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Abstract

The anomalous magnetic moment (AMM) of the muon aµ = (g − 2)/2 is one
of the most precisely measured quantities in physics. Its experimental value shows,
in 2023, a 5.2σ discrepancy δaµ = (249 ± 48) × 10−11 with its theoretical value
calculated in the standard model framework, using a data-driven (R ratio) dis-
persive method to calculate the Hadron Vacuum Polarization (HVP) contribution.
Meanwhile, lattice QCD numerical calculations of this contribution (L) have also
yielded a significant discrepancy with respect to the data-driven value (R), reach-
ing also ∼ 5σ for the ratio of their best determinations (in reduced windows),
aHVP
µL /aHVP

µR = 1.0257 ± 0.0052. We suggest here a common solution to these two
problems.

In standard quantum mechanics, mass ratios and inverse Compton length ra-
tios are identical. This is no longer the case in the special scale-relativity (SSR)
framework, in which the Planck length-scale is identified with a lower limit scale,
invariant under dilations and replacing the zero point. Consequently a generalized
form of Compton relation holds in this theory.

Regarding the HVP contribution to the muon g−2, the lattice QCD calculation
is performed in position space-time while the data-driven result is calculated in
momentum space. The lattice QCD result is therefore theoretically predicted to
be too high by a factor ρ = 1.0287, which is fully compatible with the observed
excess. Once corrected, the lattice and R ratio HVP contributions agree within
uncertainties.

As regards the muon g − 2 theoretical calculation, it involves a mass-dependent
contribution which comes from two-loop vacuum polarization insertions due to
electron-positron pairs and depends on the electron to muon mass ratio x = me/mµ.
Using the renormalization group approach, we show that, in this relation, lnx loga-
rithmic terms depend on mass, while linear x terms are expected to actually depend
on inverse Compton lengths. By defining the constant C0 = ln(mP/m0) in terms
of the Planck mass mP and of a reference mass m0, the resulting scale-relativistic
correction writes δaµ = −α2 (x ln3 x)/(8 C2

0), where α is the fine structure constant.
The numerical values of this correction for m0 = mµ, δaµ = (230 ± 15) × 10−11,
would fully account for the observed experiment-theory difference.

The Dirac equation predicts a muon magnetic moment, Mµ = gµ(e/2mµ)S, with
gyromagnetic ratio gµ = 2 and spin operator S. Quantum loop effects lead to a small

1



calculable deviation, parameterized by the anomalous magnetic moment aµ = (gµ − 2)/2
[1].

That quantity can be accurately measured and precisely predicted within the frame-
work of the Standard Model (SM). Hence, comparison of experiment and theory tests the
SM at its quantum loop level.

While the theoretical and experimental values of the electron anomalous magnetic
moment agree within uncertainties [2, 3],

ae(th) = 0.00115965218178(77), ae(exp) = 0.00115965218091(26), (1)

on the contrary, the muon anomalous magnetic moment exhibits since the E821 Brookhaven
experiment [4] about 20 years ago, a difference of (268± 72)× 10−11 [1, 5, 6], statistically
significant at the 3.7σ level:

aµ(th) = 116591823(36)× 10−11, aµ(exp) = 116592091(63)× 10−11. (2)

This effect constitutes one of the main discrepancies between the SM theoretical predic-
tions and experiments. It is all the more puzzling that it is not found in the high energy
realm of today’s particle physics frontier (≈ 10 TeV), but instead at the atomic-nuclear
scale (≈ 100 MeV) which was up to now thought to be fully understood.

In 2021, the first results (run 1) of the Fermilab National Accelerator Laboratory
(FNAL) Muon g−2 E989 experiment [7] have been found to be in excellent agreement with
the previous BNL E821 measurement. They obtained aµ(FNAL) = 116592040(54)×10−11,
leading to a combined BNL+FNAL average result:

aµ(exp) = 116592061(41)× 10−11, (3)

increasing to 4.2 standard deviations the tension between experiment [7] and theory [8]
(White Paper from the Muon g − 2 Theory Initiative [WP]), δaµ = (251 ± 59) × 10−11.
This difference has been obtained by deriving the Hadron Vacuum Polarization (HVP)
contribution, which dominates the uncertainty of the Standard Model (SM) prediction,
from a data-driven approach using the experimental e+e− → hadrons R-ratio through a
dispersion relation. In 2023 the new result from the FNAL E989 runs 2&3 has yielded a
two times more precise world average value

aµ(exp) = 116592059(22)× 10−11. (4)

The resulting difference with the theoretical SM prediction, δaRµ = (249 ± 48) × 10−11,
now reaches the 5.2σ level using the R ratio, seemingly pointing to possible new physics
beyond the standard model.

However, in the course of these studies, a second statistically highly significant dis-
crepancy has revealed itself. A numerical calculation of the HVP contribution to the
muon g − 2 from lattice QCD by Borsanyi et al [BMW] [9] has reached for the first
time a level of precision similar to the data-driven method. They have found aHVP−L

µ =
(7075 ± 55) × 10−11, which differed by 2.1σ from the R-ratio WP recommended value
aHVP−R
µ = (6931± 40)× 10−11.

Although the cause of this difference between the data driven and lattice QCD SM
prediction remained misunderstood, a recent new method has allowed to point out more
precisely its origin. The window observable method [10] amounts to restrict the numerical
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integration to a subinterval which essentially removes the regions of strong statistical
fluctuations, large finite-volume effects and large lattice artefacts [11]. In addition, it is
possible to evaluate awin

µ also using the R-ratio, so that a more precise view of the origin
of the discrepancy can be acquired by comparing the two determinations.

The window results have confirmed and reinforced the existence of the HVP discrep-
ancy. Davies et al [12] have used one-sided windows of various widths contributing to in-
creasing percentages of the whole result and have found (awµL− awµR)/awµR = 0.016± 0.007,
0.020± 0.005 and 0.021± 0.0075 in windows covering respectively 14, 43 and 70 % of the
whole difference, thus reaching an almost 4σ effect in the second window.

Other authors have used a two-sided window covering (0.4− 1.0) fm contributing for
33 % of the result. An excellent self-consistency has been found between these various
lattice calculations [13, 11, 14], therefore validating the initial BMW claim. Their average
results for R [15, 9, 16] and L [9, 14, 17, 18] also lead to a similar statistical significance,
with a relative difference (0.0285 ± 0.0072). The effect even reaches 5σ using their best
determinations, yielding (awµL − awµR)/awµR = 0.0257± 0.0052 [16] (cf. Fig.11 of ref.[14]).

On the experimental side, although some difficulties have also appeared [?] which may
point to an underestimation of the experimental errors in the determination of the R ratio,
some authors have studied the deviation which should be imposed to the data in order
to cancel the observed differences in aµ values [19]. They have found that shifts in the
electron-positron pairs to hadrons cross section needed to bridge it are excluded above
s > 0.7 GeV at the 95% C.L., while prospects for ∆aµ originating below that energy
are deemed improbable given the required increases in the hadronic cross section. This
conclusion would also apply to the L−R difference, which is of the same order of size.

The overall conclusion seems now to be that the R and L HVP contributions to the
muon g − 2 cannot be reconciled, neither from the data R-ratio side, nor from the nu-
merical calculation lattice side, so that one is led to conclude that a new genuine effect
has appeared, linked to the muon g−2 discrepancy but different from it and reaching the
same highly significant statistical level.

We suggest here that both the muon g−2 discrepancy and the new HVP problem can
be precisely explained in the special scale-relativity (SSR) framework. This is achieved
by accounting for the correction to the relation between mass ratios and Compton length
ratios which occurs in this theory, where one introduces a generalized Compton relation
based on the true nature of the Planck length as being a limit-length invariant under scale
transformations.

We have long ago argued [20, 21, 22, 23] that the geometry of space-time has no reason
to remain Minkowskian (i.e. classical) in the quantum domain, at scales smaller than
the de Broglie scale, owing to the fundamentally quantum nature of all existing objects
at these scales. We have shown that the quantum space-time [21], on the contrary, is
expected to be scale-dependent, i.e. fractal in a general meaning [23, 24] in the quantum
realm.

Moreover, the principle of relativity, which was up to now applied, in current theories of
relativity, to origin, orientation and motion transformations of the coordinate system [25],
has been extended to apply also to scale transformations of the measurement resolutions,
which are added to the variables that characterize its (relative) state [21, 22, 23, 24].

The scale-relativity theory is the general framework built from this first principle
[23, 24] including the construction of new scale laws of log-Lorentzian form [22]; a ge-
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ometric foundation of quantum mechanics [26] and of gauge fields [27] in terms of a
nondifferentiable and therefore fractal space-time continuum whose geodesics define wave
functions; and the suggestion of the possibility of a new macroscopic quantum-type me-
chanics (based on a constant different from ~) relevant to chaotic systems beyond their
horizon of predictability [23, 28, 29, 30, 31, 32], in particular to turbulence in velocity-
space [33].

Here we are concerned with only the log-Lorentzian scale laws aspect of the theory,
specifically, with the fact that inverse length-scales and mass-scales, which are identical
in standard quantum mechanics (QM), become different in the SSR framework.

We have mathematically proved [22], [23, Chapt. 6], [24, Chapt. 4.4] that the general
solution to the special relativity problem (i.e., find the linear laws of transformations which
come under the principle of relativity) is, as well for motion as for scales, the Lorentz
transformation. This proof is based on only two axioms, internality of the composition
law and reflection invariance, which are both expressions of the only principle of relativity.

We know since Poincaré and Einstein that the special relativity law of composition
of two velocities u and v writes w = (u+ v)/(1 + u v/c2). In the same way, the general
law of composition of length-scale ratios, r → r′ = ρ× r, writes in special scale-relativity
theory [22] W = (U + V)/(1 + UV/C2), where U = ln(r/λ), V = ln ρ and W = ln(r′/λ)
and C is a constant whose meaning will be specified in the following.

Another relevant result of special (motion)-relativity is that the Galilean relation of
proportionality between velocity and momentum, p/mc = v/c, becomes

p

mc
=

v/c√
1− (v/c)2

. (5)

In the same way as velocity characterizes the state of motion of the reference system,
we consider in SSR that the length and time measurement resolutions characterize its
state of scale [21, 22, 23, 24]. The difference is that motion transformations constitute an
additive group, while scale transformations are a multiplicative group. However, using the
Gell-Mann-Levy method, one can show [23, 24] that the natural variables for describing
length-scales and their transformations are the logarithm of a scale ratio, V = ln(r/λ), so
that one recovers an additive group in terms of these variables.

In analogy with the various levels of theories of motion-relativity, one can first define a
“Galilean scale-relativity” (GSR) framework, which just corresponds to the usual laws of
dilation and contraction, expressed by the direct product r′/λ = ρ×r/λ. The standard de
Broglie law which relates momentum and length-scales in quantum mechanics, p = ~/λ,
can be established from Noether’s theorem in this framework. This is similar to the
obtention, in motion-relativity theory, of the standard relation p = mv from uniformity
of space. It may be also written as a direct equality ln(p/p0) = ln(λ0/λ), with p0λ0 = ~.
The generalization of this relation in SSR involves a log-Lorentz factor [22, 23, 24]:

ln
p

p0
=

ln(λ0/λ)√
1− ln(λ0/λ)2/C2

. (6)

The usual GSR law is clearly recovered in the limit C→∞. The meaning of this constant
can be clarified by expressing it also in terms of the reference scale λ0:

C0 = ln
λ0
λP
. (7)
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This introduces a minimal scale λP which is invariant under dilations and contractions,
unreachable and unpassable, whatever the scale λ0 which has been taken as reference
[22, 23]. Moreover, momentum-energy now tends to infinity when the length-time scale
tends to this limit, which therefore plays the role of the zero scale interval of the standard
theory. This remarkable property has naturally led us [22] to identify it with the Planck
length-scale,

λP =

√
~G
c3

. (8)

Let us now analyse the current situation of the muon g − 2 in the light of the SSR
framework. The fact that there is no strong effect on the electron but only on the muon
points toward a manifestation of the mass-scale increase by a factor ≈ 200 between the
electron and the muon, which is the only difference between these two particles (apart
from their consequently different lifetimes). No effect is expected

In order to apply the SSR framework to the muon g − 2 problem, we need to specify
the nature of two fundamental scales. The first is the scale at which occurs the transition
between Galilean scale relativity (GSR) and Lorentzian special scale relativity (SSR).
A natural identification of this transition is with the Compton scale of the electron λe
[22, 23, 24]. Indeed, physics changes drastically at scales smaller than λe, in a way that
is directly related to our purpose. (1) As remarked by Landau [34], the very nature of
positions and lengths is fundamentally changed at these scales, because of the inevitable
production of electron-positron pairs in the process of measuring the coordinates of an
electron. This formation of new particles in a way which cannot be detected by the process
itself renders meaningless the measurement of the electron coordinates. (2) The various
physical quantities, in particular masses and charges, become explicitly dependent on
scale below λe (running), a behaviour that is currently accounted for in terms of vacuum
polarization and radiative corrections and well described by the renormalization group
equations.

The second fundamental scale that should be known is the reference scale defining
the constant C0. It is naturally given by the Compton length of the particle studied
[22]. When the particle considered is the electron, both scales coincide. But here we are
concerned with the muon, so that the SSR constant is given by the Compton length of
the muon, i.e. Cµ = ln(λµ/λP) ≈ ln(mP/mµ) = 46.196. This is a new configuration, in
which the electron Compton length is larger than the reference length. This is justified
by the fact that the e+e− pairs considered here are virtual, i.e. they are interpreted as
being part of the set of fractals geodesics which constitutes the muon as a whole.

A possible intervention of SSR corrections can therefore be expected, since the ratio
of the muon and electron Compton lengths is slightly different from their inverse mass
ratio in this framework. Taking m = m0 as reference scale, the SSR generalized Compton
relation [22, 23, 24] writes:

ln
λµ
λe

=
ln(me/mµ)√

1 + ln2(me/mµ)/C2
0

. (9)

Therefore, the length-scale ratio becomes y = λµ/λe = x1/
√

1+(lnx/C0)2 ≈ 1/200 when
C0 = Cµ instead of the mass ratio x = me/mµ ≈ 1/207. We recover as expected the
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standard Compton relation λµ = ~/mµc in the limit C0 → 0, i.e. λP ≈ 0.
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Figure 1: Fractional differences between determination of the HVP contribution awµ to the
muon g − 2 from the lattice (L) and from data-driven dispersion relation (R) with windows
of different widths. It is compared to its theoretical prediction in the SSR theory (horizontal
lines). The continuous red line is the prediction using C0 = ln(mP/me) = Ce while the dashed
red line corresponds to choosing the Bohr atomic scale as reference for the transition from
“Galilean” scale-relativity to “log-Lorentzian” scale-relativity. The abscissa yields the fraction
of the contribution for each window. The fractions 14 %, 43 % and 70 % correspond to one-sided
windows [12]. The 100% full result is the BMW estimate [9]. The fraction 33 % shows different
calculations in the two-sided window 0.4− 1 fm from R [15, 9, 16] and L values [9, 14, 17, 18].

Let us first apply the SSR theory to the discepancy of the muon g−2 HVP contribution
between the data-driven (R) and lattice QCD (L) approaches. Its applicability to this
problem is straightforward owing to the fact that the lattice QCD calculation is performed
in space-time while the R-ratio measurements and the contribution to the muon AMM
derived from it are performed in terms of energy-momentum. In the SSR view, the two
calculations are not identical and there must therefore exist a transformation between
them.

As regard the light-by-light contribution, the data-driven and lattice QCD results are
in excellent agreement [9]: this comes in support of our interpretation, since no mass scale
is directly involved in that case, so that we expect no SSR effect.

Actually, the lattice QCD numerical calculation is made in space-time while there
is no possible direct measurement of length and time intervals at the muon scale. The
smallest scale where direct length measurements have been performed is the Bohr atomic
scale, while, from the Landau argument recalled above, they become impossible below the
Compton electron scale. The lattice calculation therefore relies on the standard Compton
relation λ × m = ~, which is a mere postulate of quantum mechanics. In the scale-
relativity theory, on the contrary, one derives it (and more generally the Einstein-de
Broglie relations) from first principles and space-time symmetries [26, 24] as recalled
hereabove. The passage to Lorentzian-form laws is then a natural generalization in both
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scale and motion cases and can be directly deduced from the principle of relativity itself
in its special version [22, 23, 24].

The magnetic moment of the muon is quantized in terms of the muon Bohr magneton
and writes Mµ = 2(1 + aµ) e ~

2mµ
. While its experimentally measured value depends on

the muon mass, when it is numerically calculated in position space(-time), the reference
scale for all defined lengths and times is instead the muon Compton scale, λµ = ~/mµ

(with c = 1). The numerical value obtained for it or for any of its parts (i.e. here, the
HVP contribution to its anomalous part) is expected to be correct only provided the
muon Compton length be itself correct. We have seen that in SSR a generalized Compton
relation is derived which begins to depart from the standard one at the electron scale, so
that one theoreticaly predicts that the value calculated from position space (which is the
case of lattice QCD calculations) will be too high by a factor:

ρSSR = λµ ×
mµ

~
=

(
mµ

me

)1−1/
√

1+ln2(me/mµ)/C2
e

= 1.02872, (10)

with meλe = ~. The observed factor from the BMW calculation compared to the WP
recommended value is ρobs = (7075 ± 55)/(6931 ± 40) = 1.021 ± 0.010 and therefore
lies within 1σ of the SSR theoretical prediction. The one-sided window values of Davies
et al [12] are of the same order (see Fig. 1), while the two-sided window yields, using
mean R and L values, ρobs = (2362 ± 11)/(2295 ± 13) = 1.0285 ± 0.072. The best R
and L values (cf. [14] Fig.11) yield a compatible and even more precise result reaching
∼ 5σ significance, ρobs = 1.0257 ± 0.052. All these estimates are in agreement with the
theoretical SSR prediction.

The one-sided window results are compatible with a constant ratio between the L
and R values of the HVP effect, independant of the window size [12]. Such a constancy
is also predicted in the SSR interpretation of the effect. This allows us to estimate
the expected full HVP contribution from the best determined ratio. One finds aHVP

µ =
1.0257× 6931× 10−11 = 7109× 10−11, slightly larger than the BMW result, leading after
SSR correction to aHVP,SSR

µ = (6911± 57)× 10−11, which is in remarkable agreement with
the R result.

We conclude that, once corrected for the SSR effects, the lattice QCD and data-driven
estimates of the HVP contribution to the muon g − 2 fully agree with each other within
uncertainties.

Let us now remind how one can apply the SSR theory to the muon g − 2 itself [35].
Since it implies corrections to the Compton relation between mass-scales and length-
scales, one is led to look for a possible SSR effect only among the mass-dependent terms
of the muon g − 2 calculation [5]. There is no such contribution to 1-loop level, i.e. in
Schwinger’s original α/2π correction to the magnetic moment [5]. To 2-loop, the main
mass-dependent and electron-dependent term comes from the Feynman diagram shown in
Fig. 2, which corresponds to the insertion of a closed lepton loop (electron-positron pair).

Let us first recall how the standard calculation of this contribution is performed with-
out SSR correction. It has been calculated in 1949 by Karplus and Kroll (KK) [36]. It
reads in position space (we denote by X the position coordinate so as not to confuse it
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Figure 2: Feynman diagram for the leading mass-dependent term, involving e+e− pairs, of the
fourth-order radiative correction to the scattering of a muon by an electromagnetic field, which
plays a central role in the SSR correction to the theoretical calculation of the muon g − 2.

with x = me/mµ in what follows):

M̄ IIe = −eα
2

4~c

∫
d4X0d

4X1d
4X2A

e
µ(X0)D̄

(2)
F (X2−X1)ψ̄(X1)γνSF (X0−X1)γµSF (X2−X0)γνψ(X2).

(11)
The bar on M̄ IIe and D̄F indicates that the renormalization terms have been removed.
The Feynman function DF describes the properties of a virtual photon as modified by its
interaction with the electron-positron field. The leading term is obviously

D
(1)
F (X) = − 2i

(2π)4

∫
e−ipX

d4p

p2
. (12)

The radiative corrections to this function arise from the ability of the virtual photon to
create pairs. The first term D

(2)
F is simply due to the creation and annihilation of one

pair, as can be seen in Fig. ??. After removal of the renormalization term and performing
its Fourier transform, it reads

D̄
(2)
F (p) =

α

2π

∫ 1

0

dv
2v2(1− v2/3)

p2(1− v2) + 4κ2e
, (13)

where κe is the electron mass term. Feynman’s SF (X) function describes the propagation
of the particle for which the magnetic moment is computed (by looking at its elastic
scattering by an electromagnetic field). This particle is an electron in the original KK
calculation and a muon in the case considered here:

SF (X, κµ) = − 2i

(2π)4

∫
d4p e−i pX

i γ p− κµ
p2 + κ2µ

, (14)

where the mass term κµ is now the muon one.
The subsequent calculations are continued by KK in momentum space. The momen-

tum p1 is used to denote the momentum of the final state and p2 the momentum of the
initial state:

ψ(X) =

∫
eip2Xψ(p2)d

4p2, (iγp2 + κµ)ψ(p2) = 0, (15)

ψ̄(X) =

∫
eip1Xψ(p1)d

4p1, ψ̄(p1)(iγp1 + κµ) = 0. (16)
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Then KK find, for the contribution considered, the final expression:

M̄ IIe = −2ieα2

~c

∫
d4p1d

4p2A
e
µ(p1 − p2)

∫
d4k

∫ 1

0

dv
2v2(1− v2/3)

k2(1− v2) + 4κ2e

×ψ̄(p1)γν
i γ (p1 − k)− κµ
(p1 − k)2 + κ2µ

γµ
i γ (p2 − k)− κµ
(p2 − k)2 − κ2µ

γνψ(p2), (17)

in which we have now clearly identified the muon mass term κµ and the electron-
positron pair mass term 2κe.

The resulting muon vacuum polarization insertion was explicitly computed in the late
1950’s [37, 38]. It is given by the double integral:

a(4)µ =
(α
π

)2 ∫ 1

0

du u2(1− u)

∫ 1

0

dv
v2(1− v2/3)

u2(1− v2) + 4x2(1− u)
, (18)

where x = κe/κµ = me/mµ is the electron to muon mass ratio in the SM framework. An
exact integration has been performed by Elend in 1966 [39] and the final expression has
been written in compact form by Passera [40] as:

a(4)µ =
(α
π

)2(
−25

36
− 1

3
lnx+ x2(4 + 3 lnx) + x4

[
π2

3
− 2 lnx ln

(
1

x
− x
)
− Li2

(
x2
)]

+
x

2

(
1− 5x2

) [π2

2
− lnx ln

(
1− x
1 + x

)
− Li2(x) + Li2(−x)

])
.

(19)

A complete expansion of this expression has been given by Li et al. [41], for both cases
x > 1 and x < 1. Keeping only the leading terms, it yields in terms of lnx and x:

a(4)µ =
(α
π

)2(
−25

36
− 1

3
lnx+

π2

4
x+O(x2 lnx)

)
. (20)

In the SSR framework, this formula can no longer be correct. Indeed, the muon
Compton length-scale and mass scale, when they are referenced to the electron scale, are
no longer strictly inverse quantities. One should therefore make the difference between
x = me/mµ and y = λµ/λe, whose relationship is given in Eq. (9).

An analysis of the way the above mass dependent contribution to the muon g − 2
is obtained shows that it depends on both mass and Compton length. The original KK
work starts from position space then ends the calculation in momentum space through
the standard assumption of Fourier transform between position and momentum represen-
tations. This calculation relies on the previous work of Dyson [42], who explicitly specifies
that the mass term κ in Feynman’s SF (X) function (Eq. 14) is given by the reciprocal
Compton length, not the mass itself. On the other hand, we also know that masses enter
as such in the g−2 calculation, in particular through the threshold 2me for pair creation.

However, the two contributions are not separated in the KK calculation of the electron
g − 2, nor in the muon calculation of Suura-Wichmann [37] and Peterman [38] derived
from it. We therefore need to use another approach where the two contributions are
separated. The renormalization group approach provides us with such a separation. It
has been shown by Lautrup and de Raphael [43] that the equation for the contribution to
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the muon g − 2 from electron vacuum polarization insertions takes the form of a Callan-
Symanzik equation (

me
∂

∂me

+ β(α)
∂

∂α

)
aµ

(
me

mµ

, α

)
= R

(
me

mµ

)
, (21)

where the right hand side of this equation is found to be vanishing as x = me/mµ instead
of the naive expectation x2 from Eq. (18). In this expression, no difference is yet made
between the mass ratio and inverse Compton length ratio. However, the leading logarith-
mic term of Eq. (20), −1

3
lnx, is now provided by the left hand side of this equation [5],

while the linear term π2

4
x comes from its right hand side.

In the l.h.s. of Eq. (21), β(α) is the standard QED β-function, β(α) = 2α2/3π to
one-loop. The meaning of this equation is that the origin of the leading logarithm term
−1

3
lnx is just charge screening of the electromagnetic charge [5] and that it comes from

the mere running QED coupling at muon scale,

αµ = α

(
1 +

2α

3π
ln
mµ

me

)
. (22)

This contribution is therefore generated by the electron-muon mass ratio x = me/mµ.
On the contrary, if one now considers the r.h.s. of Eq. (21), a detailed analysis by

Lautrup and de Raphael [43] shows that it finds its origin in the SF (X) functions in which
the mass terms are actually defined as inverse Compton lengths [42]. We are therefore
led to differentiate between lnx logarithmic contributions which depend on mass, and x
linear contributions which we assume to actually depend on inverse Compton lengths.

Therefore the Callan-Symanzik equation for the muon g−2 can now be written (keep-
ing only the leading terms) as(

x
∂

∂x
+ β(α)

∂

∂α

)
aµ(x, α) =

(α
2

)2
y, (23)

where y = λµ/λe while x = me/mµ.
The solution to order α2 of this equation finally yields a correction to the muon g− 2,

δaSSRµ = (y − x)α2/4, which is well approximated by

δaSSRµ = −α2 x ln3 x

8 C2
µ

= 230× 10−11. (24)

Assuming that higher order power contributions xk should also be corrected and replaced
by yk, one finds that the 2-loop x2 power terms of Eq. (19), coming from e+e− pairs, yield
a small correction δaµ = 4 × 10−11, while x2 lnx terms yield −20 × 10−11. Hadron loops
contribute also by ∼ (mµ/m)2 terms, yielding a SSR correction ≈ +17 × 10−11, so that
these possible higher order effects cancel each other and are anyway smaller than current
theoretical uncertainties (43× 10−11). Three-loop effects as well as tau lepton loops yield
corrections smaller than 1× 10−11.

We therefore estimate the special scale-relativistic correction to δaµ = (230 ± 16) ×
10−11, yielding a theoretically estimated (SM+SSR) muon g − 2

aµ(th) = 116592040(43)× 10−11, (25)
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in excellent agreement with the present experimental value aµ(exp) = 116592061(41) ×
10−11 [7]).

We finally find an SSR correction:

δaSSRµ = (230± 15)× 10−11, (26)

where the error bar is an estimation of the effects of the possible inclusion of higher order
mass terms. This scale-relativity correction agrees within uncertainties with the observed
difference between the experimental and theoretical muon g− 2, δaµ = (249± 48)× 10−11

(using the data-driven HVP contribution). It is also now in agreement with the SM
prediction using lattice QCD for the HVP contribution once the SSR correction of this
contribution is also taken into account. The future decrease by a new factor 2 of the
experimental measurement of aµ at FNAL when all runs will be taken into account is not
expected to change this conclusion (see Fig. 3).

SSR correction

Standard Model HRL Experiment Average

BNL g-2

BNL + FNAL21 g-2

BNL + FNAL23 g-2

R

L

5.2Σ

1800 1900 2000 2100
-3

-2

-1

0

1

2

3

aΜ ´ 1011
- 116590000

Figure 3: Illustration of the present state of the muon g−2 discrepancies and of their solution in
the SSR framework. The green band to the left stands for the SM prediction ant its error bar in
the case when the HVP contribution is derived from the R ratio experimental measurement. The
yellow band to the right is today’s (2023) state of experimental measurements from BNL and
FNAL runs 1, 2 and 3. The difference between them reaches a 5.2σ statistical significance (which
may be slightly overevaluated due to possible under estimations of experimental uncertainties
on the R ratio). The black arrow is the theoretically predicted SSR correction δaSSRµ = (230±
15)× 10−11. The open point is the SM-R prediction corrected for special scale-relativity effects.
The green point is the SM-L prediction where the HVP contribution comes from windowed
lattice QCD numerical integration, doubly corrected for SSR effects (correction to the lattice
length-scale and correction to closed electron loop insertion).

Moreover, it will be possible to test the newly estimated theoretical value of the muon
g − 2 (Eq. 25) in the next years, since the Muon g − 2 Fermilab experiment E989 aims
to finally reduce the experimental uncertainty by a factor of four [44]. If this goal is
attained (experimental error ≈ 13 × 10−11), the main uncertainty in the comparison

11



between theory and experiment will come from the hadronic theoretical contribution, for
which improvements are also expected [45].

Provided the experimental result and SM theoretical prediction are confirmed in the
future, one can reversely consider the two effects of muon g − 2 (theory-experiment)
difference and HVP contribution (lattice QCD - R ratio) difference as tests of the special
scale-relativity theory. These tests are both positively satisfied at the 5σ level in terms
of the most precise data and numerical calculation. From the observed effect, one can
derive the value of the constant C0,

C0 =

√
−α2 x lnx3

8 δaµ
= 44.3+5.0

−3.7. (27)

The value of Cµ lies within 0.4σ of this theoretical prediction and Ce at 1.4σ. Expressed
in terms of scale ratio, one finds ρP0 = eC0 = 2× 1019±2, which clearly points toward the
Planck mass-scale mP = 1.22 × 1019 GeV. This brings direct support to our deduction
according to which the new length-scale, naturally introduced in SSR as being invariant
under scale transformations of the reference system, must be identified with the Planck
length-scale [22]. Such a length-scale, which is unreachable, uncrossable toward smaller
scales, invariant under dilatations and contractions (including the Lorentz length contrac-
tion and time dilatation), plays the same role for resolution-scales as played by the velocity
of light for velocities, since c is also unreachable by massive particles, unsurpassable and
invariant under motion transformations of the reference system.

Moreover, the theory could be newly put to the test in the future by performing in
position space SM numerical calculations of other quantities of particle physics expected
to be perturbed by SSR effects and comparing them to their data-driven counterpart
derived in momentum space.

References

[1] P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

[2] P.J. Mohr, D.B. Newell and B.N. Taylor, (CODATA 2014), Rev. Mod. Phys. 88, 1
(2016).

[3] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 109, 111807
(2012), arXiv:1205.5368.

[4] G. W. Bennett, B. Bousquet, H. N. Brown, G. Bunce, R. M. Carey et al. (Muon
g − 2 Collaboration), Final report of the muon E821 anomalous magnetic moment
measurement at BNL, Phys. Rev. D 73, 072003 (2006).

[5] F. Jegerlehner and A. Nyffeler, Phys. Rep., 477, 1 (2009).

[6] F. Jegerlehner, Acta Phys. Pol. 49, 1157 (2018).

[7] B. Abi et al., Phys. Rev. Lett. 126, 141801 (2021).

[8] T. Aoyama et al. [Muon g-2 Theory Initiative “White Paper”], Phys. Rept. 887, 1-166
(2020).

12



[9] S. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from
lattice QCD, Nature 593, 51 (2021), arXiv:2002.12347.

[10] T. Blum et al., Phys. Rev. Lett. 121, 022003 (2018), arXiv:1801.07224.

[11] H. Wittig, Progress on (g − 2)µ from Lattice QCD (2023, arXiv: 2306.04166.

[12] C. T. H. Davies et al. (Fermilab Lattice, MILC, HPQCD), Windows on the hadronic
vacuum polarization contribution to the muon anomalous magnetic moment, Phys.
Rev. D 106, 074509 (2022), arXiv : 2207.04765.

[13] M. Bruno, Hadronic contributions to the muon g− 2 from lattice QCD, Hadron2023
20th International Conference on Hadron Spectroscopy and Structure, Genova, Italy,
June 5th 2023

[14] T. Blum et al. (RBC and UKQCD Collaborations), An update of Euclidean windows
of the hadronic vacuum polarization, CERN-TH-2023-010, arXiv: 2301.08696.

[15] G. Colangelo et al., Phys.Lett. B 833, 137313 (2022), arXiv: 2205.12963.

[16] C. Aubin, T. Blum, C. Tu, M. Golterman, C. Jung and S. Peris, Light quark vacuum
polarization at the physical point and contribution to the muon g − 2, Phys. Rev. D
101, 014503 (2020) arXiv: 1905.09307.

[17] C. Alexandrou et al., Lattice calculation of the short and intermediate time-distance
hadronic vacuum polarization contributions to the muon magnetic moment using
twisted-mass fermions, (2022), arXiv:2206.15084
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