
HAL Id: hal-04218022
https://hal.science/hal-04218022

Submitted on 26 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lifted Tree Path Planner
Gaspard Quenard, Damien Pellier, Humbert Fiorino

To cite this version:
Gaspard Quenard, Damien Pellier, Humbert Fiorino. Lifted Tree Path Planner. Proceedings of
the International Planning Competition (ICAPS), 2023., Jul 2023, Pragues, Czech Republic. �hal-
04218022�

https://hal.science/hal-04218022
https://hal.archives-ouvertes.fr

Lifted Tree Path Planner

Gaspard Quenard, Damien Pellier, Humbert Fiorino
Univ. Grenoble Alpes - LIG
F-38000 Grenoble, France

{firstname.name}@univ-grenoble-alpes.fr

Abstract

In this paper, we present our planner named LTP which stand
for Lifted Tree Path aimed at solving Totally Ordered Hi-
erarchical Task Network (TOHTN) problems. Our planner
is based on the Satisfiability (SAT) planning paradigm and
builds upon the concepts of the Lilotane planner (Schreiber
(2021)), which has scored 2nd in the last IPC in the HTN
Total Order track.

Introduction
Satisfiability (SAT) planning is a widely-used planning
paradigm that employs Boolean satisfiability solvers to find
solutions for planning problems (Kautz et al. (1992, 2006)).
SAT solvers are efficient tools for solving propositional logic
problems. The main challenge in SAT planning lies in iden-
tifying and formulating the appropriate set of rules and con-
straints that effectively encode a given planning problem
into SAT clauses. Once the planning problem is encoded into
SAT clauses, the solution process relies on the underlying
SAT solver to efficiently search for satisfying assignments.

Several SAT planners have been developed to encode
TOHTN problems (Behnke et al. (2018); Schreiber et al.
(2019); Schreiber (2021)). These planners utilize a structure
referred to as a hierarchical tree to represent the problem
hierarchy up to a certain depth. This hierarchical tree is sub-
sequently used to encode the set of relevant SAT clauses.

The difference between previous approaches and LTP
(Lifted Task Planning) is that the latter does not directly en-
code the entire hierarchy of the problem into propositional
logic. Instead, it selectively extracts only the primitives from
the hierarchical tree that may appear in valid plans and en-
codes them into propositional logic. It focuses solely on the
actions of the plan rather than the full hierarchy. Therefore,
LTP does not utilize boolean variables to encode tasks or
methods during the SAT clause encoding process.

Lifted HTN Planning Problem
In this section, we formally define a lifted HTN planning
problem. Our formalism is based on a quantifier-free first-
order predicate logic L = (P, T, V, C) inspired from Höller
et al. (2020). All sets mentioned in the following are finite.
T is a set of type symbols and V a set of typed variable sym-
bols. P is a set of predicate symbols, each having a arity. The

arity defines its number of parameter variables (taken from
V). C is a set of typed constants, syntactic representations
of the objects in the real world.

Task, Task Networks, Action and Methods
The two key concepts in HTN Planning are the concept of
task and task network.

A task is given by a name and a list of parameters. There
are two kinds of tasks: the primitive task and the abstract
tasks. Unlike primitive tasks that do change the state of the
world, abstract tasks do not. They are names referring to
other tasks (primitive or abstract) that must be achieved with
respect to some constraints.

The basic data structure in HTN planning is a task net-
work, which represents a partially ordered multi-set of tasks.

Definition 1 (Task Network) A task network w over a set
of task names T (first-order atoms) is a tuple (I, α,≺) with
the following elements: I is a (possibly empty) set of task
identifiers, α : I → X maps task identifiers to task names
and ≺ is a strict partial order over I .

Task identifiers are arbitrary symbols which serve as place
holders for the actual tasks they represent. We call a task net-
work ground if all parameters are bound to (or replaced by)
constants from C and primitive if all its tasks are primitive.

Primitive and abstract tasks in a task network can be
achieved respectively by applying actions and methods de-
fined below.

An action a is a tuple (name(a), precond(a), effect(a)).
name(a) is its task name, a first-order atom such as
drive(?from, ?to) consisting of the (actual) name followed
by a list of typed parameter variables. precond(a) is its pre-
condition, a first-order formula over literals over L’s predi-
cates. effect(a) is its effect, a conjunction of literals over L’s
predicates (often divided into the positive effect+ and the
negative effects effect−). All variables used in precond(a)
and effect(a) have to be parameters of name(a). We require
that action names name(a) are unique.

A method m is a tuple (t, w) of a compound task name t
and a task network w. A method express how the task t can
be decomposed into sub-tasks defined in w to be achieved.

Definition 2 (Planning Problem) A planning problem P is
a tuple (L, T,A,M, s0, w0, g), where: L is the underlying
predicate logic, T is the set of primitive and compound tasks,

A is a set of actions,M is a set of decomposition methods, s0
is the initial state, a ground conjunction of positive literals
over the predicates, w0 is the initial task network (not nec-
essarily ground) and g is the goal description, a first-order
formula over the predicates (not necessarily ground).

HTN Planning Solutions
Solutions in HTN planning are executable, ground, primi-
tive task networks that can be obtained from the problem’s
initial task network via applying methods, adding ordering
constraints, and grounding. Lifted problems are a compact
representation of their ground instantiations. We define the
semantics of a lifted problem (i.e., the set of solutions) in
terms of the standard semantics of its ground instantiation.

Definition 3 (HTN planning problem) A HTN planning
problem P is a tuple (L, T, A,M,w0, s0, g), where L is a
finite set of ground atoms, T is a set of task names (primitive
and abstract), A is a set of actions and M is the set of meth-
ods, w0 is the initial task network to decompose and s0 and
g to subset of ground atom of L that represent respectively
the initial state and the goal to achieve.

An action a ∈ A is called executable in a state s if and
only if s ⊂ precond(a). The state transition function γ :
S×A→ S is defined as follows: If a is executable in s, then
γ(s, a) = (s \ effect−(a)) ∪ effect+(a), otherwise γ(s, a)
is undefined. The extension of γ to action sequences, γ∗ :
S ×A∗ → S is defined straightforwardly.

It remains to define how to decompose a task network
into a task network containing only primitive tasks by us-
ing methods. Let a task network w1 = (I1, α1,≺1) and a
task t such that t = α1(i). Consider a method m such that
m = (t, wm) and wm = (Im, αm,≺m) that decomposes t.
Then, m refines w1 into w2 = (I2, α2,≺2) as follow:

I2 = (I1 − {i}) ∪ Im
α2 =(α1 ∪ αm)− {(i, t)}
≺2= ≺1 ∪ ≺m ∪ {(i1, i2) ∈ I1 × Im | (i1, t) ∈≺1}

∪ {(i1, i2)} ∈ Im × I1 | (t, i2) ∈≺1})
− {i′, i′′) ∈ I1 × I1 | i′ = t or i′′ = t}

Now we can formally define the what is a task network so-
lution.

Definition 4 (Solutions) Let P = (L, T,A,M,w0, s0, g)
be a planning problem and ws = (IS , αs,≺s) a task net-
work. ws is a solution to an HTN planning problem P if and
only if

• ws contains only primitive tasks;
• There is a sequence of decompositions from w0 to ws;
• There is a linearization π of the task identifiers of
Is = i1, . . . , in with n = |Is|, such that π =
αs(i1), . . . , αs(in) executable in s0 and such that
γ(s0, π) ⊆ g.

Hierarchical Tree
LTP utilizes the same hierarchical tree structure as the
lilotane and TreeRex planners.

The hierarchical tree can be described as a sequence of hi-
erarchical layers, where each layer is an array of positions,
each containing a set of elements. These elements can be
facts, reductions, or actions. The layers are computed incre-
mentally, starting with an initial layer (L0) that includes the
initial reduction. Subsequently, each layer is defined by in-
cluding all operations that match a subtask of some opera-
tion from the previous layer.

Figure 1 illustrates an example of a hierarchical tree con-
taining three layers for a problem in the Transport domain,
as defined in the Lilotane paper. In this example, Lilotane en-
codes the entire decomposition tree into SAT clauses. How-
ever, LTP differs by keeping only the last layer of the de-
composition tree. From this layer, it encodes only the ac-
tions that may be part of a solution plan as illustrated in the
figure 2. The ordered constraints between these actions can
be inferred from the hierarchical tree, and the method’s pre-
conditions can be encoded to the relevant actions in their
first subtask.

Instantiation
The general planning procedure of LTP is similar to the other
SAT planners for TOHTN problems:

1. Initialize the first layer (l0) of the hierarchial tree follow-
ing the problem description.

2. Construct the next layer (l+1) of the hierarchical tree on
the basis of the layer l.

3. Use the current hierarchical tree to encode the SAT
clauses.

4. Launch the solver. If no solution is found, goto 2

References
Dominik Schreiber. Lilotane: A lifted sat-based approach

to hierarchical planning. Journal of artificial intelligence
research, 70:1117–1181, 2021.

Henry A Kautz, Bart Selman, et al. Planning as satisfiability.
In ECAI, volume 92, pages 359–363. Citeseer, 1992.

Henry Kautz, Bart Selman, and Joerg Hoffmann. Satplan:
Planning as satisfiability. In 5th international planning
competition, volume 20, page 156, 2006.

Gregor Behnke, Daniel Höller, and Susanne Biundo. totsat-
totally-ordered hierarchical planning through sat. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018.

Dominik Schreiber, Damien Pellier, Humbert Fiorino, et al.
Tree-rex: Sat-based tree exploration for efficient and high-
quality htn planning. In Proceedings of the International
Conference on Automated Planning and Scheduling, vol-
ume 29, pages 382–390, 2019.

Daniel Höller, Gregor Behnke, Pascal Bercher, Susanne Bi-
undo, Humbert Fiorino, Damien Pellier, and Ron Alford.
HDDL: an extension to PDDL for expressing hierarchical
planning problems. In The AAAI Conference on Artificial
Intelligence, pages 9883–9891, 2020.

Figure 1: Example a hierarchial tree containing 3 hierarchical layers for a problem of the domain Transport as defined in the
Lilotane paper. The first subtask of the method m deliver ordering can be accomplish by the three methods reported in the
position P1,0)

Figure 2: Space of reseach encoded by LTP into SAT clauses

