
HAL Id: hal-04218192
https://hal.science/hal-04218192

Submitted on 26 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cache-Aware Allocation of Parallel Jobs on Multi-cores
based on Learned Recency

Shuai Zhao, Xiaotian Dai, Benjamin Lesage, Iain Bate

To cite this version:
Shuai Zhao, Xiaotian Dai, Benjamin Lesage, Iain Bate. Cache-Aware Allocation of Parallel Jobs
on Multi-cores based on Learned Recency. RTNS 2023, Jun 2023, DORTMUND, Germany.
�10.1145/3575757.3593642�. �hal-04218192�

https://hal.science/hal-04218192
https://hal.archives-ouvertes.fr

Cache-Aware Allocation of Parallel Jobs on Multi-cores
based on Learned Recency

Shuai Zhao
Sun Yat-sen University, China
zhaosh56@mail.sysu.edu.cn

Xiaotian Dai
University of York, UK
xiaotian.dai@york.ac.uk

Benjamin Lesage
Onera, France

benjamin.lesage@onera.fr

Iain Bate
University of York, UK
iain.bate@york.ac.uk

ABSTRACT
Scheduling of tasks on multi- and many-cores benefits significantly
from the efficient use of caches. Most previous approaches use the
static analysis of software in the context of the processing hard-
ware to derive fixed allocations of software to the cache. However,
there are many issues with this approach in terms of pessimism,
scalability, analysis complexity, maintenance cost, etc. Furthermore,
with ever more complex functionalities being implemented in the
system, it becomes nearly impracticable to use static analysis for
deriving cache-aware scheduling methods. This paper focuses on a
dynamic approach to maximise the throughput of multi-core sys-
tems by benefiting from the cache based on empirical assessments.
The principal contribution is a novel cache-aware allocation for
parallel jobs that are organised as directed acyclic graphs (DAGs).
Instead of allocating instruction and data blocks to caches, the pro-
posed allocation operates at a higher abstraction level that allocates
jobs to cores, based on the guidance of a predictive model that
approximates the execution time of jobs with caching effects taken
into account. An implementation of the predictive model is con-
structed to demonstrate that the execution time approximations
can be effectively obtained. The experimental results, including a
real-world case study, prove the concept of the proposed cache-
aware allocation approach and demonstrate its effectiveness over
the state-of-the-art.

CCS CONCEPTS
• Computer systems organization → Real-time system archi-
tecture; Processors and memory architectures.

KEYWORDS
Cache-Aware Allocation, Direct Acyclic Graphs, Predictive Execu-
tion Time Model, Multi-core Systems
ACM Reference Format:
Shuai Zhao, Xiaotian Dai, Benjamin Lesage, and Iain Bate. 2023. Cache-
Aware Allocation of Parallel Jobs on Multi-cores based on Learned Recency.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RTNS 2023, June 07–08, 2023, Dortmund, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9983-8/23/06. . . $15.00
https://doi.org/10.1145/3575757.3593642

In The 31st International Conference on Real-Time Networks and Systems
(RTNS 2023), June 07–08, 2023, Dortmund, Germany. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3575757.3593642

1 INTRODUCTION
In multi-core real-time systems, memory and cache are the sig-
nificant barriers toward timing-predictability. Traditionally, cache
replacement policies have been designed to improve cache perfor-
mance and thus reduce task execution time, such as Least Recent
Used (LRU) [1, 5]. This is achieved by utilising the instruction and
data locality, which ensures that the cache has the most relevant
content. However, such low-level information is often not accessi-
ble at the system level, which makes it difficult to improve cache
performance from the perspective of task scheduling and allocation.

During the last few decades, the metric of cache reuse distance
has been proposed [1, 5]. The cache reuse distance describes the
distance (with respect to the number of cache lines) between two
consecutive accesses to the same instruction/data. Since then, pre-
vious work has demonstrated the effectiveness of this metric for
dynamic cache replacement policies, e.g., Vietri et al. [30]. Following
the same philosophy, existing methods apply a simplified timing
model that tries to schedule instances of the same task spatially
closer, w.r.t. core and cluster allocation, to reduce cache misses
and cache miss latency, e.g., [10]. However, this approach relies
on the information of the instructions and data usage of each task,
which is hard to analyse or measure given complex systems. Other
approaches to improve cache performance have included cache
colouring [9] and cache locking [22] techniques. However, these
methods are challenging to apply in real-world systems without
additional support or modifications in the underlying hardware.
Contribution: This paper looks at a different mean to achieve
efficient use of the cache at the job level, which assigns jobs to cores
to optimise the cache performance, and hence, the throughput of
the system. To represent the spatial and temporal relationship of
mapping a job to a core in terms of cache performance, we define
the term cache recency. The spatial relation refers to the allocation
(i.e., cores) of the job and its previous instance. There are direct
benefits in terms of cache when the task is executed on the same
core on which it was last executed, and indirect benefits where
the task is executed on a different core but can gain advantages
through a shared resource (e.g., the L2 cache). The temporal relation
refers to the time elapsed since that job was last executed. A longer
elapsed time often leads to higher cache misses due to the cache
usage of other tasks.

177

https://doi.org/10.1145/3575757.3593642
https://doi.org/10.1145/3575757.3593642
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575757.3593642&domain=pdf&date_stamp=2023-06-07

RTNS 2023, June 07–08, 2023, Dortmund, Germany S. Zhao, X. Dai, B, Lessage, I. Bate

The principal contribution of the paper is a novel cache-aware
Allocation of parallel Jobs based on Learned cache Recency (AJLR).
The AJLR focuses on systems where jobs are organised as directed
acyclic graphs (DAG) to reflect potential execution dependency,
which can be found in many real-world systems [26, 29]. In contrast
to existingmethods that rely on static analysis or hardware facilities,
the AJLR utilises a predictive model that approximates speedup on
the execution time of jobs based on their cache recency distances,
namely the Cache Recency Profile (CRP). With the CRP, the AJLR
operates at the scheduling level with the fundamental principle
of always allocating a job to the core with the maximum cache
speedup. An implementation of the CRP is constructed to illustrate
how the speedup approximations required by the AJLR can be
effectively obtained in real-world systems.

To the best of the authors’ knowledge, this is the first cache-
aware allocation method for multi-DAGs systems that is decoupled
from (i) the knowledge of instruction and data usage of the soft-
ware and (ii) detailed settings as well as additional facilities of
the underlying hardware. Extensive experimental results, includ-
ing a real-world case study, validate the concept of the proposed
cache-aware allocation approach and demonstrate the AJLR can
outperform the existing methods even with errors existing in the
CRP models.
Paper Organisation: The related work is described in Section 2.
Then, based on the system model presented in Section 3, we con-
struct the AJLR in Section 4, with an implementation of the CRP
described in Section 5. Finally, we present the evaluation in Sec-
tion 6 and conclude the paper in Section 7.

2 RELATEDWORK
Scheduling DAGs on multi-core systems has been discussed in [19]
and [34]. These works aim to reduce DAG makespan by proposing
various priority assignments for DAGs with a schedulability test
to bound the worst-case makespan, i.e., the time period from the
release to the finish of a DAG. In addition, there exist extensive work
on the allocation of DAG tasks on multi-core systems, including the
fully partitioned [8, 15]; semi-partitioned [2, 25]; federated [3, 12];
and semi-federated [20, 27, 31] scheme.

While the abovework does not consider cache in their scheduling
and allocation decisions, there exists a large body of works that
explicitly study the impact of cache in making scheduling decisions,
e.g., [6, 7, 10, 17, 18, 21, 32]. In Chang et al. [10], the scheduling of
tasks with consideration of cache performance is discussed in the
application domain of the automotive industry. In this work, the
scheduler fits job instances as continuous sequences so that cache
reuse can be maximised. Then a non-uniform sampling controller
based on this coarse-grained model is applied to improve system
performance. The similar idea was applied to control systems in a
later work [11].

In Guan et al. [18], a cache-aware non-preemptive schedule
for multi-core systems is proposed. The schedule improves cache
performance by partitioning the shared cache (e.g., the L2 cache)
to avoid inter-core interference, and hence, improves predictability
and performance.

In Calandrino et al. [6], a scheduling policy is presented that
encourages or discourages the co-scheduling of tasks based on their

Main Memory

L2 Cache

L3 Cache

System Bus

L1
Cache

CPU 1

L1
Cache

CPU 2

Cluster 1

L2 Cache

L1
Cache

CPU 1

L1
Cache

CPU 2

Cluster 2

Core Core Core Core

Figure 1: An example multi-core architecture with a three-
layered cache hierarchy.

cache-related behaviours and releasing periods, to improve cache
performance as well as scheduling results. Later in Calandrino et
al. [7], a task profiling method is proposed to capture the cache-
related characteristics of a task, and the efficiency of a scheduler
implementation with the profiler applied is investigated.

A similar idea to CRP by building predictive models based on off-
line profiling was explored by [17], where the mapping between the
rate of progress against the given resources (memory bandwidth
and cache capacity) are profiled and used for dynamic reassignment
of resources at runtime. The authors in [16] used a profiler to
investigate the relative importance of each memory page to the
contribution of the overall timing of a target application.

Most existing cache-aware scheduling methods rely on static
analysis of each task in the system and the support from the underly-
ing platform (e.g., cache colouring [32] and cache partitioning [17]).
In addition, existing cache-aware methods do not consider the DAG
task model, i.e., all tasks are considered to be independent of one an-
other. Such limitations impose significant barriers to these methods
being applied to existing systems.

In this paper, we focus on the online allocation for DAG tasks on
multi-core systems that uses a system-level execution time model
to improve cache performance, and hence to reduce the execution
time of DAG tasks. Instead of relying on static analysis of the
system or modifications to the hardware, the proposed method
aims to improve cache performance at the system level in an easy-
to-practice and low-cost manner.

3 SYSTEM MODEL
Hardware Architecture. This work focuses on the hardware ar-
chitecture that contains𝑚 homogeneous cores Λ = {_1, _2, ..., _𝑚}
and a [-layered inclusive cache L = {𝐿1, 𝐿2, ..., 𝐿[}, i.e., contents in
the 𝐿1 cache is also available in the 𝐿2 and 𝐿3 cache. Various cache
hierarchies exist in commercial off-the-shelf (COTS) architectures,
e.g., the three-layered cache in Intel i5-1145 Processor and the two-
layered cache in ARM Cortex A72. Figure 1 presents an example
multi-core system with a three-layered cache, where the level 1
(𝐿1) cache is dedicated to each core, the level 2 (𝐿2) cache is shared
among cores in a cluster, and the level 3 (𝐿3) cache is shared among
all cores in the system. For all levels of cache, a cache replacement
policy is applied to specify the cache blocks to be evicted when

178

Cache-Aware Allocation of Parallel Jobs on Multi-cores based on Learned Recency RTNS 2023, June 07–08, 2023, Dortmund, Germany

v1 v4 v8

v5 v7

v3

v2

v6

Figure 2: An example DAG task with eight nodes.

loading new instructions or data, e.g., the LRU [1, 5]. This work
does not assume any specific cache settings, e.g., the size or asso-
ciativity of the cache. That is, the proposed allocation method is
decoupled from the underlying hardware and is generally applica-
ble to commercial off-the-shelf architectures. In Section 5.2, COTS
hardware is used as a case study to demonstrate the feasibility of
the proposed approach.

Task Model. Tasks in the system are organised as 𝑛 periodic
DAG tasks based on their execution dependencies [19, 29, 33, 34],
denoted as Γ = {𝜏1, 𝜏2, ...𝜏𝑛}. A DAG consists of a set of nodes
and edges, as demonstrated by the example in Figure 2 with eight
nodes. Each node represents a series of computations that must be
executed in a sequential manner, e.g., a function routine [4]. An
edge connecting two nodes indicates their execution dependency,
e.g., node 𝑣5 can start only if node 𝑣1 has finished its execution.

A DAG 𝜏𝑖 is defined by 𝜏𝑖 = {G𝑖 = (𝑉𝑖 , 𝐸𝑖),𝑇𝑖 , 𝑃𝑖 ,𝑊𝑖 }, in which
(i) G𝑖 = (𝑉𝑖 , 𝐸𝑖) defines the internal structure of 𝜏𝑖 with 𝑉𝑖 and 𝐸𝑖
denote the set of nodes and edges, respectively; (ii) 𝑇𝑖 denotes the
period of 𝜏𝑖 ; (iii) 𝑃𝑖 denotes the priority of 𝜏𝑖 ; and (iv)𝑊𝑖 gives the
total workload of 𝜏𝑖 . Each node 𝑣𝑖, 𝑗 ∈ 𝑉𝑖 has a worst-case execution
time (WCET), denoted as 𝐶𝑖, 𝑗 . The total workload𝑊𝑖 is computed
as the sum ofWCETs of all nodes in the DAG, i.e.,𝑊𝑖 =

∑
𝑣𝑖,𝑗 ∈𝑉𝑖 𝐶𝑖, 𝑗 .

As with [19, 33, 34], we assume each DAG has one source and one
sink node. The makespan of 𝜏𝑖 (denoted as 𝑅𝑖) is the worst-case
response time of the DAG task under a given schedule, which is
measured by the time interval from the start of the source node
to the finish of the sink node. The priorities of the DAGs (i.e., 𝑃𝑖)
are assigned according to the Rate Monotonic Priority Ordering
(RMPO) algorithm [24]. At runtime, a DAG is released periodically
and all nodes of the DAG will be executed once in each release.
In this work, a job indicates a node instance in one release of a
DAG, denoted by 𝑣𝑖, 𝑗,a for the instance of node 𝑣𝑖, 𝑗 in the a th of
DAG 𝜏𝑖 . Each job has an allocation 𝛼𝑖, 𝑗,a assigned by the AJLR. For
simplicity, we omit the indexes 𝑖 and a in a 𝑣𝑖, 𝑗,a and 𝛼𝑖, 𝑗,a (i.e., 𝑣 𝑗
and 𝛼 𝑗) when they are not relevant in the allocation process.

Scheduling Model. With DAG tasks considered, a hierarchi-
cal scheduling scheme is applied on both the DAG level and the
node level. At the DAG level, a global Fixed-Priority Scheduling
(gFPS) scheme is applied, which always schedules the nodes of the
ready DAG with the highest priority first. A node becomes ready
to execute when all nodes it depends on have finished executions.
At the node level, a non-preemptive work-conserving scheme is
assumed, which always dispatches a node (if any) when a core
becomes available. That is, preemption is only allowed between the
execution of two nodes.

Given this system model, the proposed AJLR specifies the dis-
patch order and allocation of jobs based on the guidance of the
predictive model. In the following sections, we present the AJLR
and the implementation of the CRP in detail.

4 CACHE-AWARE ALLOCATION USING
EXECUTION TIME APPROXIMATIONS

This section presents the proposed cache-aware allocation method,
i.e., the AJLR. The AJLR utilises the CRP to approximate the speedup
of the execution time of jobs with caching effects taken into ac-
count. Using the approximation as guidance, the method produces
allocation decisions based on the principle of always allocating
a job to the core with the maximum execution time speedup, to
reduce the DAG makespan by benefiting from the cache. Below
we first describe the preliminaries (Section 4.1) and the working
mechanism (Section 4.2) of the AJLR, assuming that the speedup
approximations are provided. Then, an implementation of the CRP
is presented in Section 5 to demonstrate the required execution
time speedup can be effectively estimated on a real-world system.

4.1 Preliminaries and Assumptions
As described above, the AJLR produces allocation decisions based
on the CRP to reduce the DAG makespan by benefiting from the
cache. To guide the AJLR, the CRP is required to approximate the
speedup on the execution time of a job if it is allocated to a core with
caching effects considered. The speedup is represented as the abso-
lute reduction of the WCET of a job, denoted as S(𝑣 𝑗 , _𝑘 ,H,𝐶𝑅𝑃),
in which 𝑣 𝑗 is the job (i.e., 𝑣𝑖, 𝑗,a with 𝑖 and a omitted) to be dis-
patched, _𝑘 is the candidate allocation (i.e., core) of a job,H denotes
the history table of dispatched jobs, and 𝐶𝑅𝑃 gives the predictive
model. We assume a higher value of S(·) indicates a lower actual
execution time for 𝑣 𝑗 if executed on _𝑘 , i.e., 𝐶 𝑗 − S(𝑣 𝑗 , _𝑘 ,H,𝐶𝑅𝑃).

The construction of AJLR requires the following assumptions: (i)
the system maintains a history table H that contains the designated
cores of the allocated jobs and (ii) the CRP is provided for approxi-
mating the speedup on the execution time of jobs. In Section 4.2,
we first demonstrate that H can be effectively maintained without
a high run-time cost along with the presentation of AJLR. Then
in Section 5, we present the implementation of the CRP and the
computation of S(·) in detail.

4.2 Working Mechanism of AJLR
The AJLR is an online job-level allocation method that dispatches
ready jobs(s) to the idle core(s) at a scheduling point, e.g., when a
job arrives or finishes execution. At a scheduling point, the AJLR
uses the approximated CRP to decide the dispatch order and the
allocation target of the ready jobs so that their execution time can
be reduced, and hence, the DAG makespan.

Dispatching Order. Following the basic gFPS scheme in Sec-
tion 3, jobs in the ready queue (i.e., node instances) are first ordered
by the priority of their DAGs, in which a job with a higher DAG
priority will be dispatched first. For two jobs that have the same
DAG priority, the one with a higher WCET will be dispatched first.
Assuming 𝛿 idle cores are available at a scheduling point, at most 𝛿
ready jobs will be dispatched to execute, one on each idle core. The
underlying intuition is, by dispatching the job with a higher WCET

179

RTNS 2023, June 07–08, 2023, Dortmund, Germany S. Zhao, X. Dai, B, Lessage, I. Bate

Allocation
History Log

Speed up table (SUT)

AJLR

Ready Queue

Figure 3: Overview of the AJLR-scheduled system.

first, it has a higher number of idle cores as the candidate allocation
targets, and hence, would obtain a higher speedup that can facilitate
reducing the DAG makespan in the general case. In addition, we
note that although the AJLR is not explicitly designed for hard real-
time systems, offline scheduling orders can be supported in AJLR
if DAGs have a hard deadline, in which the worst-case response
time of DAGs can be obtained using the worst-case response time
analysis in [19, 34].

Allocation Mechanism. Following the job order, the AJLR
dispatches the first 𝛿 ready jobs to the available cores using two
allocation rules: (1) the maximum speedup first (MSF); and (2) the
least cache impact first (LCIF). For a job 𝑣 𝑗 , the MSF aims to reduce
its execution time by allocating it to the core (say _𝑘) with the
highest speedup, i.e., S(𝑣 𝑗 , _𝑘 ,H,𝐶𝑅𝑃). If 𝑣 𝑗 has the same speedup
on multiple cores (e.g., hits a cache that are shared among cores),
the LCIF is then triggered to find an allocation with the least impact
on other jobs in the system, in terms of the execution time speedup.

Maximum Speedup First. The MSF first introduces a speedup
table (SUT) that contains the speedup approximations of the first
𝛿 jobs on every idle core. An illustrative example of the SUT is
shown in Figure 3. In this example, three jobs will be dispatched
on three idle cores at the current scheduling point, which leads
to a SUT with a size of (3 × 3) that contains the speedup of each
job on every idle core, i.e., S(𝑣 𝑗 , _𝑘) in the example SUT with H
and 𝐶𝑅𝑃 omitted. Based on the SUT, the AJLR always allocate the
job 𝑣 𝑗 to an available _𝑘 with the highest S(·). This in general
provides a high reduction for the execution time of the jobs. Using
Figure 3 as an example, assuming that S(𝑣2, _2) is the highest and
S(𝑣3, _4) > S(𝑣4, _3). The AJLR will dispatch 𝑣2 to _2, and then
allocate 𝑣3 and 𝑣4 to _4 and _3, respectively, based on the S(·)
approximations.

Least Cache Impact First. During allocation, a job may have the
same speedup on multiple cores, e.g., when it hits a shared cache or
misses all levels of cache completely. Thus, the allocation decision
will not benefit the currently-examined job in terms of reducing the
execution time. In this case, the objective is to reduce the potential
impact on the cache benefits of other jobs caused by the current one.
The underlying rationale is, when a job is allocated to a core, it could

Algorithm 1: The online AJLR method
Input: 𝑄𝑟𝑒𝑎𝑑𝑦 , Λ∗, H,𝐶𝑅𝑃

1 𝑄𝑠𝑐ℎ𝑒𝑑 = 𝑠𝑜𝑟𝑡 (𝑄𝑟𝑒𝑎𝑑𝑦).𝑓 𝑖𝑟𝑠𝑡 (| |Λ∗ | |);
2 S = 𝑖𝑛𝑖𝑡_𝑆𝑈𝑇 ();
3 for 𝑣 𝑗 ∈ 𝑄𝑠𝑐ℎ𝑒𝑑 do
4 for _𝑘 ∈ Λ∗ do
5 S(𝑣 𝑗 , _𝑘) = S(𝑣 𝑗 , _𝑘 ,H,𝐶𝑅𝑃);
6 end
7 end
8 while 𝑄𝑠𝑐ℎ𝑒𝑑 ≠ ∅ do
9 (𝑣 𝑗 ,Λ¬) = argmax

𝑗, _𝑘 ∈Λ∗

{
S(𝑣 𝑗 , _𝑘) | ∀𝑣 𝑗 ∈ 𝑄𝑠𝑐ℎ𝑒𝑑

}
;

10 if |Λ¬ | == 1 then
11 _𝑘 = Λ¬ (1);
12 else
13 _𝑘 = argmin

𝑘

{
𝐼𝑚𝑝 (𝑣 𝑗 , _𝑘) | 𝑘 ∈ Λ¬

}
;

14 end
15 𝛼 𝑗 = _𝑘 ;
16 𝑄𝑠𝑐ℎ𝑒𝑑 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑣 𝑗);
17 S.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑣 𝑗 , _𝑘);
18 H.𝑎𝑑𝑑 (𝑣 𝑗 , _𝑘);
19 end

affect the speedup of the upcoming jobs where their previous jobs
are also allocated to the same core. This generally holds as with the
MSF, the AJLR tends to allocate jobs of the same node to the same
core or cluster to increase the speedup. With this understanding,
the LCIF is constructed as follows.

For a job that has the same speedup on multiple candidate cores,
the LCIF iterates each of such cores (say _𝑘), computes the impact
of the allocated jobs on _𝑘 caused by 𝑣 𝑗 , and finally chooses the
core with the minimal impact as the allocation of 𝑣 𝑗 . Equation 1
computes the impact of 𝑣 𝑗 on jobs that are allocated to _𝑘 , denoted
as 𝐼𝑚𝑝 (𝑣 𝑗 , _𝑘). Notations H′ and H indicate the allocation history
table with and without job 𝑣 𝑗 being added on core _𝑘 , respectively;
and H(_𝑘) returns the jobs that are executed on core _𝑘 .

𝐼𝑚𝑝 (𝑣𝑗 , _𝑘) =
∑︁

∀𝑣𝑥 ∈H(_𝑘)

(
S(𝑣𝑥 , _𝑘 ,H,𝐶𝑅𝑃) − S(𝑣𝑥 , _𝑘 ,H′,𝐶𝑅𝑃)

)
(1)

We note that job 𝑣𝑥 is taken from H(_𝑘) by the Last In First Out
order. In addition, the computation can finish ifS(𝑣𝑥 , _𝑘 ,H,𝐶𝑅𝑃) =
0. In this case, the following jobs in H(_𝑘) will not benefit from the
cache regardless of whether 𝑣 𝑗 is allocated on _𝑘 .

Working Mechanism. The complete algorithm of the AJLR
method is given in Algorithm 1. The algorithm takes jobs in the
ready queue (𝑄𝑟𝑒𝑎𝑑𝑦), a set of idle cores (Λ∗), the allocation history
table (H), and the CRP as the input. The algorithm allocates jobs in
𝑄𝑟𝑒𝑎𝑑𝑦 on Λ∗ using allocation rules MSF and LCIF. At a scheduling
point, the AJLR first identify jobs to be dispatched (denoted as
𝑄𝑠𝑐ℎ𝑒𝑑) based on the dispatching order and the number of idle
cores, i.e., | |Λ∗ | | in line 1. Then, the SUT is constructed in lines 2-7
by computing S(·) for each 𝑣 𝑗 ∈ 𝑄𝑠𝑐ℎ𝑒𝑑 on every _𝑘 ∈ Λ∗. Then,
the MSF is applied in line 9 that returns an allocation decision (i.e., a

180

Cache-Aware Allocation of Parallel Jobs on Multi-cores based on Learned Recency RTNS 2023, June 07–08, 2023, Dortmund, Germany

job 𝑣 𝑗 and its candidate allocation set Λ¬) that has the highest S(·).
If more than one jobs have the same S(·), the job will be selected
based on the dispatching order. However, if 𝑣 𝑗 has the same S(·)
on multiple cores (i.e., | |Λ¬ | | > 1), the LCIF is applied to identify
the _𝑘 with the least 𝐼𝑚𝑝 (𝑣 𝑗 , _𝑘) (lines 12-14). With both rules, the
allocation of 𝑣 𝑗 is decided in line 15. Then, the S, H and 𝑄𝑠𝑐ℎ𝑒𝑑

are updated accordingly for the next iteration (lines 16-18). The
algorithm returns when all jobs in 𝑄𝑠𝑐ℎ𝑒𝑑 are assigned with an
allocation.

The time complexity of the AJLR is cubic. When the AJLR is
invoked with𝑚 cores being idle, at most𝑚 jobs will be dispatched
so that the SUT is constructed with at most𝑚2 access to the CRP.
As for the LCIF, the algorithm will identify the _𝑘 with the least
𝐼𝑚𝑝 (𝑣 𝑗 , 𝑣𝑘) by at most𝑚 ∗ (𝑚 ∗ 𝑛) computations, where 𝑛 denotes
the largest number of allocated jobs being examined on a core. For
a given node, the 𝐼𝑚𝑝 (·) will be invoked at most𝑚 (number of idle
cores) times, and each time at most 𝑛 nodes will be examined to
compute the impact, i.e., (𝑚 ∗ 𝑛). Such computations will repeat at
most𝑚 times to assign one node to each idle core. Therefore, the
time complexity of the AJLR is O(𝑚2 +𝑚× (𝑚×𝑛)). In addition, we
note that 𝑛 can be effectively limited as only jobs that can benefit
from cache (based on the CRP) will be considered. Therefore, the
run-time efficiency of AJLR can be obtained by: (i) utilising a pre-
defined predictivemodel rather than performing complicated online
computations; and (ii) limiting the number of jobs to be examined
(and the associated computations) at each scheduling point.

5 IMPLEMENTION OF PREDICTIVE
EXECUTION TIME MODEL

In this section, an execution time model based on the cache recency
distance is proposed, namely the Cache Recency Profile (CRP). The
CRP produces execution time approximations of a job based on
the recency (i.e. both spatial and temporal) distance between the
current and the last executed job of the same task. The CRP is a
time-driven learnt model where the correlation between the recency
and the execution time is derived based on data profiled from the
execution platform. We note that the scheduling and allocation
algorithm does not rely on the CRP being exactly accurate. Later in
Section 6.5 it is shown that the approach does work better when the
CRP is more accurate, however even with considerable inaccuracies
the AJLR can still outperform the state-of-the-art method.

5.1 Cache Recency Profile
Assuming that the predictive execution time model is constructed
using the static analysis, we need to understand every detail of a
system, including the processor model, hardware model, memory
model and interference model. In addition, some of the hardware
architecture is often inaccurately described and sometimes details
are not disclosed. In multi-core computing, a number of sources
could interfere with the task of interest and consequently affect the
execution time. Consequently, the complexity associated with this
approach is extremely high, and the propagation error from con-
structing a high-level model using a compositional approach with
low-level components could make it pessimistic or even unusable.
Recency Distance: As an alternative approach, in this work we
introduce the recency distance (𝑟) of an executable entity (using

0 16 128 512
0

20

40

60

80

100

A
p
p
ro

x
.
E

T
 o

v
e
r

W
C

E
T

 (
%

)

Recency for core (L1)

Recency for cluster (L2)

Recency for system (L3)

Figure 4: An illustrative cache recency profile.

node 𝑣 𝑗 as an example) which is defined as follows:

𝑟 (𝑣 𝑗 , 𝐿𝑥) = ΔNoUC(𝑣 𝑗,a , 𝑣 𝑗,a−1, 𝐿𝑥) (2)

where 𝐿𝑥 indicates the Level-𝑥 cache, 𝑣 𝑗,a is the a th job of node 𝑣 𝑗 ,
and ΔNoUC(·) represents the number of unique cache lines accessed
by jobs of other tasks between the two jobs of 𝑣 𝑗 . Note there exist
dependency between 𝐿𝑥 , 𝐿𝑥+1 and 𝐿𝑥+2, for inclusive cache. This
is because for an inclusive cache, if there is a 𝐿𝑥 cache hit, then the
higher-level cache will also hit, but not vice versa. That is, a hit of
the 𝐿1 cache implies a hit of the 𝐿2 and the 𝐿3 caches. In contrast,
an 𝐿2 cache hit does not guarantee there is also an 𝐿1 cache hit.
Due to the nature of a data-driven approach, the CRP model is able
to capture these effects.
Recency Approximation with time: Given the number of new
instructions is often a linearly increasing function of time [28], the
recency distance can be approximated by Equation 3. This equation
approximates the recency distance as the sum of the execution time
of jobs from other tasks executed between 𝑡 (𝑣 𝑗,a) and 𝑡 (𝑣 𝑗,a−1),
denoted by the function g(·).

𝑟 (𝑣 𝑗 , 𝐿𝑥) = g
(
𝑡 (𝑣 𝑗,a) − 𝑡 (𝑣 𝑗,a−1), 𝐿𝑥

)
(3)

We note that there are cases where the number of cache accesses
is not strictly correlated to time, e.g., when the task is formed of
a for loop or has a complicated if-then-goto structure. However,
as later shown in Section 6.5, this does not fundamentally break
the benefits of the proposed method as long as the relationship
described in Equation 3 generally holds.

To make the cache recency useful for system-level scheduling
and allocation algorithms, instead of an accurate but slow method,
we construct a CRP to fulfil this purpose. A CRP describes speedup
over the WCET against the recency distance. Such a profile exists
for each schedulable entity and is learned through the measure-
ment of the actual execution time against different recency distance
values. In addition, as it is based on the measurement of actual exe-
cution times, the CRP has a combinational effect on all cache levels,
pre-fetching, and bus contention for the specific target of interest.
This highlights the key difference between CRP and traditional
compositional modelling, which is often impractical to model each
of the considered effects explicitly.

The expected properties of the CRP include the following. Again,
we note this is a model used for allocation and it is not essential
that these properties always hold:

• Property 1: The execution time approximation produced by
the CRP increases monotonically with recency distance;

181

RTNS 2023, June 07–08, 2023, Dortmund, Germany S. Zhao, X. Dai, B, Lessage, I. Bate

• Property 2: The CRP can be modelled with a piece-wise linear
function with 𝑛 continuous lines.

Figure 4 illustrates a synthesised recency profile, in which the
execution time (ET) of a job is approximated as a speedup (in per-
centage) over its WCET based on a given recency distance. In the
profile, the relation between recency distance and the speedup
is represented by three different trends (recency for core, cluster
and system, respectively), indicating the impact on execution time
caused by the gradually increased cache miss from 𝐿1 to 𝐿3 cache,
with the increase of recency distance. For example, the first line
in Figure 4 (recency for core) indicates the process where the job
gradually misses the 𝐿1 cache with an increased recency distance.
For recency distances greater than 10, the job will completely miss
the 𝐿1 cache, which leads to a higher execution time.

With the CRP constructed, the speedup approximation (i.e., S(·)
described in Section 4.1) can be computed. For job 𝑣 𝑗,a and a can-
didate core _𝑘 , S(𝑣 𝑗,a , _𝑘 ,H,𝐶𝑅𝑃) is computed by examining the
recency distance of 𝑣 𝑗,a at each cache level 𝐿𝑥 ∈ L, as each cache
level is shared among a different number of cores (and the associ-
ated jobs). Starting from the 𝐿1 cache, we determine whether job
𝑣 𝑗,a can have a cache hit based on the following two conditions:

• a previous instance (denoted as 𝑣 𝑗,a−1) is found on _𝑘 , i.e.,
𝑣 𝑗,a−1 ∈ H(_𝑘), and

• the recency distance 𝑟 (𝑣 𝑗,a , 𝐿1) is less than the threshold of
the recency for core, e.g. 16 in Figure 4.

If 𝑣 𝑗 can hit the 𝐿1 cache, a speedup over the WCET of 𝑣 𝑗 can be
obtained based on the 𝑟 (𝑣 𝑗 , 𝐿1) and the CRP (more specifically, the
curve of the recency for core in Figure 4), denoted as𝐶𝑅𝑃 (𝑟 (𝑣 𝑗 , 𝐿1)).
Accordingly, the absolute execution time reduction of 𝑣 𝑗 on 𝑃𝑘 can
be obtained, as shown in Equation 4.

S(𝑣 𝑗 , _𝑘 ,H,𝐶𝑅𝑃) =
(
1 −𝐶𝑅𝑃

(
𝑟 (𝑣 𝑗 , 𝐿1)

))
×𝐶 𝑗 (4)

If the above conditions are not met, 𝑣 𝑗 misses the 𝐿1 cache so that
the recency distance of 𝑣 𝑗 on the 𝐿2 and then 𝐿3 cache is computed
and examined based on the CRP using the same approach. We note
that for the cache level that is shared among cores, the allocation
history of all these cores will be included when computing the
recency distance of 𝑣 𝑗 to take the competition for cache from other
cores into account.

5.2 Real-world Example
We now use a real-world example to (i) demonstrate the construc-
tion of a CRP for a given task, and (ii) validate the fundamental
hypothesis of the CRP model, i.e. tasks do benefit from the content
remained in cache following the prior instance, resulting in execu-
tion speed-ups. More importantly, through this case study, we show
that the CRP exists for tasks in real systems. Later in Section 6.2
a proof of concept is provided to show the CRP can lead to better
scheduling results using the same case study.

The targeted tasks are taken from the TacleBench real-time bench-
marks suite [14], which covers a wide variety of computational and
cache-related behaviours of tasks in the real world. The considered
platform is a general-purpose quad-core Intel Core i5-6500 with a
standard Linux Operating System. The processor is equipped with
a 3-level cache hierarchy, where the 𝐿1 (64KB) and the 𝐿2 (256KB)
cache are dedicated to each core, and the 𝐿3 (6144KB) cache is

Table 1: Profile of the TacleBench tasks.

Task 𝑁𝑜𝑈𝐶 Task 𝑁𝑜𝑈𝐶

ndes 194 h264_dec 648
adpcm_dec 151 adpcm_enc 148

Figure 5: Observed execution time (in blue) and the modelled
CRP (in yellow) of ndes. This model aggregates three CRPs.

shared among all four cores. The size of the cache line is 64 bytes.
The CPU frequency is fixed to 800MHz.

In total, the CRPs of four tasks from the TacleBench are modelled.
Table 1 presents the modelled tasks with their number of unique
cache line accesses (𝑁𝑜𝑈𝐶) in one release. The 𝑁𝑜𝑈𝐶 is measured
in the Valgrind profiling tool, by setting the cache size to a large
value and accounting for the number of cache misses with a cold
cache. That is, each cache miss under this cache setting means an
access to a unique cache line, during one release of a task. As de-
scribed in Equation 2, 𝑁𝑜𝑈𝐶 indicates the contribution of a task to
the recency distance between two consecutive jobs of the modelled
task 𝜏𝑖 . For a job 𝐽𝑖,𝑘 released by 𝜏𝑖 , its recency distance is the sum
of 𝑁𝑜𝑈𝐶 of all jobs from other tasks executed between 𝐽𝑖,𝑘−1 and
𝐽𝑖,𝑘 . Note, the constructed allocation does not rely on the 𝑁𝑜𝑈𝐶 of
each node being precisely accurate. An example of the profiled data
(of ndes in TacleBench), and the learned model based on it is given in
Figure 5. The profiled data is collected as a percentage of the WCET.
For example, 50% means the execution time on measurement is
50% of the WCET. The recency distance (x-axis) is calculated based
on Equation 2. Finally, a segmented linear function (the yellow
lines) is fitted to the data with error minimised using piecewise
linear regression. In section 6.5 we evaluate the effectiveness of the
proposed method when considering different amounts of error in
the CRP model, and show that the method remains effective when
errors exist.

6 EXPERIMENTAL RESULTS
In this section, we evaluate the constructed AJLR against the state-
of-the-art in scheduling DAG tasks. The experimental setup is de-
scribed and justified in Section 6.1. Experimental results are pre-
sented to address the following objectives:

i. to provide proof-of-concept evidence that AJLR is effective
on a real system (Section 6.2);

ii. to demonstrate AJLR reduces a single DAG makespan by
improving cache performance (Section 6.3);

182

Cache-Aware Allocation of Parallel Jobs on Multi-cores based on Learned Recency RTNS 2023, June 07–08, 2023, Dortmund, Germany

iii. to demonstrate the AJLR effectively reduces the makespan
of concurrent DAGs in the general case (Section 6.4); and

iv. to show that the AJLR remains effective when deviations
exist in a recency profile (Section 6.5).

Objective (i) validates that the AJLR is beneficial in a real-world
system. Then, objectives (ii) to (vi) provide a comprehensive eval-
uation of AJLR under a wide range of system configurations in a
simulation environment with a synthesised CRP, in which recency
is approximated by execution time of nodes, i.e., Equation 3.

6.1 Experimental Setup
We first describe the experimental setup of the simulation envi-
ronment, including the cache structure, the CRP profile used for
simulation, the generation of DAG tasks, and the competingmethod.
As the CRP abstracts the detailed cache settings (e.g., cache line
size and the number of associative ways), such information is not
provided without jeopardising the reproducibility of the results.

Cache and recency profile setup. Unless stated otherwise, the
system has𝑀 = 8 symmetric cores organised into two clusters of
four cores and a 3-level cache hierarchy. Each core has a dedicated
L1 cache, each four-cores cluster shares an L2 cache, and all cores
share the L3 cache. In addition, a global CRP shown in Figure 4
is used for evaluation, rather than different ones for each node.
This reduces the number of factors changed in experiments so the
results are more straightforward to interpret and analyse.

DAG and system setup. Each DAG under evaluation is ran-
domly generated as follows. Starting from a source node, nodes
are generated layer by layer, with the number of layers randomly
decided in the range of [5, 8]. In each layer, the number of generated
nodes is uniformly distributed in the range of [2, 10]. Each node in
the newly-generated layer has a probability of 50% to be connected
by randomly-chosen nodes in the previous layer. After all nodes are
generated, the ones that are not connected will be linked directly
to the source and/or the sink node to ensure that each DAG has
one source node and one sink node. Finally, the WCETs of nodes
are generated using a uniform random distribution within a range
based on the total workload. We assume in general the 𝑁𝑜𝑈𝐶 of
a node is proportional to its WCET, where a larger 𝑁𝑜𝑈𝐶 often
leads to a higher WCET. This setting does not include corner cases
such as a for loop that has a high WCET but a low 𝑁𝑜𝑈𝐶 . However,
the constructed method does not require an exactly accurate CRP
and is still effective when errors exist in the CRP (see Section 6.5).
Nodes will execute up to their WCET if no speedup is obtained
based on the recency profile.

The number of DAGs in the system is controlled by parameter
𝑁 ∈ [1, 4]. The utilisation𝑈𝑖 of DAGs is generated by the UUnifast-
Discard algorithm [13] based on a total utilisation 𝑈 . DAG periods
𝑇𝑖 are randomly generated in a uniform distribution from values
that can lead to a hyperperiod of 144 units of time. The workload
of a DAG is computed by𝑊𝑖 = 𝑇𝑖 ×𝑈𝑖 . For multi-DAG systems (i.e.,
when 𝑁 > 1), the Rate Monotonic Priority Ordering is applied to
assign each DAG a priority. Nodes are ordered as well as allocated
by the evaluated methods. A work-conserving non-preemptive
scheme is applied for scheduling nodes.

Competing method. For DAG tasks, the proposed AJLR is eval-
uated against the Worst-Fit allocation with the scheduling method

AJLR WFD
3.8

4

4.2

4.4

4.6

M
ak

es
pa

n

104

WF+EO

(a) Benefits from the real system

AJLR WFD

4

4.5

5

5.5

6

6.5

7

M
ak

es
pa

n

104

WF+EO

(b) Benefits from the simulation

Figure 6: The makespan (in microseconds) of AJLR and
WF+EO on (a) the real system and (b) the simulator.

in [34] (denoted as WF+EO hereinafter), which provides the state-
of-the-art in scheduling and allocation of DAGs. At a scheduling
point, the WF-EO takes the first node in the ready queue (ordered
by the scheduling method) and allocates it to the idle core with the
least utilisation. This process repeats until each idle core is assigned
with a ready node (if there exists any). Compared to other heuris-
tics (e.g. Best-Fit and First-Fit), the WF can achieve a shorter DAG
makespan in more cases and AJLR outperforms all these heuristics.

Each data point plotted represents the results of 1000 trials unless
stated otherwise. In each trial, all DAGs will keep executing until
at least ten instances of every DAG are completed.

6.2 Proof of Concept
The first experiment aims to validate the performance of AJLR on a
real-world system as the proof of concept of the proposed allocation
approach. The experiment is conducted based on the case study
described in Section 5.2, i.e. a 4-core Intel i5 with a 3-Level cache
hierarchy. Cores 1 to 3 are used to allocate and execute tasks while
core 0 is preserved for system activities. The five tasks shown in
Table 1 are used for the evaluation. Each task has a unique CRP
model, which is constructed based on the method in Section 5.2.
Each task is assigned with a utilisation of 10%. The makespan (i.e.
the total time spent for executing all tasks in the system, excluding
scheduler overheads and idle periods) is reported.

Figure 6(a) presents the makespan collected from the testbed
under both AJLR and WFD. As shown by the results, the AJLR
demonstrates better performance thanWFD in terms of achieving a
lower makespan. However, the performance of AJLR on the testbed
is limited as only three cores are available, i.e., a limited number of
candidate allocations for each job. In the following section, a more
pronounced performance of AJLR can be observed with a higher
number of cores available. In addition, it is worth noting that the
AJLR has been evaluated by our industrial partner on the 5G base
station system with eight cores and has obtained an improvement
of around 14%, i.e., the makespan of DAGs in the system is reduced
by 14% on average. This suggests that the AJLR is effective in real-
world systems, i.e., objective (i).

In addition, a simulator that adopts the same system settings of
the testbed is constructed with the performance of AJLR and WFD
obtained in Figure 6(b). From the Figure, we can observe that the
AJLR still outperforms WFD, but the results demonstrate a large

183

RTNS 2023, June 07–08, 2023, Dortmund, Germany S. Zhao, X. Dai, B, Lessage, I. Bate

1 2 3 4 5 6 7 8 9

Instance index of the DAG

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

lis
e

d
 m

a
k
e

s
p

a
n

WF+EO AJLR

Figure 7: Normalised makespan of one DAG task.

deviation compared to the testbed, in which the AJLR obtained
a much lower makespan than that of the WFD. This observation
reveals that in real-world systems, the potential prediction errors
in the CRP model can affect the effectiveness of the AJLR (see Sec-
tion 6.5 for more details). This leads to an ongoing work that applies
adaptive learning techniques in AJLR to mitigate the impact of pre-
diction errors of CRP models and to improve allocation decisions
when deviations exist in the CRP [23].

6.3 Relationship between DAG Makespan and
Cache Misses

With the effectiveness of AJLR validated in a real-world system,
this section uses the simulator to demonstrate AJLR can achieve a
shorter makespan for a single DAG due to better cache performance,
compared to the state-of-the-art.

Setup. In this experiment, 5000 trials with 𝑁 = 1 (i.e., one DAG
in each trial) are generated as 1000 did not give a clear trend. For
the DAG in a trial, a fixed period of 144 units of time is assigned and
the utilisation is generated within a range of (0%, 50%] for the eight-
core system. The uniformly generated utilisation provides a wide
range of DAG workloads, where a higher workload in general gives
a higher recency distance. The DAG in each trial is then executed
10 times (i.e. 10 instances) under both methods.

Results. Figure 7 presents the normalised makespan of each
instance for these DAGs. For the first instance (i.e. when the cache
is cold), the normalised makespan under our method is identical to
that of WF+EO, as no benefit from the cache can be obtained by dif-
ferent allocation decisions. For later instances, our method becomes
effective and leads to a lower normalised makespan than WF+EO
in general. In addition, we observe that our method becomes stable
(i.e. the makespan does change less) after only a few instances.
This indicates our method warms up the cache both quicker and
better than WF+EO in a general case. However, we also observe
that a similar 75% percentile is obtained for each instance with
both methods. To understand this observation, we investigate the
relationship between recency distance (represented by workload)
and the resulting DAG makespan.

Figure 8 shows the median value of the normalised makespan
among ten instances of DAGs with 𝑊𝑖 ∈ (0, 300] generated in
Figure 7. For DAGs with𝑊𝑖 > 300, a similar trend is obtained for
both methods. As shown in this figure, our method outperforms
WF+EO in most cases by achieving a lower makespan. In particular,
with𝑊𝑖 ≤ 100, our method demonstrates the most pronounced

0 50 100 150 200 250 300

Workload of the DAG task

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

lis
e

d
 m

a
k
e

s
p

a
n

WF+EO AJLR

Figure 8: Relationship between the median value of the nor-
malised makespan in 10 instances and recency distance.

0 50 100 150 200 250 300

Workload of the DAG task

0

0.2

0.4

0.6

0.8

1

R
e

c
e

n
c
y
 m

is
s
 r

a
te

WF+EO - core WF+EO - cluster AJLR - core AJLR - cluster

Figure 9: Relationship between recency miss and recency
distance.

advantage over WF+EO, where the normalised makespan is close to
30% of the worst case at first while maintaining a slower increasing
trend compared to WF+EO. In such cases, the average workload on
each core is relatively low (i.e. a short recency distance) so that most
nodes can hit the L1 cache, and hence, obtains a high execution
speedup. When𝑊𝑖 > 100, nodes under our method are less likely
to hit the L1 cache, and hence, leading to an increased makespan.
When𝑊𝑖 = 300, the performance of WFD and AJLR become similar
as most of the nodes can hardly obtain any benefits from the cache.

To explain the results in Figure 8 and to provide evidence that
the lower makespan of our method is achieved by improving cache
performance, Figure 9 is presented to demonstrate the recency miss
rate at both the core and cluster levels when executing the same
set of DAGs 10 times. A miss of the recency for core means the job
has a recency longer than the threshold for hitting the L1 cache
(e.g., 16 in Figure 4), and hence, can only obtain a lower speedup
on its execution time. As explained in Section 5 (also see Figure 4),
a higher miss rate on a recency trend indicates a higher cache
miss rate on the corresponding cache level. From Figure 9 we can
observe that the recency miss rate of WF+EO is much higher than
our method for both recency. With𝑊𝑖 < 100, our method maintains
a miss rate close to 10% for both recency trends. This is the lowest
miss rate possible as the first instance of each DAG is executed with
a cold cache. In contrast, WF+EO demonstrates a much higher miss
rate for both recency trends. For𝑊𝑖 ≥ 100, the miss rate on recency
for core under our method starts to increase due to longer recency
distance (i.e. an average distance higher than 10), as suggested by
the recency profile (Figure 4). For a similar reason, our method
demonstrates an increasing L2 cache miss rate when𝑊𝑖 > 250, and
becomes similar to WF+EO when𝑊𝑖 = 300.

184

Cache-Aware Allocation of Parallel Jobs on Multi-cores based on Learned Recency RTNS 2023, June 07–08, 2023, Dortmund, Germany

1 2 3 4 5 6 7 8 9

Instances of DAG task

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
lis

e
d
 m

a
k
e
s
p
a
n

WF+EO AJLR

Figure 10: Normalised makespan with 𝑁 = 1.

1 2 3 10 1 2 3 10

DAG-1 DAG-2

Instances of DAG task

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
lis

e
d
 m

a
k
e
s
p
a
n

Figure 11: Normalised makespan with 𝑁 = 2.

By cross-comparing Figures 8 and 9, we can observe that the
recency miss has a major impact on DAGmakespan. With𝑊𝑖 ≤ 100
our method demonstrates its best performance with a very lowmiss
rate on both recency trends. When 100 <𝑊 ≤ 250, our method the
normalised makespan tends to increase as well as an increase in the
L1 cache misses. Then, with𝑊𝑖 > 250 the normalised makespan
under bothmethods becomes similar with ourmethod being slightly
better, with a similar trend observed from the miss rate of recency
for the cluster. Based on the above results, we can observe that the
AJLR achieves a lower makespan due to a general reduction in the
number of cache misses.

Summary. From the experiments, we have established the un-
derstanding that the lower makespan achieved by AJLR is due to
better cache performance. In addition, the experiment demonstrates
the relationship between the DAG workload and makespan, as well
as the situations where the AJLR has its best performance.

6.4 Makespan of Each DAG in the System
With the above understanding, this section demonstrates that
the proposed AJLR can achieve a lower DAG makespan than the
WF+EO, due to better cache performance. To achieve this, two sets
of experiments are conducted. The first provides an in-depth evalua-
tion of the makespan for each DAG in the systemwith an increasing
number of DAGs. The second investigates the performance of AJLR
on a common-seen setup in industrial systems.

Setup. Figure 10 to 13 provides the normalised makespan of the
corresponding instances (the x-axis) of each DAG in the system,
with 𝑁 = [1, 4] and a total system utilisation𝑈 = 0.25×𝑁 . We note
that the DAG makespan after the tenth instance becomes similar
and does not have an observable trend. To avoid too many boxes
reducing readability, with 𝑁 ≥ 2 the makespan of the first three
and the tenth instances (i.e., instance 1, 2, 3, 10) of each DAG are

1 2 3 10 1 2 3 10 1 2 3 10

DAG-1 DAG-2 DAG-3

Instances of DAG task

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
lis

e
d
 m

a
k
e
s
p
a
n

Figure 12: Normalised makespan with 𝑁 = 3.

1 2 3 10 1 2 3 10 1 2 3 10 1 2 3 10

DAG-1 DAG-2 DAG-3 DAG-4

Instances of DAG task

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
lis

e
d
 m

a
k
e
s
p
a
n

Figure 13: Normalised makespan with 𝑁 = 4.

presented. This provides the trend in makespan from a cold cache
to a stable makespan when the cache is warmed up.

Results. Figure 10 presents the normalised makespan of the
first ten instances when the system contains a DAG (𝑁 = 1). In
this figure, our method shows dominating results by achieving
a constantly lower makespan than WF+EO, except for the first
instance with a cold cache. As described by Figure 8 and 9, DAGs
with𝑈𝑖 = 0.25 and𝑇𝑖 = [10, 144] can have a relatively short recency
distance which leads to fewer cache misses and/or cache misses
with lower latency in general, and hence, a lower makespan.

For 𝑁 = 2 (Figure 11 with two DAGs: DAG-1 and DAG-2), our
method still maintains an obvious advantage over the WF+EO for
each DAG. However, we can observe that the differential in nor-
malised makespan between the two methods is decreased compared
to that in Figure 10. The reason is that, by introducing another DAG
it will inevitably increase the recency distance between the exe-
cutions of nodes, and hence, leads to a higher cache miss rate. In
addition, the competition for cores is also increased simultaneously
with more tasks in the system, where a node cannot execute on the
core with the shortest recency distance if the core is busy executing
another node.

The trend of the differential described above becomes more ob-
vious when further increasing 𝑁 (see Figure 12 and 13), where the
normalised makespan of the methods are becoming similar with
a higher 𝑁 . As shown by Figure 12, our method can outperform
the WF+EO for the first two DAGs yet only demonstrates a slightly
lower normalised makespan for the third DAG. The reason for this
observation is similar to that of Figure 11, where a DAG with a
longer period in a busy system is more difficult to obtain bene-
fits from the cache. In particular, for the third DAG which has the
longest period, the recency distance of its nodes will be prolonged
significantly by the first two DAGs with frequent releases. Thus,

185

RTNS 2023, June 07–08, 2023, Dortmund, Germany S. Zhao, X. Dai, B, Lessage, I. Bate

Figure 14: Differential in normalised makespan of WF+EO
and our method for a DAG with𝑈 = 20%.

both methods lead to a high cache miss rate and achieve similar
DAG makespan with our method being slightly lower.

In Figure 13, the normalised makespan of all DAGs becomes sim-
ilar under both methods because of the ever-long recency distance
and high cache miss rates. However, even for fully-loaded systems,
our method still performs better than the WF+EO and can achieve
a lower normalised makespan for all DAGs in general with the help
of the recency profile. In addition, we can observe the proposed
method is generally more effective for DAGs with shorter periods
(e.g., the 10𝑡ℎ instance of DAG-1 and DAG-4 where DAG-1 always
has a shorter period than DAG-4). The more frequent releases mean
the potential gains from reducing cache misses increase.

Summary. This section evaluates the performance of AJLR
against WF+EO for systems (1) with a different number of DAGs
and (2) with an increasing utilisation of the first DAG, where the
latter highlights the performance of AJLR on a common-seen setup
in industrial applications. Based on the results, we conclude that
the AJLR in general outperforms WF+EO with a different number
of DAG in the system and performs better in the system where
the foreground DAG has a varied utilisation, in terms of reducing
makespan for each DAG in the system.

6.5 Recency Profile with Deviations
The above experiments are conducted assuming an accurate re-
cency profile, i.e., the execution time provided by the profile exactly
matches the real case in all scenarios. In this section, we evaluate
the performance of the AJLR against the WF+EO when deviations
exist in the values returned by the recency profile.

Setup.We define the deviation in a recency profile as a pair of
parameters (𝑃𝑟 , 𝑃𝑒) with 𝑃𝑟 ∈ [0%, 100%] and 𝑃𝑒 ∈ [0%, 50%]. 𝑃𝑟
controls the probability of deviation occurrence for each access to
the recency profile. When a deviation occurs, the execution time
suggested by a specific entry in the CRP will be replaced from S to
S ± S × 𝑃𝑒 , where S is the execution time obtained from the CRP
without deviations (see Section 4.2).

Figure 14 presents the differential of WF+EO and our method
for one DAG with 𝑈 = 20%, under varied 𝑃𝑟 and 𝑃𝑒 values. The
differential is computed by (𝛼𝑊𝐹+𝐸𝑂 −𝛼𝐴𝐽 𝐿𝑅)/𝛼𝑊𝐹+𝐸𝑂 , where 𝛼𝑥
is the median of normalised makespan among the first ten instances
of the DAG under method 𝑥 . A higher positive differential indicates

10 20 30 40 50

System utilisation (%)

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
lis

e
d
 m

a
k
e
s
p
a
n

WF+EO AJLR without deviations AJLR with deviations

Figure 15: Normalised makespan with 𝑃𝑟 = 50% and 𝑃𝑒 = 25%.

better performance of the AJLR. In addition, the results of WF+EO
are not affected by the deviation.

Results. As shown in this figure, our method can outperform
WF+EO and provide a relatively stable makespan of the DAG for a
wide range of 𝑃𝑟 and 𝑃𝑒 values. For instance, in most cases when
𝑃𝑟 ≤ 40% and 𝑃𝑒 ≤ 25% our method outperforms WF+EO with a
makespan differential around 35%, which is the differential of the
two methods without deviations, i.e. 𝑃𝑟 = 0% or 𝑃𝑒 = 0%. This obser-
vation indicates that our method remains effective when deviations
exist in the recency profile. By further increasing 𝑃𝑟 and 𝑃𝑒 , our
method starts to demonstrate large variations on makespan with
a clear decreasing trend in the makespan differential, e.g. the dif-
ferential is around 0.2 with 𝑃𝑟 = 60% and 𝑃𝑒 = 40%. However, such
cases only occur with large 𝑃𝑟% and 𝑃𝑒%, which can fundamentally
change the CRP to an opposite trend.

The above analysis indicates 𝑃𝑒 can impose a more significant
impact on the performance of AJLR than 𝑃𝑟 by affecting the recency
trend. This is justified by comparing the differential in makespan
under 1) 𝑃𝑟 = 100, 𝑃𝑒 ∈ [0%, 50%] and 2) 𝑃𝑟 ∈ [0%, 100%], 𝑃𝑒 = 50%,
where case 2) leads to much larger variations on the differential.
The reason is our method does not rely on an exactly accurate value
from the CRP. Instead, the correct recency trend is more important
for our method to make effective allocation decisions.

Figure 15 presents the median value of the normalised makespan
among ten instances of one DAG, with an increasing system utilisa-
tion and fixed values of 𝑃𝑟 and 𝑃𝑒 . Similar to Figure 14, our method
demonstrates strong performance when deviations exist in the re-
cency profile and outperforms WF+EO in all cases. However, the
impact of deviations on makespan becomes more observable when
the system has a higher system utilisation. This is expected as for
DAGs with a larger workload, deviations can impose a higher im-
pact on the execution time returned by the recency profile, which
directly affects the online allocation decisions within MSF.

Summary. In this section, we evaluate the performance of AJLR
under a recency profile with deviations. Within limits, we demon-
strate that our method is effective with a relatively stable perfor-
mance. Future work will look to make the approach more robust to
deviations and actively learn the CRP from run-time measurements
to reduce errors. A further analysis verifies this by showing that 𝑃𝑒
imposes a higher impact on the performance of our method when
affecting the trend of the profile. In addition, we demonstrate that
DAGs with a larger workload are more likely to be affected by the
deviations due to a higher impact on the speedup computation (see
Section 4.2 for details), and hence the allocation decisions.

186

Cache-Aware Allocation of Parallel Jobs on Multi-cores based on Learned Recency RTNS 2023, June 07–08, 2023, Dortmund, Germany

7 CONCLUSIONS
In this paper, an approach is presented for scheduling and allocating
nodes of a DAG to cores such that the cache miss rate and the cost
of those misses are reduced. This is based on a realistic model with
few assumptions, in which the change of execution time is based
on how recently the node was executed and on where it is executed.
This allows decisions to be taken to allocate nodes to cores to reduce
the execution time of nodes, and hence, the DAG makespan. The
evaluation shows that both on a real physical platform and in the
simulation, the makespan of DAGs is in general shorter compared
to a state-of-the-art algorithm. The evaluation then shows the po-
tential negative effects of deviations between the model and the
actual system. The proposed approach still outperforms the start-
of-the-art algorithm with reasonably large deviations, however,
understandably there are limits.

Future work will present an extension of the work that supports
the off-line ordering and schedulability analysis of timing-critical
DAGs, an evaluation of whether different recency profiles may
further reduce the makespan of DAGs, and evidence that AJLR
improves the predictability of the system. As mentioned, we are
also looking at applying adaptive learning methods, e.g., with a
Digital Twin, to improve the accuracy of CRP models by reduc-
ing prediction errors where exists a large deviation, from the real
observations of the recency while the system is in operation.

ACKNOWLEDGMENTS
This work is supported by the Key-Area Research and Development
of Guangdong Province (Grant No. 2020B0101650001).

REFERENCES
[1] Javanshir Farzin Alamdari and Kamran Zamanifar. 2012. A reuse distance based

precopy approach to improve live migration of virtual machines. In International
Conference on Parallel, Distributed and Grid Computing. IEEE, 551–556.

[2] Benjamin Bado, Laurent George, Pierre Courbin, and Joël Goossens. 2012. A semi-
partitioned approach for parallel real-time scheduling. In International Conference
on Real-Time and Network Systems. 151–160.

[3] Sanjoy Baruah. 2015. Federated scheduling of sporadic DAG task systems. In
IEEE International Parallel and Distributed Processing Symposium. IEEE, 179–186.

[4] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Leen Stougie,
and Andreas Wiese. 2012. A generalized parallel task model for recurrent real-
time processes. In Real-Time Systems Symposium. 63–72.

[5] Kristof Beyls and Erik D’Hollander. 2001. Reuse distance as a metric for cache
behavior. In Conference on Parallel and Distributed Computing and Systems, Vol. 14.
350–360.

[6] John M Calandrino and James H Anderson. 2008. Cache-aware real-time schedul-
ing on multicore platforms: Heuristics and a case study. In Euromicro Conference
on Real-Time Systems. IEEE, 299–308.

[7] John M Calandrino and James H Anderson. 2009. On the design and implementa-
tion of a cache-aware multicore real-time scheduler. In 21st Euromicro conference
on real-time systems. 194–204.

[8] Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, and Giorgio Buttazzo. 2018.
Partitioned fixed-priority scheduling of parallel tasks without preemptions. In
IEEE Real-Time Systems Symposium. IEEE, 421–433.

[9] Jichuan Chang and Gurindar S Sohi. 2007. Cooperative cache partitioning for
chip multiprocessors. In ACM International Conference on Supercomputing 25th
Anniversary Volume. 402–412.

[10] Wanli Chang, Dip Goswami, Samarjit Chakraborty, Lei Ju, Chun Jason Xue,
and Sidharta Andalam. 2016. Memory-aware embedded control systems design.
Transactions on Computer-Aided Design of Integrated Circuits and Systems 36, 4
(2016), 586–599.

[11] Wanli Chang, Debayan Roy, Xiaobo Sharon Hu, and Samarjit Chakraborty. 2018.
Cache-aware task scheduling for maximizing control performance. In 2018 Design,

Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 694–699.
[12] Jian-Jia Chen. 2016. Federated scheduling admits no constant speedup factors for

constrained-deadline DAG task systems. Real-Time Systems 52, 6 (2016), 833–838.
[13] Robert I Davis and Alan Burns. 2011. Improved priority assignment for global

fixed priority pre-emptive scheduling in multiprocessor real-time systems. Real-
Time Systems 47, 1 (2011), 1–40.

[14] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch,
Christine Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann,
and Simon Wegener. 2016. TACLeBench: A Benchmark Collection to Support
Worst-Case Execution Time Research. In 16th International Workshop on Worst-
Case Execution Time Analysis. 2:1–2:10.

[15] José Fonseca, Geoffrey Nelissen, Vincent Nelis, and Luís Miguel Pinho. 2016.
Response time analysis of sporadic DAG tasks under partitioned scheduling. In
IEEE Symposium on Industrial Embedded Systems. IEEE, 1–10.

[16] Golsana Ghaemi, Dharmesh Tarapore, and Renato Mancuso. 2021. Governing
with insights: towards profile-driven cache management of Black-Box appli-
cations. In 33rd Euromicro Conference on Real-Time Systems. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

[17] Robert Gifford, Neeraj Gandhi, Linh Thi Xuan Phan, and Andreas Haeberlen. 2021.
DNA: Dynamic Resource Allocation for Soft Real-Time Multicore Systems. In
Real-Time and Embedded Technology and Applications Symposium. IEEE, 196–209.

[18] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. 2009. Cache-aware scheduling and
analysis for multicores. In ACM international conference on Embedded software.
245–254.

[19] Qingqiang He, Xu Jiang, Nan Guan, and Zhishan Guo. 2019. Intra-Task Priority
Assignment in Real-Time Scheduling of DAG Tasks on Multi-Cores. Transactions
on Parallel and Distributed Systems 30, 10 (2019), 2283–2295.

[20] Xu Jiang, NanGuan, Xiang Long, andWang Yi. 2017. Semi-federated scheduling of
parallel real-time tasks on multiprocessors. In IEEE Real-Time Systems Symposium.
IEEE, 80–91.

[21] Hyoseung Kim, Arvind Kandhalu, and Ragunathan Rajkumar. 2013. A coordi-
nated approach for practical OS-level cache management in multi-core real-time
systems. In 25th Euromicro Conference on Real-Time Systems. IEEE, 80–89.

[22] David B Kirk. 1989. SMART (strategic memory allocation for real-time) cache
design. In Real-Time Systems Symposium. IEEE, 229–230.

[23] Benjamin Lesage, Xiaotian Dai, Shuai Zhao, and Iain Bate. 2023. Reducing
Loss of Service for Mixed-Criticality Systems through Cache- and Stress-Aware
Scheduling. In Proceedings of the 31th International Conference on Real-Time
Networks and Systems.

[24] Chung Laung Liu and James W Layland. 1973. Scheduling algorithms for multi-
programming in a hard-real-time environment. J. ACM 20, 1 (1973), 46–61.

[25] Cláudio Maia, Patrick Meumeu Yomsi, Luís Nogueira, and Luis Miguel Pinho.
2015. Semi-partitioned scheduling of fork-join tasks using work-stealing. In
International Conference on Embedded and Ubiquitous Computing. IEEE, 25–34.

[26] Salah Eddine Saidi, Nicolas Pernet, and Yves Sorel. 2017. Automatic parallelization
of multi-rate fmi-based co-simulation on multi-core. In Symposium on Theory of
Modeling and Simulation .

[27] Masoud Shariati, Mahmoud Naghibzadeh, and Hamid Noori. 2018. Semi-
Federated Scheduling of Multiple Periodic Real-Time DAGs of Non-Preemptable
Tasks. In International Conference on Computer and Knowledge Engineering. IEEE,
84–91.

[28] Xipeng Shen, Jonathan Shaw, Brian Meeker, and Chen Ding. 2007. Locality
approximation using time. ACM SIGPLAN Notices 42, 1 (2007), 55–61.

[29] Micaela Verucchi, Mirco Theile, Marco Caccamo, and Marko Bertogna. 2020.
Latency-Aware Generation of Single-Rate DAGs from Multi-Rate Task Sets. In
Real-Time and Embedded Technology and Applications Symposium. 226–238.

[30] Giuseppe Vietri, Liana V Rodriguez, Wendy A Martinez, Steven Lyons, Jason
Liu, Raju Rangaswami, Ming Zhao, and Giri Narasimhan. 2018. Driving cache
replacement with ML-based LeCaR. In 10th USENIX Workshop on Hot Topics in
Storage and File Systems.

[31] Tao Yang, Yue Tang, Xu Jiang, Qingxu Deng, and Nan Guan. 2019. Semi-Federated
Scheduling of Mixed-Criticality System for Sporadic DAG Tasks. In International
Symposium on Real-Time Distributed Computing. IEEE, 163–170.

[32] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. 2014. Coloris: a dynamic
cache partitioning system using page coloring. In 23rd International Conference
on Parallel Architecture and Compilation Techniques. IEEE, 381–392.

[33] Shuai Zhao, Xiaotian Dai, and Iain Bate. 2022. DAG Scheduling and Analysis on
Multi-core Systems by Modelling Parallelism and Dependency. IEEE Transactions
on Parallel and Distributed Systems (2022).

[34] Shuai Zhao, Xiaotian Dai, Iain Bate, Alan Burns, and Wanli Chang. 2020. DAG
scheduling and analysis on multiprocessor systems: Exploitation of parallelism
and dependency. In IEEE Real-Time Systems Symposium. IEEE, 128–140.

Received 20 January 2023; revised 28 March 2023; accepted 16 April 2023

187

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	4 Cache-aware Allocation Using Execution Time Approximations
	4.1 Preliminaries and Assumptions
	4.2 Working Mechanism of AJLR

	5 Implemention of Predictive Execution Time Model
	5.1 Cache Recency Profile
	5.2 Real-world Example

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Proof of Concept
	6.3 Relationship between DAG Makespan and Cache Misses
	6.4 Makespan of Each DAG in the System
	6.5 Recency Profile with Deviations

	7 Conclusions
	Acknowledgments
	References

