

n n n t n t n t n tf p p p p


 − + −
n,t

n,t
x

x  (15) 

 
( )

( )
,

2

, , , , , 2

,

,

obj: min ( ) +   
2n t

T

n t n t n t n t n t
p

t T n N
n t

N T

F p p p p



 





− + −tX  (16) 

( )( 1) ( ) ( 1) ( 1)

, , , ,/ 2k k k k

n t n t n t n tp p  + + += + −  (17) 
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Figure 2: Implemented coordination strategy for day-ahead commitments on house grid power and aggregate profile at the 

coordinator level. 

Ultimately, the adapted C-ADMM is implemented following the chart proposed in Figure 2 with 

successive optimizations over all the users and at the coordination level. The consumers communicate their 

expected grid power profile to the coordinator, who in turn updates the consensus and Lagrangian. At the user 

level, the consensus values can be interpreted as an optimal grid power profile to follow (requested by the 

coordinator). The Lagrangian value can be interpreted as the corresponding penalty (price signal). Finally, a 

stopping criterion of non-improvement of the global objective (< 1%) is considered in addition to the maximum 

number of iterations. 

4. Three-step Strategy for Real-time Operations 

The day-ahead phase returns committed grid profiles at the households level p
n,t
da along with an optimal 

trajectory for the battery state of charge socn,t
da . Similarly, the profile expected for the next day at the PCC level 

is obtained and denoted Pn,t
da. In real-time, due to a finer time resolution and unavoidable prediction errors, the 

controls need to be adjusted to fulfill the day-ahead commitments as much as possible. As previously, those 

adjustments shall rely on an efficient and fast coordination strategy at every time step. In the notations, the 

time index t indiscriminately refers to the day-ahead resolution (30 min) and the real-time discretization 

(5 min). In practice, two temporal sets are mathematically introduced along with sampling and mapping 

between the two resolutions to identify the corresponding da time step at a given rt instant. Those two distinct 

sets are not explicit here for the sake of simplicity. To control the computational time and avoid multiple 

iterations in the coordination process, a simple strategy is considered here with a convergence guaranteed at 

every time step in the real-time phase. It consists of three main steps described in the following subsections. 

Individual optimization - coordinated

compute fn
(k) for all n

min (15), s.t. (2)-(8)

Individual optimization - uncoordinated

compute fn
0 for all n

min (1), s.t. (2)-(8)

C-ADMM Initialization

maximum iterations kmax

iteration k=1

global objective 

dual and consensus   

C-ADMM Consensus

compute the global objective F(k)

compute the consensus - min (16)

( ) ( )

, , 0k k

n t n tp = =

( )kF = 

( ) ( )

, ,     k k

n t n tp

( )

,

k

n tp

C-ADMM Update

lagrangians – (17)

iteration k =k+1 

k = kmax ??

|F(k)–F(k–1) | / F(k) ≤ 0 ??

NO

YES

STOP

individual level

coordination level
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4.1. Step 1: Characterize and Declare Household Capabilities 

In this first step, each house computes the potential values of the grid power at the meter level it can 

reach for a given time step considering the actual load and generation conditions. By default, the real-time 

objective at the household level is to remain as close as possible to its committed profile. 
0

,

rt

n tp denotes the 

household grid power in real-time considering the actual load value ,

rt

n tl  and available solar generation and 

computed while applying the controls calculated in the day-ahead phase for the corresponding time step (i.e., 

battery charge/discharge and generation curtailment) ((18)). Obviously, in real-time, it is not possible to curtail 

more than the actual, available generation. 

( )0 0 0

, , , , , , ,

avalaible from the day-ahead phase

min ,rt rt rt da da da rt

n t n t n t n t n t n t n tp l g s s g g− + −= + − + −  (18) 

For given solar generation and load, every user can modulate the power it draws/inject from/to the 

grid while adjusting the storage power setpoints and thus mitigate uncertainties is real time. However, any 

battery usage to cope with real-time adjustments incurs deviations about the predicted state of charge trajectory 

at the next time step. Thus, any over solicitations of the storage equipment to mitigate uncertainties may 

endanger the capability to absorb a local energy surplus or compensate any deficit in future time steps. 

Therefore, a bandwidth is defined around the predicted state of charge trajectory with a tolerance Δsoc and an 

additional operating constraint (19). Ultimately, that bandwidth can be considered in an optimal dispatch for 

near real time control that compute the best potential grid power value for each user – i.e. minimizing the 

distance with the user day-ahead reference while considering the generic system constraints of section 2 ((20)). 

Note that equation (4) on energy limits can still be considered. Ultimately, only the strictest values are 

‘mathematically active’ – i.e. considered in the solving phase. 

( ) ( )1 1 1max , min ,da da

t t tsoc soc soc soc soc soc soc+ + ++    +   (19) 

( )
2

*

, , ,arg min   s.t. (2)-(8) & (19)rt da

n t n t n tp p p= −
n,tx

 (20) 

At this stage, it is also possible to compute the extreme (min/max) grid values reachable by each 

household for measured solar and load levels while accounting for the storage and curtailment capabilities. 

Similar to the best reachable values, the potential maximum grid power, ,

rt

n tp and the minimum ,

rt

n tp can be 

obtained while solving an optimization problem (21), considering the generic constraints along with the soc 

tolerance (19). In addition, and similarly to the day-ahead phase, users may be more or less willing to deviate 

from their estimated optimum grid power value in real-time. Thus, when computing the potential min/max 

values, an additional constraint can be considered to account for the user’s willingness to participate in the 

real-time coordination – similar coefficient as in the day-ahead phase ((22)) 

( )

( )

, ,

, ,

arg min

   s.t. (2)-(8) & (19)
arg min

rt

n t n t

rt

n t n t

p p

p p

 =



= −


n,t

n,t

x

x

 (21) 

* *

, , ,

rt rt

n t n t n tp p p−    (22) 

4.2. Step 2: Compute Household Reference Power at the Coordinator Level 

The available/reachable grid power values computed at each household level are then forwarded to 

the coordinator. Based on those values, the coordinator computes the most appropriate references in terms of 
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users’ grid power to be as close as possible to the aggregated profile committed in day-ahead Pt
da . This 

optimization accounts for the minimum and maximum grid values declared by the households and tries to limit 

the deviations with their best values ((23)). 

( )
, , ,

2
2

*

, , , ,arg min
rt rt
n t n t n t

rt da rt

n t n t t n t n t

n N n Np p p

n N

p p P p p
  

 

  
= − − −     

   (23) 

This coordination phase at the central level is necessary as a case where each household meets its best 

value (grid power value closer to the one predicted in day-ahead) cannot ensure the best performance at the 

PCC level, once all the profiles are aggregated. This will be discussed in the results section. More specifically, 

the performances with and without real-time adjustment and coordination will be compared. 

4.3. Step 3: Perform the Control 

The reference grid power values are then sent back to each household before they control their assets 

in real-time (xn,t) to meet the desired value ,

rt

n tp . Those controls are subject to generic household constraints. 

( )
2

, ,: min   s.t. (2)-(8) & (19)rt

n t n tobj p p−
n,tx

 (24) 

The overall three stage strategy for real-time coordination is finally summarized in Figure 3 with the 

information exchanged over the different steps and the corresponding problems solved to compute the grid 

power values. Ultimately the convergence of step 3 is ensured as the operating points, in terms of grid power 

values, account for the household capabilities in real-time given the instantaneous actual values of the load and 

the available generation (coming from the optimization on step 1). Also, the value of the state of charge is 

updated at every time step in real-time about the actual storage controls. Finally, and as discussed in the next 

section, extracting the best value at the household level (
*

,

rt

n tp ) allows highlighting the need for coordination 

and comparing the overall system performances with the actual controls ( ,

rt

n tp ). 

Note that the three steps introduced rely on optimization. For simulation purposes and/or improved 

simplicity and explainability, those steps could be replaced by heuristics while solving the problems with sets 

of predefined rules. In particular, this could reduce the need for computational capabilities in real time at the 

user levels – i.e. constrained optimization problems to solve at the level of every users. Investigating heuristics 

to replace the aforementioned problems is beyond the scope of the paper. 



 

R. Rigo-Mariani Page 10 sur 20 

 

Figure 3: Real-time management strategy and exchanged information in terms of grid power (‘meter’) at the household level. 

5. Obtained Results 

For the simulations provided in this section, the different load profiles are taken from the REFIT data 

set [18], and the solar generation is computed with radiation profiles from NASA open data1. All the 

implemented problems in both day-ahead and real-time phases are implemented using the YALMIP toolkit 

[19] in MATLAB 2018b and solved with CPLEX 12.10.0. 

5.1. Day-Ahead Commitment 

5.1.1.  Preliminary Test with Three Houses 

The first set of simulations is run with three houses equipped with a 6 kWp solar generator and a 

2 kW/kWh storage system. Figure 4a displays the aggregated grid profiles (e.g., at the PCC level) along the 

simulated day. With no control ability for storage and curtailment (i.e., “no scontrol”) the net power profile 

leads to significant back-feed power – global objective value F = 163 kWh2. In that case, the grid power profile 

is merely the aggregated load minus generation profile. When users individually control (i.e. “uncoordinated 

control”) their storage, the reverse power remains significant as the consumers benefit from the feed-in tariff 

in the first scenario (S1). Also, this cost-driven optimization leads to a significant night peak in the overall 

imported power due to uncoordinated storage charge (F = 123 kWh2.). The global optimum corresponds to a 

case where the coordinator can directly control the assets ‘behind the meter’. The back-feed power is then 

smoothed as much as possible for the lowest objective value of F = 58 kWh2.  

                                                      
1 https://power.larc.nasa.gov 

Step 1 : Household Capabilities

• base value  - (18)

• best value – min (20) s.t (2)-(8) & (19)

• min/max values - (21) s.t (2)-(8) & (19),(22)

From day ahead

, , , ,, , ,da da da da

n t n t n t n tp s s g− + −

0 *

, , , ,, , ,rt rt rt rt

n t n t n t n tp p p p

Step 2 : Coordintor Optimization

• reference value - min (23)

Step 3 : Actual Control

• actual xn,t- min (24) s.t (2)-(8) & (19)

,

rt

n tp

,

rt

n tp

,

rt

n tp

0

,

rt

n tp

*

,

rt

n tp

Grid power values 

‘reachable’ for every house

https://power.larc.nasa.gov/
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Figure 4:  a) Aggregated grid power – global optimum and solution with no storage or uncoordinated storage control. b) Global 

objective decrease along the iterations for different convergence rate values. 

Running the proposed collaboration scheme for the three houses system allows to reduce the global 

objective value over the algorithm iterations compared to uncoordinated control – when all the houses agree 

to deviate from their optimum (i.e., α = 1). Preliminary tests show that increasing the convergence rate fastens 

the convergence (four iterations for ρ = 1), which is not systematic for that class of coordination problem 

(Figure 4b). Especially with greater convergence rate values, the global objectives decreases significantly at 

the first iteration. At that iteration and for the case study considered here last term of the augmented Lagrangian 

in (16) corresponds to the global objective (minimum of square grid power F(Xt)) - with an optimum 

corresponding to the initial value of the consensus variables (set to 0). The convergence rate remains fixed to 

unity in the following simulations. Additional runs consist in setting the user preferences in terms of response 

to coordinator signals. Figure 5a displays the algorithm convergence with the global objective optimal value 

that cannot be met in the case of non-fully responsive customers (i.e. α <1). Note that for α = 0, houses do not 

degrade their performances (Figure 5b), but the overall objective F can still be improved compared to a case 

with uncoordinated control (F = 99 kWh2). 

 

Figure 5: Objectives values for different α settings – a) global and b) individual (house 2). 
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The loss of benefit (or increased cost) of the user depends on the considered billing/control scenario. 

Table 3 gives the objective values of the individual house and PCC in case of uncoordinated control 

(upperscript .0) and once the proposed strategy is run (upperscript .*). As previously observed for scenario S1, 

the coordination strategy improves the global objective (for the aggregated power) at the cost of slightly 

increased energy bills of the three houses (α = 1). In scenario S2, in which the ability to curtail part or all the 

generation is considered, this additional degree of freedom allows us to reach a better value of the global 

objective with reduced back-feed power at the PCC level. This curtailment at the house level that responds to 

coordination signals directly leads to a loss of revenue, which is reduced when no feed-in tariff is considered 

(scenario S3).  

Table 3: Global and users objectives values for different scenarios 

 F0 F* f1
0 f1

* f2
0 f2

* f3
0 f3

* 

S1  123 58 –0.3 –0.1 0.3 0.7 1.7 2.0 

S2  123 36 –0.3 0.6 0.3 1.1 1.7 2.2 

S3  119 36 0.7 0.7 1.1 1.2 2.1 2.2 

5.1.2. Scalability to 100 Houses 

Preliminary scalability tests consist in increasing the size of the controlled community to 100 houses. 

Results, not displayed here, showed that the coordination strategy converged in four to six iterations in all 

cases and for the three pricing scenarios (S1, S2, S3). The set of households is then fixed to 100 and additional 

tests are performed with increasing numbers of coordinated houses – while the others remain controlled 

individually. Figure 6 displays the total loss of revenue (over all the houses) and the global objective F values. 

For the first scenario, the optimum of the global objective is out of reach with the impossibility to curtail the 

generation at the house level. Both the decrease of F and the increase of the energy bill evolve almost linearly 

with the number of coordinated houses (Figure 6a). The loss of revenue is much higher in S2 with the curtailed 

generation not sold. However, when the number of coordinated houses increases, the loss of revenue tends to 

be reduced thanks to the spread effect of more heterogeneous profiles (Figure 6b) [20]. The same observation 

can be made in S3 with a lower loss of revenue – no feed-in tariffs (Figure 6c). 
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Figure 6: Objective and loss of revenue for different numbers of coordinated houses – a) S1, b) S2, c) S3. 

Another set of simulations for S2 consists of increasing the number of coordinated houses for different 

settings α. One interesting result of Figure 7 is that some improvements to the global objective can still be 

achieved without degrading the individual objective when α = 0 (‘free’ coordination). Global performance 

increases with greater values. In that case, the optimal value is reached only when all the houses coordinate 

together. 

 

Figure 7: Global objective for different numbers of coordinated houses (out of 100 users) and willingness to respond to coordination 

signals. 
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5.2. Real-Time Control 

5.2.1. Preliminary Test with Three Houses 

In this section, the performances of the real-time operations are assessed in terms of deviations of the 

aggregated power profile (in real-time at the coordinator/PCC level) with the profile committed in day-ahead 

– error in terms of Energy Deviation (ED in %) between the overall actual power profile and the one predicted 

in the day-ahead phase da

tP as expressed in (25). Similarly, the total energy within the measured deviation 

EDTOT in kWh is computed with (26) as a supplementary metric. Also note that those metrics can assessed 

with different real-time solutions - i.e., without any adaptation of the scheduled controls (
0

,

rt

n tp ), with the 

optimization at the household level only (
*

,

rt

n tp ), and with the proposed three-step coordination ( ,

rt

n tp ). 

1
100

|| ||

da rt

t t

da
t T t

P P dt
ED

T P dt

− 
=  


  (25) 

TOT da rt

t t

t T

ED P P dt


= −   (26) 

The first set of simulations is performed with three houses operated following the first scenario S1 – 

(i.e., no possibility to curtail the generation). In the absence of historical forecast, the method in the Appendix 

is proposed in order to generate prediction profile form actual measurements. Especially, a parameter allows 

to set the expected forecast error, for sensitivity analysis that is furtherly discussed. At first, forecast errors of 

30 % are considered with day-ahead predictions for the load and generation (at a 30 min resolution) computed 

with a half-hourly average of real-time profiles (at a 5 min resolution). Figure 8a displays the results that 

would be obtained regarding the overall power profile at the coordinator/PCC level, with no adaptation of the 

scheduled controls (ED = 11 %). When users individually optimize their controls to fulfill their own schedule 

grid power commitment, the error decrease to 10 %. The proposed coordination further decreases the energy 

deviations around the committed profile (ED = 7 %) while optimizing the household control within their 

capabilities at every time step (Figure 8b). 
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Figure 8: Aggregated power profile at the coordinator level after real-time operations – a) household capabilities and results with no 

correction of the scheduled controls – b) results with individual and coordinated optimization. 

Figure 9a illustrates the results at the level of a single household in terms of grid power profile and 

the state of charge is depicted in Figure 9b after running the two stages of the proposed management strategy 

– i.e. look ahead phase and near real time correction. For the simulated day, the coordination strategy globally 

leads to an overcharge of the storage compared to the scheduled profiles. Consequently, the household tends 

to increase its grid power value to compensate for an overall surplus of generation (compared to the forecast) 

at the global level. Note that the surplus of solar injection cannot be avoided here as the possibility to curtail 

is not considered (scenario S1). 

 

Figure 9: Real-time operations at the household level – a) grid power profile – b) storage state of charge. 

5.2.2. Impact of Forecast Uncertainties and Storage Parameters 

The previous simulations were carried out with a set of forecasted load and generation profiles that 

displayed a 30 % error from the actual real-time power profiles. Additional tests are here performed while 

generating several sets of forecasts from single real-time profiles for the households’ load and solar generation. 

Those predictions are generated to reach custom error with the real-time values (in terms of normalized RMSE) 

with the formulation of the optimization problem explicated in the Appendix. The error in terms of Energy 

Deviations (ED) is then computed for sets of forecasts. As previously, different real-time solutions can be 

considered: without any adaptation of the scheduled controls (
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rt
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Figure 10: Impact of forecast error – a) uncoordinated Vs coordinated households – b) energy deviation in % (ED) for coordinated 

households with different storage parameters – c) energy deviation in kWh (EDTOT) for coordinated households with different 

storage parameters. 

Results displayed in Figure 10a show that, as can be expected, ED values tend to increase with greater 

forecast errors, almost linearly. Similar to the previous section, the results highlight the need for coordination 

to lower the ED values and remain as close as possible to the predicted profile at the global level. Note that 

with no forecast error, the deviation with the predicted profile is not null. This is due to the different time 

resolution adopted for the two phases with potential high-power oscillations in the real-time profiles. It is 

noticeable that the ED improvement provided by the coordination remains somewhat constant no matter the 

forecast error values (around a 2-3 % improvement compared to a case with no coordination). Indeed, if the 

proposed strategy allows to better satisfy the day-ahead commitment, at the first order, the performances in 

terms of errors (ED) depend on the look-ahead profile itself. Thus, similar tests are performed for different 

storage sizes (2 kWh and 6 kWh wit the rated power fixed at 2 kW) while increasing the state of charge 

bandwidth (Δsoc = 10 % or 30 %). Figure 10b displays the results. Unexpectedly, increasing the storage 

capacity does not reduce the deviations between the predicted profiles and the actual one, once the real-time 

coordination is performed. This is because bigger storage capacities imply a more significant impact on the 

predicted look-ahead profiles (e.g., a smoother power profile at the coordinator level), and more corrective 

actions may be required in real-time to mitigate the forecast errors. Also, to energy deviation metric in % may 

be misleading in such cases as the reference day-ahead grid power profiles displays values closer to 0 (i.e. 

smoother profile). Figure 10c displays the same results according to the absolute energy deviation metric 

(EDTOT) and the 6kWh case study displays lower deviations as could be expected. It is also interesting to note 

that, on average, a 6kWh storage with a soc allowance of 10 % return the same results as a 2kWh battery with 

a soc deviation tolerance of 30 % - in terms of energy deviations in real time and for different forecast quality. 

Additional tests could be performed while disaggregating the storage capacity, as a usable capacity for the 

look-ahead phase (e.g., 50 % of the nominal storage size), and allow more flexibility for the real-time operation 

depending on the expected forecast errors. This is outside the scope of the paper. 

5.2.3. Scalability to 100 Houses 

A last set of simulations is performed while increasing the number of coordinated houses for both 

look-ahead and real-time phases. As previously, tests are run with different assumptions on the forecast errors. 

Results in Figure 11a show that the forecast error has a great impact on the system’s performance. As for the 

look-ahead stage results, increasing the number of coordinated houses reduces the global objective (i.e., 

smoothens the power profile at the PCC level). However, with greater forecast deviations, the scheduled policy 

leads to predicted grid profiles that display too many discrepancies with actual values, and the best objective 

values cannot be reached. As previously, the error between the actual and predicted profile increases with the 
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forecast error (Figure 11B). In addition, it is also noticeable that the error with the committed profiles is 

somewhat constant no matter the number of coordinated houses (except with 80 houses where the added users 

display great solar capacities compared to the installed storage). Ultimately, those results, as the previous ones, 

highlight the need for a tradeoff between the targeted objective in the look-ahead phase, and the confidence 

that it can be fulfilled in real-time. 

 
Figure 11: Increased numbers of coordinated houses with different forecast errors – a) global objective value after real-time 

operations – b) errors with profiles committed in the look-ahead phase. 

6. Conclusions 

This paper successfully implemented a coordination strategy to control storage units ‘behind the 

meter’. The strategy lies in a two-stage approach with look-ahead commitments (daily) followed by an online 

adaptation of the controls to remain as close as possible to the predicted profiles. Performances are assessed in 

terms of aggregated power profiles at the coordinator level with smooth patterns and the error between actual 

profiles and committed values. Scalability tests up to a hundred coordinated households were performed, along 

with the impact study of the forecast errors and end-users’ settings. For the look ahead phase, the obtained 

results show that the coordination allows reaching the system optimality when end-users are willing to 

participate. Also, some improvements at the global scale can still be achieved without degrading the individual 

energy bills. The last simulations showed that the more users, the less they need to decrease their economical 

performances to reach the same system performances. Such tests with a trade-off between individual and global 

objectives can be of use to price/incentivize the response of the user in terms of services provided to the 

community. 

The results of the real-time phase highlighted the need for an online adaptation of the controls to fulfill 

the look ahead commitment as much as possible. Convergence of the real-time phase was ensured in all the 

investigated scenarios with a proposed three-step procedure with household controls based on their capabilities 

updated at each time step. Especially, results showed that errors between predicted and actual profiles are not 

necessarily lowered with increased storage sizes or a greater number of coordinated houses. In such cases, 

more flexibility capacity is available in the look-ahead phase to reach a better value of the global objectives 

while controlling the equipment between their bounds (e.g., the storage state of charge). However, this does 

not ensure the storage to be able to mitigate efficiently forecast errors in cases they already reached their limits. 

Thus, a trade-off shall be found between the use of storage capacities to ‘modulate’ the grid profiles in the 

look-ahead phase, and the need for uncertainties mitigation. One possibility could be to allocate only a limited 

part of a storage capacity to the look-ahead scheduling, while the whole available energy may be used in real-

time. This will be part of future works that shall also investigate the introduction of grid constraints. Especially, 
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in the real-time phase, the computation at the coordinator level shall account for voltage/current limitations 

while generating the controls for each individual end-user within its capabilities. 
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8. Appendix 

This appendix describes the method proposed to generate different sets of forecasts da

tx with 

predefined errors from a given real-time profile rt

tx . Similar to the paper and for the sake of simplicity, the 

distinction between look ahead and the real-time temporal set is not explicated. Here the time index refers to 

the temporal resolution of the prediction. The forecast generation is then formulated as an optimization 

problem. The objective is to optimize the profile predicted on the day ahead with a minimum distance 

compared to the reference real-time profile ((27)). The second term in the objective aims at limiting the 

oscillations of the generated profile with a penalty coefficient λ. Such oscillations may not be realistic for 

forecasts and can occur when predictions are usually generated using random noise – e.g., normal law around 

given profiles [9]. The predictions are generated to reach custom error with the real-time values (in terms of 

normalized RMSE) with a predefined nRMSEc in constraint (28). Another constraint is introduced to further 

limit the oscillations of the generated profiles, while controlling the amount of deviation ‘above’ and ‘below’ 

the reference real-time values with a predefined tolerance ψ coefficient in (29). Specific attention is attached 

to the upper bounds for the generated profile da

tx . While the lower bounds remain null, the predicted values 

shall not exceed too much the reference real-time values (multiplication factor φ in (30)). In the case of the 

solar generation forecast, the predicted profile cannot exceed clean sky values (i.e., with no clouds denoted 

rt

tx in (30)) for the corresponding day and given geographical locations [21]. 
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Figure 12 gives both load and solar generation forecasts as an illustrative example with different 

nRMSE values around given real-time values (at the look-ahead resolution of 30 min here). 
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Figure 12: Illustrative generated forecast based on reference real-time profiles – a) load profile – b) solar generation profiles. 
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