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Optimizing Multicarrier Multiantenna Systems for
LoS Channel Charting

Taha Yassine, Luc Le Magoarou, Matthieu Crussière, Stéphane Paquelet

Abstract—Channel charting (CC) consists in learning a map-
ping between the space of raw channel observations, made
available from pilot-based channel estimation in multicarrier
multiantenna system, and a low-dimensional space where close
points correspond to channels of user equipments (UEs) close
spatially. Among the different methods of learning this mapping,
some rely on a distance measure between channel vectors. Such
a distance should reliably reflect the local spatial neighborhoods
of the UEs. The recently proposed phase-insensitive (PI) distance
exhibits good properties in this regards, but suffers from ambi-
guities due to both its periodic and oscillatory aspects, making
users far away from each other appear closer in some cases. In
this paper, a thorough theoretical analysis of the said distance
and its limitations is provided, giving insights on how they can be
mitigated. Guidelines for designing systems capable of learning
quality charts are consequently derived. Experimental validation
is then conducted on synthetic and realistic data in different
scenarios.

Index Terms—channel charting, dimensionality reduction,
MIMO signal processing, machine learning.

I. INTRODUCTION

The next generation of cellular network (6G) standards will
most likely be marked by a profound integration and utilization
of artificial intelligence and in particular machine learning
(ML) methods [1], [2], [3], [4], [5]. Indeed, their ability to
learn complex patterns from data makes them suitable for
many applications where traditional model-based approaches
rapidly reach their limit, especially with the advent of mas-
sive multiple input multiple output (MIMO) systems where
very large bandwidths and a large number of antennas are
considered.

User positioning, which will certainly play an important
role in future wireless communication systems, is one such
example where ML is expected to bring improvements over
traditional approaches. Although dedicated positioning sys-
tems like global navigation satellite systems (GNSS) are
capable of accurately locating users, they require dedicated
hardware, and integration in traditional communication sys-
tems is not always feasible nor desired [6]. They are also
known for their bad performance in indoor scenarios, making
them not as versatile as needed. Pure radio-based approaches
where the existing communication systems are used for user
positioning may thus become more attractive. Such approaches
are often model-based where they rely on angle-of-arrival
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(AoA), time-difference-of-arrival (TDoA) and round-trip-time
(RTT) measurements [7]. These rather basic models work well
for simple scenarios, e.g., line-of-sight (LoS) propagation, but
struggle when tested on complex environments, e.g., non-
line-of-sight (NLoS) propagation. They constitute a great step
towards accurate and precise positioning but still fall behind in
terms of the performance requirements of the next generations
of wireless systems.

The today widespread adoption of massive MIMO systems
and large bandwidths means higher resolvability in both the
temporal and angular domains. The channel, being dependent
almost exclusively on the transmit position, is then expected to
contain enough information to retrieve it. Nonetheless, hand-
crafting algorithms capable of this becomes unrealistic as
propagation scenarios become more complex. On the other
hand, data-driven methods were successfully exploited to learn
to locate UEs with great precision [8], [9], [10], [11]. However,
these methods come with their own drawbacks as they usually
require a database of labelled data often hard to acquire. This
becomes even more challenging as a database needs to be
provided for every new environment to train the model. This
being said, although many components of a communication
system may benefit from the knowledge of UEs’ locations,
most of them would only require a relative positioning of the
users.

Recently, channel charting (CC) [6], [12], [13] has emerged
as an unsupervised alternative to user positioning, relying
solely on channel data to pseudo-locate UEs relatively to
each other. It consists in learning a mapping between channel
measurements and a low dimensional space, giving rise to
a chart. Points on the chart are akin to pseudo-locations in
that they preserve the structure of small spatial neighborhoods
rather than the absolute locations. Although less informative
than absolute locations, they often convey enough information
for some location-based applications such as SNR predic-
tion [14], beam management [15], pilot allocation [16] and
precoding [17] among others (see [18] for a recent survey on
the topic).

Among CC methods, some explicitly rely on a distance
measure between channels to build the chart [19], [20], [21],
[22]. For them to be successful, the considered channel
distance must allow to reliably detect if any two channels
measurements were taken close to each other or not in a given
area. In other words, the spatial neighbourhoods within the
considered area should be identifiable by the channel distance
measure. One can then raise the following two questions: What
distance is the most adequate for identifiability? And how can
a multicarrier MIMO system be calibrated and parameterized
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to guarantee it?
Contributions. In this paper, MIMO OFDM systems are con-
sidered for the task of CC in LoS conditions. First, the notion
of identifiability of an area by a channel distance is rigorously
defined and its importance for CC is discussed. Then, the
phase-insensitive (PI) distance introduced in [20] and used
for CC in [17], [23] is thoroughly analyzed, highlighting its
dependency on system parameters such as antenna positions
and subcarrier distribution. Conditions to achieve identifiabil-
ity of an area that link it to these system parameters using the
PI distance are given. Special system configurations easing
identifiability and consequently particularly suited for CC are
proposed. In particular, the following practical guidelines are
provided:

1) A relationship between the radial size of the area to chart
and the subcarrier spacing is given in order to avoid long-
range ambiguities (Proposition 1).

2) An appropriate threshold on the considered channel dis-
tance is given in order to avoid short-range ambiguities
(Proposition 2).

3) The advantage of using uniform circular arrays (UCA) in-
stead of ULAs for CC is shown mathematically (Sec. IV).

4) A relationship between the radius of the UCA and the
bandwidth is given to minimize warping effects on charts
(Proposition 4).

Finally, experiments are conducted on both synthetic and
realistic channels, validating all the theoretical findings of the
study.
Related work. The initial approaches to CC relied on ex-
tracting useful features from channel measurements before
effectively learning a chart. In the seminal paper [6], features
derived from the raw 2nd moment of channel vectors are used
as inputs to manifold learning methods. Subsequent work use
this same strategy to preprocess the data before feeding it
to relevant CC methods, typically dimensionality reduction
algorithms based on pairwise distances in the feature space.
Alternatively, some proposed methods [12], [24], [13], [25]
successfully learn channel charts of good quality by relying
on deep learning. Neural networks of different natures and
structures (e.g. CNNs, auto-encoders, siamese networks, triplet
networks) would take the handcrafted features as input and
try to implicitly learn the underlying spatial distribution of the
channel vectors in order to be able to project them on the
chart.

Some work in particular consider the problem from a
different angle and frame it as one of finding a channel
distance that reflects the spatial properties that should be
preserved in the learned chart. Indeed, as observed in [20],
the Euclidean distance is not suitable for channel vectors. The
proposed PI distance eliminates the effect of the global phase,
making it insensitive to small scale fading and more adequate
to CC. In [15], the log-Euclidean distance between covariance
matrices is used to produce charts. In [19], a correlation
matrix distance is introduced to rule out channels with large
azimuthal separation from the construction of a neighborhood
graph, the edges of which are computed relying on the feature
distance originally introduced in [6]. In [22], a multi-anchor
time of flight (ToF) based distance is derived and exploited

to construct the neighborhood graph. The geodesic distance
resulting from it shows great correlation with the spatial
Euclidean distance. In [21], an earth mover’s distance (EMD)
applied to super-resolution channel features is introduced and
shown to outperform other considered covariance distances
(i.e. distances defined on the space of covariance matrices,
such as the log-Euclidean distance uses in [15]).

This paper is (to the best of the authors’ knowledge) the first
to propose system configurations explicitly targeted at easing
CC. To do so, the PI channel distance is considered [20], but
others could have been also considered.

Although this paper doesn’t explore the communication
capabilities of the designed system, it could nonetheless be
framed as an ISAC problem [26]. Indeed, this paper focuses on
adapting an existing communication system to CC, which can
be seen as a form of sensing. Similarly to [27], the approach
presented here could be easily extended to account for a trade-
off between communication and CC.

II. PROBLEM FORMULATION

In this section, the considered setting is introduced, the CC
task is briefly presented and the notion of identifiability is
properly defined and discussed.

A. System and channel model

Let us consider a base station (BS) equipped with Na
antennas, located at positions ~p1, . . . , ~pNa relative to the
barycenter of the antennas, which is considered as the origin.
The BS communicates with single antenna UEs over Ns
evenly spaced OFDM subcarriers f1, . . . , fNs . Let ∆f denote
the subcarrier spacing, B , Ns∆f denote the total bandwidth,
fc , 1

Ns

∑
i fi the central frequency and λ , c

fc
the central

wavelength.
In order to make the theoretical analysis of the paper clear

and interpretable, let us consider a two dimensional (2D)
configuration in which the BS antennas and the users are at the
same height (all in the same plane) and free space propagation.
In that case, the channels have a single LoS path, so that the
uplink channel between an user at location ~x = (r, θ) (in
polar coordinates) and the nth antenna of the BS on the mth
subcarrier can be expressed as

hmn(~x) = hmn(r, θ) =
1

r
e−j 2π

λ (r fmfc −~pn.~u(θ)), (1)

where ~u(θ) = (cos(θ), sin(θ)) (in cartesian coordinates) is
the unit vector pointing towards the location ~x. The complete
channel considering all BS antennas and subcarrier can then
conveniently be expressed in vector form as

h(~x) =

√
NaNs
r

e−j2π rλ f(r)⊗ a(θ) ∈ CNaNs , (2)

where f(r) and a(θ) are the frequency signature vector and
the steering vector respectively, defined as

f(r) ,
1√
Ns

(
e−j2π rc (f1−fc), . . . , e−j2π rc (fNs−fc)

)>
, (3)

and

a(θ) ,
1√
Na

(ej 2π
λ ~p1.~u(θ), . . . , ej 2π

λ ~pNa .~u(θ))>. (4)
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The latter is in generic form and encompasses any 2D an-
tenna array configurations. In particular, for a uniform linear
array (ULA), ~pn is given as (0, (n − 1)∆rλ) where ∆r is
the normalized antenna separation. Similarly, for a uniform
circular array (UCA), although less common, ~pn is given as
(R cos( 2π(n−1)

Na
), R sin( 2π(n−1)

Na
)) where R is the radius of the

array.

B. Channel charting

Let us denote M = NaNs the considered channel dimen-
sion. CC aims at learning a function F that maps the channel
vectors of UEs in an area of interest A to a low-dimensional
space of dimension D �M ,

F : CM → RD

h 7→ F(h) = z,

where z is the chart location associated to h. CC methods are
assessed on their ability to preserve spatial neighborhoods, that
is, how well the original spatial distances match the distances
on the learned chart for close points

‖~xi − ~xj‖2 ≈ ‖zi − zj‖2. (5)

The ability to preserve the global geometry can also be
considered. Performance measures such as continuity (CT),
trustworthiness (TW) and Kruskal stress (KS) are used to
assess the quality of such charts (see [24] for a formal
definition). They are calibrated using a database of channel
measures at different locations

{hi}Nci=1 = {h(~xi)}Nci=1,

Nc being the number of measured channels (training samples),
and the two notations can be used indifferently, depending on
the wish for brevity or explicitness.

This paper focuses on charting methods based on a distance
measure d : CM×CM → R+ between pairs of channel vectors
(or features derived from it) that tries to match the Euclidean
distances between the real locations as closely as possible such
that

‖~xi − ~xj‖2 ≈ d(hi,hj)‖2. (6)

Such a distance is then used to produce the chart. In general,
a distance matrix between all pairs of training channels is
computed:

D ∈ RNc×Nc , with dij = d(hi,hj),

and subsequently used as the input to a dimensionality re-
duction algorithm, such as Isomap or EDMC + ADMM [19],
capable of producing the final chart.

C. Identifiability

Using an appropriate distance measure is necessary to build
good charts. In particular, the distance should allow to detect
spatial neighborhoods. In order to make this statement more
precise, let us define the identifiability of a set of channel
observations by a distance.

Definition 1 (Strong Identifiability). A set of channel observa-
tions and their corresponding locations S ⊂ R2 are said to be
strongly identifiable by the channel distance d iff ∀~x, ~y, ~z ∈ S
d(h(~y),h(~x)) > d(h(~z),h(~x))⇔ ‖~y − ~x|‖2 > ‖~z − ~x|‖2
This definition is described as strong because it amounts

to finding a channel distance bijective with the Euclidean
distance. Since achieving this is often challenging, a weak
version of the problem is presented.

Definition 2 (Weak Identifiability). A set of channel observa-
tions and their corresponding locations S ⊂ R2 is said to be
weakly identifiable by the channel distance d iff ∀~x, ~y, ~z ∈ S

d(h(~y),h(~x)) > d(h(~z),h(~x))

⇒ |ry − rx| > |rz − rx| or |θy − θx| > |θz − θx|
This weak version of identifiability is defined in terms of

the polar coordinates to better suit the mathematical model un-
derlying the propagation channels. Obviously, strong identifi-
ability implies weak identifiability, so that weak identifiability
is necessary for strong identifiability.

For a CC method based on a distance d to perform well on
an area A, identifiability is an important pre-requisite. Indeed,
it is impossible for the method to preserve spatial neighbor-
hoods (which is its objective) if the channel distance measure
it is based on already fails to do so. In the subsequent parts of
the paper, the distance measure introduced in [20] is analyzed,
leading to the statement of system setting guidelines and a
thresholding procedure in order to favor weak identifiability.
For two UEs communicating with the BS with corresponding
channel vectors hi and hj , this distance is defined as

d?(hi,hj) ,
√

2− 2s?(hi,hj), (7)

where s?(hi,hj) ,
|hHi hj |

‖hi‖2‖hj‖2 is a similarity measure.
The first step of the analysis of the distance is to notice that

it can nicely be decomposed into a radial and an angular term.
Indeed, when injecting (2) one can highlight the following
decomposition:

|hHi hj |
‖hi‖2‖hj‖2

=
∣∣∣(f(ri)⊗ a(θi))

H
(f(rj)⊗ a(θj))

∣∣∣
(a)
=
∣∣(f(ri)H ⊗ a(θi)

H
)

(f(rj)⊗ a(θj))
∣∣

(b)
=
∣∣(f(ri)Hf(rj)

)
⊗
(
a(θi)

Ha(θj)
)∣∣

=
∣∣(f(ri)Hf(rj)

)∣∣︸ ︷︷ ︸
f̄(ri,rj)

×
∣∣(a(θi)

Ha(θj)
)∣∣︸ ︷︷ ︸

ā(θi,θj)

,

(8)

where (a) and (b) are because of the transpose property
and the mixed-product property of the Kronecker product
respectively. This leads to a nice expression of s?(hi,hj)
as the product of two terms: f̄(ri, rj) and ā(θi, θj). This
decomposition in terms of radial and angular component
explains why weak identifiability is studied here.

Even if such distance measure is phase insensitive, it is
still subject to ambiguities that prohibit the establishment of
unique local neighborhoods. Indeed, when moving away from
a given reference point in an arbitrary direction, the value of
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the distance oscillates, meaning that points on that line appear
successively farther then closer then farther again with varying
amplitudes, creating aliases. In particular, these ambiguities
arise from two phenomena: a long-range one and a short-
range one. Combined, they create false neighborhoods that
affect the trustworthiness of the measure. On one hand, the
long-range ambiguities are caused by the periodic nature of
the function, meaning that local neighborhoods are duplicated
indefinitely in a periodic manner. A simple solution to go
around this problem is to only consider users in a area smaller
or equal to one period of the function. System parameters
could consequently be adjusted to obtain an area of the
desired size. One the other hand, the short-range ambiguities
are caused by the oscillatory nature of the function inside
one period. Fortunately, the amplitudes of the oscillations
decrease monotonically, meaning that applying a threshold
to only keep the main lobe is feasible and would allow the
elimination of the remaining aliases. These considerations are
made mathematically rigorous in the next section assuming a
ULA for the antenna array.

III. LIMITATIONS OF CHANNEL CHARTING WITH A ULA

In the classical case of a base station equipped with a ULA,
it is possible to explicit further the terms of the decomposition
(8). This allows to highlight the limitations of ULAs for
channel charting. Note that uniform planar arrays (UPAs)
could almost similarly be analyzed as an extension to the 3D
case but are not considered here.

Before proceeding, a review of some classical results is
necessary as proposed in the following Lemmas.

Lemma 1. In an OFDM system with evenly spaced subcarri-
ers, the radial term is of the form

f̄(ri, rj) =

∣∣∣∣DNs

(
2πB(ri − rj)

c

)∣∣∣∣ , (9)

where DNs is the Dirichlet kernel defined as DN (x) =
1
N

sin( x2 )

sin( x
2N ) . It is periodic of period Df̄ = c

∆f
provided that

the absolute delays of both channel observations (i.e., τi and
τj) are known. Additionally, it contains a main lobe of width
Lf̄ = 2c

B centered at ri = rj .

Proof. See Appendix A.

Lemma 2. With a ULA, the angular term is of the form

ā(θi, θj) = |DNa(2π∆rNa(Θi −Θj))| , (10)

where Θ = sin θ. It is of period Dā = 1
∆r

w.r.t. Θ. It contains
a main lobe centered at Θi = Θj of width 2

∆rNa
. In addition,

it is symmetrical w.r.t. θ = π
2 [π].

Proof. See Appendix B.

When taken w.r.t. θ, the sin in (10) makes the periodic
pattern of varying width in the intervals [−π2 , π2 ] + πZ. When
the pattern is of width π, it covers the whole interval, leading
to the following corollary:

Corollary 2.1. If the ULA antennas are separated by half
the wavelength (i.e., ∆r = 1

2 ), ā contains a single main lobe

A
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Fig. 1: The left figure shows a plot of the similarity s?(href,h)
between the reference user (green cross and lines) and the
rest of the points on the map. The BS is placed at its center.
The top right figure shows a plot of f̄(rref, r) and the bottom
right one shows a plot of ā(θref, θ). User A (blue cross and
lines) is spatially closer to the reference user than user B (red
cross/lines), but the distance measure makes the latter appear
closer than the former.

∀θi, θj ∈ [−π2 , π2 ]. For a given θi ∈ [−π2 , π2 ], the main lobe
extends from arcsin(sin θi − 1

Na∆r
) to arcsin(sin θi + 1

Na∆r
)

when −1 + 1
Na∆r

≤ sin(θi) ≤ 1− 1
Na∆r

, otherwise it is split
in two. For θi = 0, its width is equal to La = 2 arcsin( 1

Na∆r
)

(in rad).

Proof. The proof follows from Lem. 2 where the arcsin is
applied to the width of the main lobe to convert it to the
angular domain.

In the case where the main lobe is split in two:

1) if sin(θi) ≤ −1+ 1
Na∆r

, one part extends over the span of
[−π2 , arcsin(sin θi + 1

Na∆r
)] and the other over the span

of [arcsin(sin(π2 − θi)− 1
Na∆r

), π2 ];
2) if 1− 1

Na∆r
≤ sin(θi), one part extends over the span of

[−π2 , arcsin(sin(−π2 + θi) + 1
Na∆r

)] and the other over
the span of [arcsin(sin θi − 1

Na∆r
), π2 ].

In the remainder of this paper, ULAs with half a wavelength
separated antennas are considered.

Fig. 1 show a 2D color plot of (8) along with plots of f̄ and
ā for some arbitrary system parameters and for a reference
user with associated channel href and position (rref, θref). It
highlights the limitations of the current form of the distance
measure that is, from its point of view, 2 UEs far away
from each other can appear closer due to its periodic and
oscillatory nature. Specifically, for a given reference UE, a
UE A located on a local minimum of s? will be considered
farther than a UE B located on a local maximum even if A is
closer than B in reality (i.e. according to the Euclidean distance
between the UEs’ locations).
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To deal with the ambiguities mentioned above, system
parameters should be chosen guided by the results of Lemma 1
and Corollary 2.1 with regards to Definition 2.

Proposition 1. Necessary identifiability condition for
ULA. A necessary condition for UEs in an area A to be
weakly identifiable by d?, is:

1) the radial size R of A should satisfy R ≤ c( 1
∆f
− 1
B ),

2) for a given θ ∈ [arcsin(− 1
Na

), arcsin( 1
Na

)], the
angular spread of A should remain in the interval
[arcsin(sin(θ) + Na−1

Na
), arcsin(sin(θ)− Na−1

Na
)],

Proof. Considering that s? is the product of two terms
parametrized by orthogonal parameters, the area of identifiable
channels is characterized by deriving ranges on these param-
eters independently. Essentially, this amounts to determining
intervals on ri, rj and θi, θj where only the central main lobes
of f̄ and ā, respectively, remain.

Since the period of f̄ is Df̄ = c
∆f̄

, it is straightforward to
conclude that for a given r representing the radial center of
the area, ri and rj should remain in the range [r − (

Df̄
2 −

Lf̄
4 ), r + (

Df̄
2 −

Lf̄
4 )]. Half the width of the main lobes (i.e.,

Lf̄
2 ) is subtracted at the extremities to leave them out of the

area and avoid resulting ambiguities. This results in an area
of radial width of 2× (

Df̄
2 −

Lf̄
4 ) = c( 1

∆f
− 1

B ).

Regarding ā, consider (10) where the period is Dā = 1
∆r

w.r.t. Θ. For a given θ representing the angular center of the
area where sin(θ) = Θ, Θi and Θj should remain in the range
[Θ−(Dā2 −Lā

4 ),Θ+(Dā2 −Lā
4 )] = [Θ−Na−1

Na
,Θ+Na−1

Na
] (with

∆r = 1
2 ). When converted to the angular domain, the angular

range is given by [arcsin(sin(θ) − Na−1
Na

), arcsin(sin(θ) +
Na−1
Na

)]. To respect the definition domain of arcsin, θ should
remain in the interval [arcsin(− 1

Na
), arcsin( 1

Na
)].

Proposition 1 is illustrated in Fig. 2. Notice how the width
of the area is composed of two terms: c

∆f
and c

B . When the
number of subcarriers Ns is high enough, the second one
becomes negligible compared to the first, meaning that the
radial size of the area is mainly controlled by the subcarrier
spacing ∆f . On the other hand, when the number of antennas
is high enough, the angular range of the area tends to [−π2 , π2 ],
meaning that it covers the whole area in front of the ULA.
With this in mind, for UEs in an area of radial width R, the
subcarrier spacing should be fixed so that ∆f / c

R . Another
important remark is that an identifiable area, by definition,
should not cross the line of the ULA.

Proposition 1 is necessary because it is required that any
channel set identifiable by d? according to Definition 2 is
included in a well defined region controlled by system pa-
rameters. It is defined as the smallest region where a single
main lobe appears wherever the reference user is taken,
effectively eliminating long-range ambiguities. However, it is
not sufficient because short-range ambiguities still subsist.

Fig. 2: The identifiable area’s outline. Any region A of
any shape included in there (e.g., the red region) verifies
the necessary condition for identifiability. The green patch
represents the identifiable neighborhood of the channel at its
center. The orange segment is its radial axis and the yellow
arc is its angular axis. The blue segment represents the ULA
at the location of the BS. r is the radial center of the area and
θ is its angular center.

Proposition 2. Sufficient identifiability condition for
ULA. A sufficient condition for UEs in an area A to
be weakly identifiable by d? is, in addition to verifying
the necessary identifiability condition, for their similarity
value s? to be above or equal to a threshold ts ,
max(|DNs(3π)|, |DNa(3π)|).

Proof. Given a reference channel href in the identifiable area,
to cut out the secondary lobes of s?(href, .), only values above
their maximum should be retained for the distance measure.
Consequently, corresponding thresholds tf̄ and tā are derived
for the frequency and angular terms respectively. The thresh-
olds are deduced from the amplitude of the second highest
extremum (because of the absolute value) of the Dirichlet ker-
nel. The first one is given as tf̄ , |DNs(3π)| = 1

Ns sin( 3π
2Ns

)
.

Similarly, the second threshold is given as tā , |DNa(3π)| =
1

Na sin( 3π
2Na

)
. Since s? = f̄ × ā and knowing that 0 ≤ f̄ , ā ≤ 1,

a sufficient condition for both terms to be above their thresh-
olds is to impose s?(href, .) ≥ ts , max(tf̄ , tā). The set
of channels verifying this condition, called the identifiable
neighborhood of href, is a subset of the set of all identifiable
channels.

For ∀~x in the identifiable region and ∀~y, ~z in its identifiable
neighborhood

d?(h(~y),h(~x)) > d?(h(~z),h(~x)) (11)
⇔ |f̄(h(~y),h(~x))| × |ā(h(~y),h(~x))| > (12)

|f̄(h(~z),h(~x))| × |ā(h(~z),h(~x))| (13)
⇒ |f̄(h(~y),h(~x))| > |f̄(h(~z),h(~x))| (14)

or |ā(h(~y),h(~x))| > |ā(h(~z),h(~x))| (15)

Since the identifiable neighborhood corresponds to the main
lobes of f̄ and ā, this means that they are strictly monotonic
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in that interval w.r.t. their parameter r and θ respectively. As
a consequence,

d?(h(~y),h(~x)) > d?(h(~z),h(~x))

⇒ |ry − rx| > |rz − rx| or |θy − θx| > |θz − θx|.

Each identifiable channel has its own identifiable neighbor-
hood. In particular, the spatial region associated to it has a
shape that resembles an ellipse with a radial linear axis and
an angular curved one, corresponding to the radial and angular
lobes respectively, as shown on Fig. 2. Consequently, any
channel which location belongs to that region is in the identi-
fiable neighborhood of the reference channel. This results in a
neighborhood graph that can be exploited by other methods to
construct the low-dimensional channel chart. A consequence
of the thresholding operation involved in the construction of
this graph is that the main lobes’ widths are changed. The new
width of the main lobe of the frequency component, noted L′

f̄
,

is the solution to the equation
∣∣∣DNs(

πBL′
f̄

c )
∣∣∣ = ts. It can be

computed through the inversion of DNs in the interval [0, 2π]
using classical root finding algorithms. A similar method
can be used to derive the new width of the main lobe of
the angular component, noted L′ā (in rad). It is given this
time as the difference between the two roots of the equation
|DNa(2π∆rNa(sin θ0 − sin θ))| = ts in the interval [−π2 , π2 ].
Hence, the radial axis of an identifiable neighborhood is of
length L′

f̄
while its angular axis is of length L′ā × rref.

Although the necessary and sufficient conditions guarantee
the weak identifiability of d∗ in the case of a ULA, it can
still suffer from the varying geometrical size of the identifiable
neighborhoods. Indeed, the width of the main lobe of ā(θref, .)
is not constant and depends on θi. In addition, a ULA is limited
to the half-space in front of it because of the symmetry at
θ = π

2 [π] (the axis of the ULA) causing ambiguities. The
next section dives into how using a UCA can help mitigate
these limitations.

IV. UCA ARE BETTER THAN ULA FOR CHANNEL
CHARTING

In this section, the use of UCAs as a replacement for ULAs
is explored. It is shown that UCAs are better for charting
than ULAs because they do not exhibit axial symmetry and
their angular resolution is constant (does not depend on
the azimuth), which allows to derive a relation between the
bandwidth and the radius of the UCA that limits the warping
behavior of CC.

Lemma 3. With a UCA, a good approximation of ā is of the
form

ã(θi, θj) =

∣∣∣∣J0

(
4π

λ
R

∣∣∣∣sin θi − θj2

∣∣∣∣)∣∣∣∣ , (16)

where J0 is the Bessel integral of order 0. It contains a
single main lobe in the interval [−π, π] centered at θi = θj
of width Lã = 4 arcsin(min( λ

4πR × j0,1, 1)) (in rad) where
j0,1 = 2.4048 is the first root of the Bessel integral of order
0 [28].

s̃?(href,h)
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Fig. 3: The left figure shows a plot of the similarity s̃?(href,h)
between the reference user (green cross) and the rest of the
points on the map. The BS is placed at its center. The top
right figure shows a plot of f̄(rref, r) and the bottom right one
shows a plot of ã(θref, θ).

Proof. See Appendix C.

Based on this approximation, a new distance function is
defined,

d̃?(hi,hj) ,
√

2− 2s̃?(hi,hj), (17)

where s̃?(hi,hj) = f̄(ri, rj) × ã(θi, θj). Fig. 3 show a 2D
color plot of (8) along with plots of f̄ and ã for some arbitrary
system parameters and for a reference user with associated
channel href and location (rref, θref). Contrary to s?, this time
only one angular main lobe appears.

Proposition 1′. Necessary identifiability condition for
UCA. For UEs in an area A to be weakly identifiable by
d̃?, its radial size R should satisfy R ≤ c( 1

∆f
− 1

B ).

Proof. The first part of the proof is the same as the one
involving f̄ in the proof of Proposition 1.

Regarding ã, the function contains a single main lobe in
its domain of definition according to Lem. 3 and is thus not
subject to long-range ambiguities that can be caused by the
period nature of a a function.

Proposition 1′ is illustrated Fig. 4. It highlights the fact
that with a UCA, the identifiable area is no longer angularly
restricted and is extended to include the whole angular domain
(i.e., [−π, π]) with no ambiguities.

Proposition 2′. Sufficient identifiability condition for
UCA. A sufficient condition for UEs in an area A to be
weakly identifiable by d̃? is, in addition to verifying the
necessary identifiability condition and for Ns > 2, for their
similarity value s̃? to be above or equal to a threshold
ts̃ , 0.403.
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Fig. 4: The identifiable area’s outline. Any region A of
any shape included in there (e.g., the red region) verifies
the necessary condition for identifiability. The green patch
represents the identifiable neighborhood of the channel at its
center. The orange segment is its radial axis and the yellow
arc is its angular axis. The blue circle represents the UCA at
the location of the BS. r is the radial center of the area.

Proof. The proof follows the same logic as that of Proposi-
tion 2 with the difference that this time the threshold of the
angular term is changed and is derived from the amplitude
of the second highest extremum of the Bessel integral. It is
straightforwardly given as tã , |J0(j′0,1)| = 0.403 where
j′0,1 = 3.8317 is the first root of the derivative of the
Bessel integral of order 0 [28]. The global threshold is given
as ts̃ , max(tf̄ , tã). Finally, knowing that tf̄ is strictly
decreasing with Ns, and that tf̄ < tã for Ns > 2, it follows
that ts̃ = tã for Ns > 2.

This time again, thresholding has an impact on the widths of
the main lobes. Since ts̃ has now a constant value, a closed-
form expression of L′

f̄
can be derived through inversion of∣∣∣DNs(

πBL′
f̄

c )
∣∣∣ = ts̃. Although the root depends on Ns, its

actual value varies negligibly with it and is thus derived for
Ns → ∞ as an acceptable approximation. As a result, the
width of the radial main lobe after thresholding is given by
L′
f̄

= c×4.238
πB . Similarly, the new width of ã (in rad), noted L′ã,

is given as the solution to the equation
∣∣∣J0( 4π

λ R
∣∣∣sin L′ã

4

∣∣∣)∣∣∣ =

ts̃. It can be computed through the inversion of J0 in the
interval [0, j0,1]. It’s value is given by L′ā = 4 arcsin( λ

4πR ×
1.692).

Proposition 3. Constant angular spread. When using the
thresholded channel distance, the UCA (as opposed to the
ULA) yields neighborhoods whose angular spread do not
depend on the azimuth.

Proof. The proof directly follow from the fact that L′ā, which
represents the angular spread of the obtained neighborhoods,
doesn’t depend on θ.

A
B

γ = 2.46

(a)

A

B

γ = 1.00

(b)

A

B

γ = 0.63

(c)
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2.00
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Fig. 5: Visualization of the distance measure for identifiable
neighborhoods at (a) the inner, (b) center and (c) outer edge
of the identifiable area as pictured in Fig. 4. The circle outline
helps visualize how their shapes deviate from being perfectly
round. UEs A and B are considered at the same distance from
the point of view of the PI distance.

This is a very interesting property since it implies that the
angular distance perceived by the system is independent of the
azimuth, thus avoiding warping in the obtained channel chart,
as illustrated in Sec. V-B. However, the size of the resulting
identifiable neighborhoods are still not constant everywhere.
To ensure that the distance reflects the true geometrical neigh-
borhoods without distortion, the identifiable neighborhoods
should be as round as possible. This is measured by the ratio
of both their axis, i.e. γ ,

L′
f̄

L′ã×rref
≈ c

Brref

1.06

π arcsin( λ
4πR .1.692)

.

Proposition 4. Round neighborhoods. For a BS equipped
with a UCA of radius R, a bandwidth B and an area con-
sidered for charting whose center is at a distance r0 from
the BS, the neighborhoods identified by the thresholded PI
distance are round at the center of the area if and only if
1 = γ ≈ c

Br0
1.06

π arcsin( λ
4πR .1.692)

.

Proof. Since an identifiable neighborhood has the shape of an
ellipse approximately, it is round when its axes’ lengths, L′

f̄

and L′ã × r0, are equal. As a consequence, γ = 1.

This result allows to determine the optimal bandwidth B
as a function of the distance r0 and the radius R as Bopt =
c
r0

1.06

π arcsin( λ
4πR .1.692)

. It also allows to determine the optimal
radius R as a function of the distance r0 and the bandwidth
B as Ropt = λ.1.692

4π sin
(

c
Br0

1.06
π

) .

Fig. 5 shows the shape of the identifiable neighborhoods
when the reference user is at the inner edge of the iden-
tifiable area, at it’s center and at it’s outer edge, from left
to right respectively. Because of distortion, users A and B
will be considered at the same distance from the reference
user as measured by (8), although it’s only true for the
center identifiable neighborhood. Furthermore, its area can be
approximated with the area of the circle of diameter L′f as
πL
′2
f

4 , as shown on the figure. Since for better performance a
minimum number of neighboring users kmin should be located
inside the area defined by the patch for each reference user,
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the minimum density of users is given as 4kmin

πL
′2
f̄

. In reality, this

density should be a bit higher to account for the distortion
of the neighborhood going towards the inner part of the
identifiable area. In practice, the number of neighbors inside
of the identifiable neighborhoods will vary for each reference
user, but there should be at least one to connect it to the
neighborhood graph constructed by Isomap.

V. EXPERIMENTS

In this section, the theoretical claims and system setting
guidelines of Sec. III and Sec. IV are empirically validated
both on synthetic and realistic channel data.

A. Practical influence of system parameters

A first simple experiment is considered, in which the
effect of system parameters on the obtained channel chart is
evidenced, showing the practical importance of the theoretical
claims of the previous sections. The base scenario consists
of a BS equipped with a UCA of 64 antennas and of radius
R = 42 cm operating at fc = 3 GHz. It transmits over a
bandwidth of B = 10 MHz and Ns = 16 subcarriers. A total
of Nc = 2838 channel observations of UEs located in front
of the BS is generated according to (2). These parameters
are used to compute and characterize the identifiable area,
the identifiable neighborhoods as well as the optimal distance
for the radial center r0 according to the analysis of the
previous sections. The identifiable area’s width is of 422 m
(Proposition 1′) and its radial center should be placed at a
distance of 296 m from the BS to limit neighborhood distortion
(Proposition 4). Fig. 6 shows a visualization of the distance
between the UE at the center of the area (i.e., rref = r0) and
the rest of the UEs before and after thresholding. The base
scenario is tested against 3 variants:

1) not applying the threshold;
2) halved width of the identifiable area by doubling the

subcarrier spacing ∆f and keeping the same bandwidth
so that some users end up outside of it;

3) non-round neighborhoods at the center by reducing the
bandwidth B.

Fig. 7 shows the learned charts for the base scenario as
well as for each variant. The word ”b<>com” helps visualize
how the global structure of the locations is preserved on it.
The chart obtained with the first variant looks disorganized.
Although long-range ambiguities are eliminated, short-range
ones remain as no threshold is applied, causing a degradation
in performance in particular in terms of TW and KS. The chart
obtained with the second variant is warped as the parts of the
considered area that are outside of the identifiable area are
confused with other parts inside of it because of long-range
ambiguities. As a consequence, TW and KS are negatively
impacted. This shows the importance of limiting UEs to the
identifiable zone. The chart obtained with the last variant
is flattened as a consequence of the non-round identifiable
neighborhoods, meaning that distances are perceived differ-
ently on the radial and angular directions. While there is little
impact on TW and CT, KS is highly impacted because the

−300

−200

−100

0

Before thresholding

−200 0 200

−300

−200

−100

0

After thresholding

Fig. 6: The computed PI distance between a reference UE (red
point) and the rest of the UEs before (left) and after (right)
thresholding. The greyed points represent the points that are
outside the identifiable neighborhood and thus discarded.

global structure of the chart is not preserved. Finally, the chart
obtained in the base scenario has the best overall performance
and, although not perfect in terms of the global structure,
represents a pretty faithful representation of the locations of
the UEs.

B. ULA vs. UCA

Another experiment is considered, this time to further em-
pirically assess the advantage of a UCA over a ULA, in order
to validate the theoretical claims of Sec. IV. A BS placed at the
center of a map communicates with UEs uniformly distributed
around it. The same system parameters as in the base scenario
of the previous section are considered, with the difference that
in one case a ULA of 16 antennas is considered, while in the
other case a UCA of 64 antennas is considered. The difference
in the number of antennas is to obtain lobes of comparable
radial sizes in both cases. In addition, two areas that include
the UEs’ positions are considered: one that is identifiable
according to the UCA and one that is identifiable according to
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0

GT

TW: 1.000, CT: 1.000, KS: 0.163.

Base

TW: 0.932, CT: 0.993, KS: 0.370.

No threshold

TW: 0.850, CT: 0.998, KS: 0.252.

Increased ∆f

TW: 0.999, CT: 0.999, KS: 0.221.

Reduced BW

Fig. 7: The GT UEs’ locations and the learned charts corre-
sponding to the base scenario and its three variants.

the ULA also. The second one is included in the first one by
definition. Note that the communication aspect of the system
is ignored. Fig. 8 shows the ground truth UEs’ locations as
well as the learned charts in each case. In the case of the
red area, only points going from yellow to pink appear on
the chart associated with the ULA, which represent locations
on the right of the map. This is because they overlap with the
locations on its left. The channel distance considers that points
on the right coincide with points on the right due to its axial
symmetry w.r.t. the vertical axis on the figure. Isomap then
proceed to learn a chart that places the wrongly matched points
at the same locations. On the other hand, the chart produced in
the case of the UCA successfully reflects the circular structure
of the locations. The TW score in particular being low in the
case of the ULA indicates that a lot of false neighborhoods are
introduced in the chart which is not the case in the case of the
UCA, confirming the observations. In the case of the orange
area, both charts appear to be of good quality. However, upon
closer inspection, it appears that the chart associated with the
UCA is of better quality as indicated by the lower (i.e., better)
KS score. Indeed, the points appear to be distributed uniformly
whereas in the case the ULA, their density seems to increase
the more pink they get. This can be explained by the angular
width of the identifiable neighborhoods being dependent on
the azimuth in the case of the ULA.

GT

TW: 0.685, CT: 0.991, KS: 0.537.

U
L

A

Red area

TW: 0.996, CT: 0.997, KS: 0.301.

Orange area

TW: 0.971, CT: 0.996, KS: 0.107.

U
C

A

TW: 1.000, CT: 1.000, KS: 0.116.

Fig. 8: The GT UEs’ locations and the learned charts corre-
sponding to the use of a ULA vs. a UCA for two different
areas (red and orange).

C. Realistic scenario

In this experiment, the presented CC approach is tested on a
more realistic scenario using the Sionna ray tracing engine [29]
on the “etoile” scene, which is a 3D reconstruction of the area
around the Arc De Triomphe in Paris. The BS is placed at the
center of the scene and above the arc. It is equipped with a
UCA of 64 elements and a radius of 20 cm. It communicates
at a frequency of 3 GHz and over a bandwidth of 7 MHz.
A total of Nc = 3383 UEs are distributed around it and
chosen so that they meet the necessary identifiability condition
of Proposition 1′, effectively avoiding long-range ambiguities,
and only the LoS path is considered. Note that although the
theory developed in this paper considers the BS and UEs to be
on the same plane, this scenario however considers the more
realistic case where the BS is at a height of 70 m while the
UEs are 1.5 m above the ground. Fig. 9 shows the ground
truth (GT) locations and the charts generated by Isomap
using three different distances. First, the Euclidean distance is
used to showcase the capabilities of Isomap with quasiperfect
knowledge and to serve as a gold standard. In particular, a
neighborhood graph is constructed where neighbors are limited
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GT

TW: 0.999, CT: 1.000, KS: 0.085.

Euclidean distance

TW: 0.909, CT: 1.000, KS: 0.460.

Raw PI distance

TW: 0.998, CT: 1.000, KS: 0.116.

Thresholded PI distance

Fig. 9: The GT UEs’ locations for the realistic scenario and the learned charts corresponding to the use of the Euclidean
distance (gold standard), the raw PI distance and the thresholded PI distance.

to points present in a radius
L′
f̄

2 of each node. This amounts
to restricting the knowledge to identifiable neighborhoods ac-
cording to d̃? as defined in Proposition 2′. The resulting chart
represents what can be achieved with a strongly identifiable
distance (see Definition 1), had one been available. The next
chart is generated by constructing the neighborhood graph
based on the raw PI channel distance, including its short-
range ambiguities (i.e., not applying the threshold so that
the sufficient identifiability condition of Proposition 2′ is not
met). The locations on the chart look warped and spatial
neighborhoods are hardly distinguishable one from another.
The final chart is similarly generated by constructing the
neighborhood graph based on the channel distance but this
time applying the threshold (meeting the sufficient condition
of Proposition 2′) and effectively restricting neighborhoods to
identifiable ones, which has the effect of eliminating the short-
range ambiguities. This results in a much better chart that
closely resemble the GT. As expected, thresholding allows to
greatly improve TW and KS of the obtained chart, which is
perfectly in line with the results of Sec. V-A.

VI. CONCLUSION AND PERSPECTIVES

In this paper, a theoretical framework for the identifiability
of UEs from their channel measurements is introduced in the
perspective of adequately setting the parameters of a MIMO
OFDM system for channel charting purpose. To that end, a PI
channel distance is analyzed, highlighting its short and long-
range ambiguities. A practical method for mitigating these
limitations and eliminating ambiguities is then proposed by
translating the introduced identifiability rules into guidance in
the design of the MIMO OFDM systems. The PI distance
has been applied to CC on a MIMO OFDM system and
the conducted experiments show a great improvement in the
UEs’ neighborhood consistency as long as the established
designing rules are applied. In addition, the advantage of using
UCAs instead of ULAs for CC is demonstrated and validated
through simulations. All the achieved results show a very good

concordance with the theory and make the proposed system
design method very promising.

In future work, the proposed method should be tested on
more realistic scenarios (e.g., NLoS channels) and real-world
measured data. Finally, it should be considered and extended
in the context of ISAC systems with the goal of achieving a
trade-off between communication and sensing.
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APPENDIX A
PROOF OF LEMMA 1

The frequency term can be expressed as

f̄(ri, rj) =
∣∣(f(ri)Hf(rj)

)∣∣
=

1

Ns

∣∣∣∣∣
Ns∑
s=1

e−j2π
ri−rj
c (fs−fc)

∣∣∣∣∣
(a)
=

1

Ns

∣∣∣∣∣
Ns∑
s=1

e−j2π
ri−rj
c ∆f (s−1)e−j2π

ri−rj
c (fc−∆f

Ns−1
2 )

∣∣∣∣∣
=

1

Ns

∣∣∣∣∣
Ns−1∑
s=0

e−j2π
ri−rj
c ∆fs

∣∣∣∣∣
(b)
=

1

Ns

∣∣∣∣∣ sin(π
B(ri−rj)

c )

sin(π
B(ri−rj)
cNs

)

∣∣∣∣∣
=

∣∣∣∣DNs

(
2πB(ri − rj)

c

)∣∣∣∣ .
(18)

where (a) is obtained since fs = fc −∆f
Ns−1

2 + ∆f (s− 1),
and (b) comes from the computation of the geometric series
sum.

APPENDIX B
PROOF OF LEMMA 2

The angular term can be expressed as

ā(θi, θj) =
∣∣a(θi)

Ha(θj)
∣∣

=
1

Na

∣∣∣∣∣
Na−1∑
n=0

e−j
2π
λ ~pn(θi−θj)

∣∣∣∣∣ . (19)

In particular, for a ULA and using the adequate steering
vectors (4)

ā(θi, θj) =
1

Na

∣∣∣∣∣
Na−1∑
n=0

e−j2π∆rn(sin θi−sin θj)

∣∣∣∣∣
=

1

Na

∣∣∣∣ sin(π∆rNa(sin θi − sin θj))

sin(π∆r(sin θi − sin θj))

∣∣∣∣
= |DNa(2π∆rNa(sin θi − sin θj))| .

(20)

APPENDIX C
PROOF OF LEMMA 3

Considering a UCA and using the adequate steering vec-
tors (4), ā(θi, θj) becomes

ā(θi, θj) = |a(θi)
Ha(θj)|

=
1

Na

∣∣∣∣∣
Na∑
i=1

exp

(
−j 2π

λ
R(

cos(2π
i

Na
)(cos θi − cos θj)

+ sin(2π
i

Na
)(sin θi − sin θj)

))∣∣∣∣ ,
(21)
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for the discrete array case. Considering the continuous-
aperture case by setting Na →∞ leads to

ã(θi, θj) =
1

2π

∣∣∣∣∫ 2π

0

exp

(
− j 2π

λ
R
(

cos γ(cos θi − cos θj)

+ sin γ(sin θi − sin θj)
))

dγ

∣∣∣∣
=

1

2π

∣∣∣∣ ∫ 2π

0

exp

(
− j 2π

λ
R(

cos(γ − θi)− cos(γ − θj)
))

dγ

∣∣∣∣.
Substituting ω for γ − θj , and with dω = dγ we have

=
1

2π

∣∣∣∣ ∫ 2π−θj

−θj
exp

(
− j 2π

λ
R(

cos(ω + θj − θi)− cos(ω)
))

dω

∣∣∣∣,
with ∆θ = θj − θi. Since cos is 2π periodic, we have

=
1

2π

∣∣∣∣ ∫ 2π

0

exp

(
− j 2π

λ
R(

cos(ω + θj − θi)− cos(ω)
))

dω

∣∣∣∣.

With the help of basic trigonometric identities, it can be
shown that cos(ω+ θj − θi)− cos(ω) = 2

∣∣∣sin θj−θi
2

∣∣∣ cos(ω+

atan2(sin(θj − θi), cos(θj − θi)− 1)), leading to

=
1

2π

∣∣∣∣ ∫ 2π

0

exp

(
− j 4π

λ
R

∣∣∣∣sin θj − θi2

∣∣∣∣
cos
(
ω + atan2(sin(θj − θi), cos(θj − θi)− 1)

))
dω

∣∣∣∣.
Subsituting γ for ω+atan2(sin(θj−θi), cos(θj−θi)−1)+ π

2 ,
and with dγ = dω we have

=
1

2π

∣∣∣∣ ∫ 2π+atan2(sin(θj−θi),cos(θj−θi)−1)+π
2

atan2(sin(θj−θi),cos(θj−θi)−1)+π
2

e
−j 4π

λ R
∣∣∣sin θj−θi

2

∣∣∣ sin γ
dγ

∣∣∣∣.
Finally, exploiting once again the 2π-periodic property of the
sine, we have

=
1

2π

∣∣∣∣∫ 2π

0

e
−j 4π

λ R
∣∣∣sin θj−θi

2

∣∣∣ sin γ
dγ

∣∣∣∣ .
This leads to a convenient way of expressing ã as it can be
written as

ã(θi, θj) =

∣∣∣∣J0

(
4π

λ
R

∣∣∣∣sin θj − θi2

∣∣∣∣)∣∣∣∣ . (22)

The validity of the integral form as an approximation was
empirically verified and holds well when a great number of
antennas Na is considered.
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