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In this paper, we investigate the conditions for the separation of two pure tones from the spectrogram computed with a Gaussian window. For this purpose, we put forward necessary and sufficient conditions for the existence of spectrogram ridges associated with each signal. We then show how this condition easily extends to the case of parallel linear chirps, i.e., signals with constant amplitude, linear instantaneous frequency, and same chirp rate.

I. INTRODUCTION

Analyzing the frequency content of a signal is of paramount importance in many applications, which explains why spectral analysis has become a major theory in signal processing. When these frequencies vary with time, one needs to analyze the signal jointly in time and frequency, hence the term time-frequency analysis [START_REF] Flandrin | Time-frequency/time-scale analysis[END_REF]. The short-time Fourier or Gabor transform [START_REF] Gabor | Theory of communication. part 1: The analysis of information[END_REF] is the simplest way of doing it, by applying a sliding (Gaussian) window. But many other linear or quadratic time-frequency representations (TFRs) have been proposed in the literature, such as the Wigner-Ville [START_REF] Cohen | Time-frequency Analysis: Theory and Applications[END_REF], the wavelet [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF] or chirplet [START_REF] Candès | Detecting highly oscillatory signals by chirplet path pursuit[END_REF] transforms.

A very important aspect is the estimation of the instantaneous frequencies (IFs) of the modes making up a multicomponent signal. Indeed, in many applications, practitioners are interested in estimating these modes and their IFs. Examples include mechanical engineering and monitoring [START_REF] Yang | Parameterised timefrequency analysis methods and their engineering applications: A review of recent advances[END_REF], [START_REF] Yu | Time-reassigned multisynchrosqueezing transform for bearing fault diagnosis of rotating machinery[END_REF], seismic signal analysis [START_REF] Wang | High-resolution seismic timefrequency analysis using the synchrosqueezing generalized S-transform[END_REF], [START_REF] Liu | A novel approach for seismic time-frequency analysis based on high-order synchrosqueezing transform[END_REF] or oceanography [START_REF] Bonnel | Transdimensional inversion on the new england mud patch using high-order modes[END_REF]. TFRs enable such an estimation, since the modes are known to draw so-called ridges located around the IFs [START_REF] Delprat | Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies[END_REF]. To estimate these ridges, various methods have been developed in the past decades, such as [START_REF] Carmona | Characterization of signals by the ridges of their wavelet transforms[END_REF], [START_REF] Stankovic | Performance of spectrogram as IF estimator[END_REF] or [START_REF] Laurent | A novel ridge detector for nonstationary multicomponent signals: development and application to robust mode retrieval[END_REF]. Once the ridges are detected, each mode can be reconstructed by various means: a direct estimation from the values on the ridge [START_REF] Delprat | Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies[END_REF], a local vertical integration such as in the synchrosqueezed transform [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool[END_REF] or a 2D integration in a well-chosen neighborhood [START_REF] Gardner | Sparse time-frequency representations[END_REF], [START_REF] Meignen | Adaptive multimode signal reconstruction from time-frequency representations[END_REF]. Other methods in the literature start by decomposing the signal into its oscillating modes, and then applies the method of the analytic signal to estimate the instantaneous frequencies, such as the well-known Empirical Mode Decomposition (EMD) [START_REF] Huang | The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]. Some of these techniques are supported by a nice theory, that give estimates of the expected transform based on first- [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool[END_REF] or second-order expansions of the phase [START_REF] Delprat | Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies[END_REF], [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF]. But they also require the modes to be well-separated in the timefrequency plane, which is a strong condition. The aim of this letter is to investigate this question for the Gabor transform. More precisely, we present a new result that characterizes when a sum of two pure tones leads to two ridges in the Gabor spectrogram. This result is the counterpart of what was already done in [START_REF] Rilling | One or two frequencies? the empirical mode decomposition answers[END_REF] for EMD and [START_REF] Wu | One or two frequencies? the synchrosqueezing answers[END_REF] for the wavelet synchrosqueezed transform. Additionally, we extend our result to the case of a sum of linear chirps with the same chirp-rate (i.e., IFs draw parallel lines in the TF plane).

We believe this new result to be of interest in several situations. Firstly, we will see that the result will help to characterize the appearance of some interference patterns, called time-frequency bubbles, following the denomination of [START_REF] Delprat | Global frequency modulation laws extraction from the Gabor transform of a signal: A first study of the interacting components case[END_REF]. Characterizing these patterns could help to adapt the window or wavelet width in adaptive TFRs [START_REF] Li | Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation[END_REF] to improve mode separation. Secondly, several works have recently tackled the separation of interfering modes using the chirplet transform [START_REF] Li | A chirplet transform-based mode retrieval method for multicomponent signals with crossover instantaneous frequencies[END_REF], [START_REF] Li | Direct signal separation via extraction of local frequencies with adaptive time-varying parameters[END_REF], and we will explain in what way our result is complementary to these works.

The letter is organized as follows. The results are stated in Section II for pure tones, and III for linear chirps. We discuss these results and their potential impact in the concluding Section IV, while the proofs of the main results are gathered in the Appendix.

II. PURE TONES SEPARATION FROM THE SPECTROGRAM

Let us first define some notation that is used throughout the paper. For f ∈ L 1 (R) ∩ L 2 (R) and a real window h ∈ L 1 (R) ∩ L 2 (R), the modified STFT of f is defined as:

V h f (t, η) = R f (τ )h(τ -t)e -2iπ(τ -t)η dτ. (1) 
Thanks to a well localized sliding window, the spectrogram |V h f (t, η)| 2 estimates the spectral energy at a given time and frequency. A pure harmonic of the form Ae i2πξt is known to create a stripe in the spectrogram, centered around a ridge located at frequency η = ξ. In the case of a signal made of several harmonics, numerous techniques have been proposed to identify those ridges, in order to separate the modes making up the signal [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF], [START_REF] Delprat | Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies[END_REF], [START_REF] Carmona | Multiridge detection and time-frequency reconstruction[END_REF]. Yet, such approaches are efficient only when the modes do not interfere, which is not always the case in practice. In this section, we give a necessary and sufficient condition at which two pure waves create exactly two separated ridges, meaning that we are able to identify and separate them.

To this end, let us mathematically define the ridges as a chain of local maxima of the spectrogram along the frequency axis (LMFs). Such two chains can be constructed only if the spectrogram has three extrema along the frequency axis at any time t (two maxima and one minimum), and we investigate in which circumstances this is the case. In our mathematical analysis, we consider the case of the Gaussian window h(t) = e -π t 2 σ 2 (though different normalizations are possible), and the extension to other types of windows is not in the scope of the present paper. Our main result is the following.

Proposition II.1. Let f (t) = f 1 (t) + f 2 (t) with f 1 (t) = Ae i2πξ1t and f 2 (t) = e i2πξ2t
, where ξ 1 < ξ 2 and A > 0. Modes f 1 and f 2 are associated with two chains of LMFs if and only if

α := π 2 σ(ξ 2 -ξ 1 ) > 1 and | log(A)| < -2 arcosh(α) + 2α α 2 -1.
(

) 2 
The proof is detailed in Appendix A. Recalling that the spectrogram of f reads:

|V h f (t, η)| 2 = σ 2 A 2 e -2πσ 2 (η-ξ1) 2 + e -2πσ 2 (η-ξ2) 2 (3) 
+ 2Ae -πσ 2 [(η-ξ1) 2 +(η-ξ2) 2 ] cos(2π(ξ 2 -ξ 1 )t) , one remarks that |V h f (., η)| 2 ,
where . means we consider this variable, attains its maximum at

t k = k ξ2-ξ1 , k ∈ Z, at which |V h f (t k , η)| 2 = σ 2 (Ae -πσ 2 (η-ξ1) 2 + e -πσ 2 (η-ξ2) ) 2 . ( 4 
)
One can then show that the conditions for the existence of two LMFs at t k , are the same as condition (2) (see Appendix B), meaning the result of Proposition II.1 is driven by what happens at time t k .

To illustrate the different situations just put forward, we consider the spectrogram of the sum of two pure tones with A = 1 in Fig. 1 (a) and Fig. 1 (b). In the former, the conditions (2) are fulfilled, and the two ridges can be easily detected, while, in the latter, the spectrogram only exhibits an oscillating pattern sometimes referred to as time-frequency bubbles [START_REF] Delprat | Global frequency modulation laws extraction from the Gabor transform of a signal: A first study of the interacting components case[END_REF]. In that paper, an equivalent definition based on the phase was proposed, but contrary to our result, the authors did not provide conditions to characterize the presence of this phenomenon. Note finally that the role played by σ for mode separation purpose was also mentioned in [START_REF] Hlawatsch | The interference structure of the Wigner distribution and related time-frequency signal representations[END_REF].

We believe that this result can be useful for practitioners since, in case of interference leading to time-frequency bubbles, it should be possible to separate the modes by increasing σ locally until three extrema show up, which should ease mode separation. Finally, note that other separation conditions were already proposed in the literature (e.g. Eq. ( 11) of [START_REF] Behera | Theoretical analysis of the second-order synchrosqueezing transform[END_REF]), but the purpose was to put forward when the modes did not overlap in the TF plane, which is not our goal here.

III. CASE OF TWO PARALLEL LINEAR CHIRPS

Our goal is now to extend the previous results to parallel linear chirps. We thus consider

f (t) = f 1 (t) + f 2 (t) with f 1 (t) = Ae 2iπφ1(t) and f 2 (t) = e 2iπφ2(t) , with φ i (t) = a i t + c 2 t 2 with c constant. As one has [28] V h f1 (t, η) = f 1 (t)R -1/2 e -π(1+icσ 2 )(η-φ 1 (t)) 2 R 2 σ 2 e -i θ 2 (5) with R = √ 1+c 2 σ 4 σ 2
and θ = arctan(-cσ 2 ), one obtains:

|V h f (t, η)| 2 = A 2 e -2π (η-φ 1 (t)) 2 R 2 σ 2 + e -2π (η-φ 2 (t)) 2 R 2 σ 2 +2Ae -π [ (η-φ 1 (t)) 2 +(η-φ 2 (t)) 2 ] R 2 σ 2 cos(2π(φ(t, η))) /R, (6) 
with

φ(t, η) = (a 2 -a 1 ) t + c R 2 σ 2 η -ct -a1+a2 2 
. We now show that when t and η satisfy a specific relation, we end up with a similar expression as (3) for the spectrogram. For that purpose, let us then consider the set of TF points (t, η) such that cos(2πφ(t, η)) = λ. These points correspond to

φ(t, η) = arccos(λ) 2π + k for k ∈ Z. (7) 
Replacing φ(t, η) by its value, such (t, η) satisfy t = Dη + B k,λ , with

D = c c 2 -R 2 σ 2 B k,λ = c(a 2 2 -a 2 1 ) + R 2 σ 2 ( arccos(λ) π + 2k) 2(R 2 σ 2 -c 2 )(a 2 -a 1 ) . (8) 
On such a straight line, setting σ = 1-cD Rσ , ξ1 =

a1+cB k,λ
1-cD , and ξ2 = a2+cB k,λ 1-cD , (6) becomes:

|V h f (Dη + B k,λ , η)| 2 = A 2 e -2π σ2 (η-ξ1) 2 +e -2π σ2 (η-ξ2) 2 + 2Ae -π σ2 [(η-ξ1) 2 +(η-ξ2) 2 ] λ /R, (9) 
which is the same expression as (3), replacing σ, ξ 1 and ξ 2 by σ, ξ1 and ξ2 , and thus one can deduce the following Proposition III.1. Let f 1 = Ae 2iπφ1(t) and f 2 = e 2iπφ2(t) , with φ i (t) = a i t + c 2 t 2 , f 1 and f 2 are associated with two chains of maxima of the spectrogram along the lines t

= Dη+ B k,λ , k ∈ Z, λ ∈ [-1, 1] iff α c = π 2 a 2 -a 1 Rσ > 1, and 
| log(A)| < -2 arcosh(α c ) + 2α c α 2 c -1. (10) 
Similarly to the case of two pure tones, the existence of two separated ridges is here related to what happens when λ = 1. Let us denote by (t k , η k ) a local maximum on the line t = Dη + B k,1 and then a neighboring point (t, η) of (t k , η k ) in the direction of vector (1, c). For such a point, one has η -φ 1 (t) = η k -φ 1 (t k ) and η -φ 2 (t) = η k -φ 2 (t k ) and, as cos(2πφ(t, η)) < 1, one gets that (t k , η k ) is also a maximum in the direction of the vector (1, c), and thus a local maximum of the bidimensional function |V h f (t, η)| 2 . An illustration of the two cases put forward in Proposition III.1 is displayed in Fig. 1 (c) and (d), corresponding respectively to the existence and the absence of a chain of maxima associated with each mode. In [START_REF] Li | Direct signal separation via extraction of local frequencies with adaptive time-varying parameters[END_REF], the separation of close modes was also investigated using linear chirp approximations for the different modes and then considering the essential support of each mode in the time-frequency plane, which they call a ribbon. The separation condition in that paper was related to when the modes lead to separate ribbons, which is essential for mode reconstruction. But, even when ribbons overlap, one can still have different ridges, which is what we study here.

IV. CONCLUSION

In this paper, we first put forward necessary and sufficient conditions for the existence of ridges associated with each of the modes of a two-tone signal. We noticed that these conditions were very similar when dealing with parallel linear chirps, except that the modulation has to be taken into account. The novel results shown in this paper pave the way for the detection of interference pattern in the TF plane and would probably be useful to improve adaptive time-frequency representation in which the window size varies with time. This will be the topic for future works. and

| log(A)| < -arcosh(X 2 ) + 2α 2 √ X 2 2 -1
X2+γ , with X 2 = γ(α 2 -1) + α γ 2 (α 2 -2) + 2, and a unique extremum otherwise.

Proof. Consider l(η) = A 2 e -2πσ 2 (η-ξ1) 2 + e -2πσ 2 (η-ξ2) 2 + 2Ae -πσ 2 [(η-ξ1) 2 +(η-ξ2) 2 ] cos(2π(ξ 2 -ξ 1 )t), and then put γ = cos(2π(ξ 2 -ξ 1 )t). Setting η = ν + ξ1+ξ2 2 and putting ξ = ξ2-ξ1 2 , one may define l 1 (ν) = l(ν + ξ1+ξ2 
2 ) = e -2πσ 2 (ν 2 +ξ 2 ) (A 2 e -4πσ 2 ξν + e 4πσ 2 ξν + 2Aγ). Putting ν = log(A)+µ 4πσ 2 ξ , one derives:

l 1 (ν) = l 2 (µ) = e -2πσ 2 log(A)+µ 4πσ 2 ξ 2 +ξ 2
2A(cosh(µ) + γ). The derivative of l 2 reads:

l 2 (µ) =e -2πσ 2 log(A)+µ 4πσ 2 ξ 2 +ξ 2 2A - log(A) + µ 4πσ 2 ξ 2 (cosh(µ) + γ) + sinh(µ)
which has the sign of (assuming γ = -1):

g(µ) = -log(A)+µ 2α 2
+ sinh(µ) cosh(µ)+γ . Differentiating g we get g (µ) = -1 2α 2 + 1+γ cosh(µ) (cosh(µ)+γ) 2 which has the same sign as

g 1 (cosh(µ)) := - (cosh(µ) + γ) 2 2α 2 + 1 + γ cosh(µ) = 1 α 2 (- cosh(µ) 2 2 + γ(α 2 -1) cosh(µ) + α 2 - γ 2 2 ),
which is a second order polynomial in cosh(µ) whose discriminant reads: ∆ = γ 2 (α 2 -2) + 2 > 0, and whose roots are denoted by X 1 and X 2 with X 1 < X 2 , and g 1 (X) > 0 if X ∈]X 1 , X 2 [ and negative otherwise. To locate cosh(µ) with respect to X 1 and X 2 , one computes

g 1 (1) = (γ +1)(1-γ+1 2α 2 ) which has the sign of α 2 -γ+1 2 . Assuming α ≤ γ+1 2 , g 1 (1) ≤ 0 and 1 belongs to ] -∞, X 1 ] or [X 2 , ∞[. As X1+X2 2 = γ(α 2 -1) < 1, 1 belongs to ]X 2 , +∞[. Finally, as cosh(µ) ≥ 1, g 1 (cosh(µ)
) and thus g (µ) are negative, which leads to the following table of variations:

µ -∞ µ 1 +∞ +∞ g(µ) -∞ l 2 (µ) + 0 - l 2 (µ)
and l(η) has a unique extremum (maximum) when α

≤ γ+1 2 . If α > γ+1 2 , then g 1 (1) > 0 and thus 1 belongs to ]X 1 , X 2 [. As cosh(µ) ∈ ]X 1 , X 2 [ is equiva- lent to |µ| < arcosh(X 2 ), g 1 (cosh(µ)) < 0 if µ ∈] - ∞, -arcosh(X 2 )[ ] arcosh(X 2 )
, +∞[, and g 1 (cosh(µ)) is positive otherwise, leading to the following table of variations:

µ -∞ -arcosh(X 2 ) arcosh(X 2 ) +∞ g (µ) - 0 + 0 - +∞ g(µ)
-∞ g(µ) vanishes with a change of sign only once at some µ = µ 2 if and only if g(-arcosh(X 2 )) ≥ 0 or g(arcosh(X 2 )) ≤ 0.

In this case, we deduce that

µ -∞ µ 2 +∞ l 2 (µ) + 0 - l 2 (µ)
meaning l(η) has a unique extremum (which is a maximum). If g(-arcosh(X 2 )) < 0 and g(arcosh(X 2 )) > 0, g(µ) vanishes and changes signs three times at some µ = µ 3 , µ 4 and µ 5 leading to the following table of variations for

l 2 : µ -∞ µ 3 µ 4 µ 5 +∞ g(µ) + 0 -0 + 0 - l 2 (µ)
In such case, l(η) has 2 maxima and a mimimum. Finally, as

g(arcosh(X 2 )) > 0 ⇔ log(A) < -arcosh(X 2 ) + 2α 2 X 2 2 -1 X 2 + γ and g(-arcosh(X 2 )) < 0 ⇔ -log(A) < -arcosh(X 2 ) + 2α 2 X 2 2 -1 X 2 + γ , l (η 
) has three extrema if and only if α > 1+γ 2 and then if

| log(A)| < -arcosh(X 2 ) + 2α 2 √ X 2 2 -1
X2+α with X 2 = γ(α 2 -1) + α γ 2 (α 2 -2) + 2.

To prove Proposition II.1, assume that -1 < γ ≤ 1, since when γ = -1, one can easily check that the spectrogram has three extrema. l 2 (µ) has the same sign as g(µ, γ) = -log(A)+µ 2α 2 + sinh(µ) cosh(µ)+γ . From the lemma, l 2 has three extrema iff α > 1+γ 2 , g(-arcosh(X 2 ), γ) < 0 and g(arcosh(X 2 ), γ) > 0, which is equivalent to: ∃ y 0 < 0 g(y 0 , γ) < 0 and y 0 > 0 g(y 0 , γ) > 0. Indeed, this condition is a necessary condition since y 0 = -arcosh(X 2 ) and y 0 = arcosh(X 2 ) satisfy it. Conversely, if there exist y 0 < 0 and y 0 > 0 such that g(y 0 , γ) < 0 and g(y 0 , γ) > 0, as lim µ→+∞ g(µ, γ) = -∞ and lim µ→-∞ g(µ, γ) = +∞, l 2 (µ) changes signs three times, respectively on ] -∞, y 0 [, ]y 0 , y 0 [, and ]y 0 , +∞[, thus l 2 has three extrema. Finally, we show that if l 2 has three extrema for γ = 1, it has three extrema for γ ∈] -1, 1]. in the latter case, there exist y 0 < 0 and y 0 > 0 such that g(y 0 , 1) < 0 and g(y 0 , 1) > 0. Then, as γ ∈] -1, 1] one has ∀µ ∈ R 1 cosh(µ)+γ ≥ 1 cosh(µ)+1 , which means that ∀µ ≥ 0, sinh(µ) cosh(µ)+γ ≥ sinh(µ) cosh(µ)+1 and ∀µ ≤ 0, sinh(µ) cosh(µ)+γ ≤ sinh(µ) cosh(µ)+1 . One deduces that ∀µ ≥ 0, g(µ, γ) ≥ g(µ, 1) and ∀µ ≤ 0, g(µ, γ) ≤ g(µ, 1), meaning in particular that g(y 0 , γ) ≥ g(y 0 , 1), and that g(y 0 , γ) ≤ g(y 0 , 1), implying that g(y 0 , γ) > 0 and g(y 0 , γ) < 0. Thus, whatever γ ∈]-1, 1], the function g satisfies the condition for l 2 to have three extrema.

B. Existence of LMFs at time t k

Consider the function (Ae -πσ 2 (η-ξ1) 2 + e -πσ 2 (η-ξ2) 2 ) 2 having the same extrema as l(η) = Ae -πσ 2 (η-ξ1) 2 + e -πσ 2 (η-ξ2) 2 . Defining ξ = ξ2-ξ1 2 and making the change of variables η = ν + ξ1+ξ2 2 , one gets q(ν) := l(ν + ξ1+ξ2 2 ) = Ae -πσ 2 (ν+ξ) 2 + e -πσ 2 (ν-ξ) 2 . Differentiating q, one obtains after some simplifications:

q (ν) = 2πσ 2 e -πσ 2 ν 2 e -πσ 2 ξ 2 ξ(Ae -2πσ 2 ξν + e 2πσ 2 ξν ) - ν ξ + tanh(2πσ 2 ξν - log(A) 2 
) .

So has the sign of g(ν) = -ν ξ +tanh(2πσ 2 ξν -log(A)

2

). Then:

g (ν) = -1 + 2πσ 2 ξ 2 1 -tanh 2 (2πσ 2 ξν -log(A) 2 ) ξ ,
which is negative if 2πσ 2 ξ 2 ≤ 1. In such a case, g is decreasing and as lim ν→-∞ g(ν) = +∞ and lim ν→+∞ g(ν) = -∞, q annihilates once, and l has a unique extremum which is a maximum. Now when 2πσ 2 ξ 2 > 1, g has two zeros, and one has the following table of variations:

ν -∞ ν 1 ν 2 +∞ g (ν)
-0 + 0 -+∞ g(ν 2 ) g(ν)

g(ν 1 ) -∞

If g(ν 1 ) ≥ 0, then g(ν) and hence q (ν) annihilates once and changes signs at some ν 2 in ]ν 2 , +∞[, at which q admits a maximum which is the unique extremum. If g(ν 2 ) ≤ 0, g(ν) and hence q (ν) annihilates and changes signs once for a certain ν 1 in ] -∞, ν 1 [ and then q has a maximum at ν = ν 1 which is its unique extremum. If g(ν 1 ) < 0 and g(ν 2 ) > 0, g(ν) and q (ν) annihilate and change sign 3 times, once in ] -∞, ν 1 [, once in ]ν 1 , ν 2 [, and once in [ν 2 , +∞[, and thus q has three extrema. Now, Remember that ν 1 and ν 2 are the roots of g thus also of 1 -1 2πσ 2 ξ 2 = tanh 2 (2πσ 2 ξν -log(A)

2 ) and therefore

ν 1 = 1 2πσ 2 ξ log(A) 2 + artanh -1 - 1 2πσ 2 ξ 2 ν 2 = 1 2πσ 2 ξ log(A) 2 + artanh 1 - 1 2πσ 2 ξ 2 ,
and thus as α = π 2 σ(ξ 2 -ξ 1 ) = √ 2πσξ, we may write:

g(ν 1 ) = - log(A) 2α 2 - log( α- √ α 2 -1 α+ √ α 2 -1 ) 2α 2 - √ α 2 -1 α g(ν 2 ) = - log(A) 2α 2 - log( α+ √ α 2 -1 α- √ α 2 -1 ) 2α 2 + √ α 2 -1 α .
From this we deduce that g(ν 1 ) < 0 and g(ν 2 ) > 0, q has three extrema, if and only if:

| log(A)| < 2α √ α 2 -1 - log( α+ √ α 2 -1 α- √ α 2 -1 ) = 2α √ α 2 -1 -2 arcosh(α).

Fig. 1 :

 1 Fig. 1: (a): spectrogram of two parallel pure harmonic modes with the same amplitude, when there exists a chain of LMFs associated with each mode (A = 1, ξ 1 = 230, and ξ 2 = 260); (b): spectrogram of the same signal as in (a) when the computation of ridges associated with each mode is no longer feasible; (c): same as (a) but when two parallel linear chirp are considered (A = 1, φ 1 (t) = 230t + 100t 2 , φ 2 (t) = 260t + 100t 2 ). (d): spectrogram of the same signal as in (c) when the computation of ridges associated with each mode is no longer feasible. In each case, we also plot the zeros and the local maxima of the spectrogram.

APPENDIXA.

  Proof of Proposition II.1 Lemma. α being defined as in Proposition II.1, and put γ = cos(2π(ξ 2 -ξ 1 )t), |V h f (t, .)| 2 has three extrema iff α > 1+γ 2
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