Aless Hosry

Vincent Aranega

Nicolas Anquetil

Stéphane Ducasse

Pattern matching in Pharo

Keywords: Pattern matching, Smalltalk, Object-oriented programming

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Pattern matching is a computational technique used to identify and analyse recurring structures or patterns within data and enables the extraction of meaningful information from the data [START_REF] Hills | Navigating the wordpress plugin landscape[END_REF].

Pattern matching could vary between string searching or regular expressions, which are supported in multiple programming languages such as Java, Javascript and C# [START_REF] Friedl | Mastering regular expressions[END_REF], matching over trees of objects [START_REF] Hoffmann | Pattern matching in trees[END_REF] like ASTs, or object matching using functional programming languages like Scala [START_REF] Emir | Matching objects with patterns[END_REF].

Such matchers are needed in Pharo for tasks like optimisation [START_REF] Atkinson | Effective pattern matching of source code using abstract syntax patterns[END_REF], by identifying specific patterns in code defined by developers to reduce resource consumption and enhance performance. Additionally, matchers can help in error detection by detecting common programming errors [START_REF] Atkinson | Effective pattern matching of source code using abstract syntax patterns[END_REF] and applying some code refactoring in order to improve software quality and reliability. Moreover, pattern matching is reliable for querying deeply recursive structures like nested data [START_REF] Hills | Program analysis scenarios in rascal[END_REF] that are very common during software analysis or data exploration in fields like data mining.

IWST 2023: International Workshop on Smalltalk Technologies, August 29-31, 2023, Lyon, France aless.hosry@inria.fr (A. Hosry); vincent.aranega@inria.fr (V. Aranega); nicolas.anquetil@inria.fr (N. Anquetil); stephane.ducasse@inria.fr (S. Ducasse)

Based on these requirements, we present in this paper the "RBParseTreeSearcher" matcher that is already present in Pharo as well as another, more generic matcher that we developed recently and named "MoTion" [START_REF] Motion | [END_REF].

The first one is the pattern matcher used by the RefactoringBrowser infrastructure [START_REF] Anquetil | Transformation-based refactorings: a first analysis[END_REF], it allows to define patterns to match them with Pharo source code AST. The RefactoringBrowser also comes with a RBParseTreeWriter that allows to modify the source code matching a given pattern, but we will not explore this part here as we are only interested in the pattern matching capability.

The second pattern matcher is MoTion [START_REF] Motion | [END_REF], a recently created generic pattern matcher that allows to express patterns on any set of objects, their classes, and their properties. The focus of MoTion is the expressiveness of patterns, offering a large set of functionalities.

In this paper, we present some of the existing approaches and how they differ from each other in Section 2. Then in sections 3 and 4 we present the syntax of the matchers followed by examples. The actual comparison takes place in section 5, before concluding the paper in Section 7.

Pattern matchers characteristics

Many programming languages offer pattern-matching libraries. Some of them are GPL (General Purpose Languages) like in Python, Haskell, Rust and Scala, while others are DSL (Domain Specific Languages) like with Rascal.

Table 1 presents a list of characteristics we identified in several existing implementations of pattern matching languages:

Object Matching [START_REF] Di Ruscio | Model transformations[END_REF] is the fact of matching any object based on its class and properties. The expected values of the properties can be themselves patterns to be matched against the actual value returned when the unary-message is called on real objects.

Structural Pattern [START_REF] George | Type-safe model transformation languages as internal DSLs in scala[END_REF] refers to a pattern that captures and matches the "shape" of a given object or data using subpatterns.

Anonymous Variables [START_REF] Schmitt | An evaluation of domain-specific language technologies for code generation[END_REF] refer to tokens that imply the existence of a value without capturing it.

List matching [START_REF] Schmitt | An evaluation of domain-specific language technologies for code generation[END_REF] offers the ability to describe the general shape of a list.

Negation [START_REF] Kirchner | Anti-pattern matching[END_REF] consists of specifying a pattern that the data should not match.

Unification [START_REF] Rascal | [END_REF] consists of using the same variables multiple times in a pattern that all match the same (repeated) data.

Nested Match [START_REF] Rascal | [END_REF] consists of expressing a pattern about a direct inner object.

Deep Match [START_REF] Schmitt | An evaluation of domain-specific language technologies for code generation[END_REF] allows to search for an object in a structure (or hierarchy) without having to bother about the depth to which the searched object is.

Recursive Search [START_REF] Emir | Matching objects with patterns[END_REF] is similar to Deep Match but assumes a hierarchy of similar objects, or at least objects that have the same property. For example, one could search for an object having a specific "child" without knowing at what depth this object, and thus its child, are.

Can yield all results [START_REF] Rascal | [END_REF] means that the result contains all data matching the pattern and not just the first match found. Many approaches in the literature applied pattern matching, whether for General Purpose Programming Languages (GPL) or Domain Specific Programming Languages (DSL) [START_REF] Klint | Rascal: A domain specific language for source code analysis and manipulation[END_REF]. Table 1, summarises those approaches according to the characteristics described previously in this section.

RBParseTreeSearcher

In this section, we present the pattern matching language of the Pharo refactoring framework as implemented in RBParseTreeSearcher. We will first introduce the syntax of the language, and then we will show different usages with Pharo methods of the RBParseTreeSearcher class.

Syntax

The syntax of this language relies on specific symbols, allowing to express patterns over any source code of a Pharo image:

(') Back-tick. It is used to match any single node. For example: "'someName asString" can match message asString sent to any receiver, disregarding its name. It can match Pharo source code like "self asString" and "aParam asString".

('#) Literal pattern nodes. To verify that the matched node is a literal, a back-tick can be followed by the hash sign. "'#lit size" is an example where '#lit can match an integer 3, a string foo or even a collection such as #(a b c). It will not match "self asString".

('@) List pattern nodes. Is used to match zero, one or more nodes in the AST. For example, "|'@args1 t1 '@args2|" returns a successful match with | t1 t2 t3 t4| where args1 will be empty and args2 matches t2 t3 t4.

(") Double Back-tick. It is used to perform a recursive search. This implements the deep match characteristic. It entails searching for patterns not only on the surface level of the source code, but also examining their internal structure. For example, ""@vars + 1" matches any selector followed by + 1, additionally, it will internally check if this selector is already constructed by another selector followed by +1, such as (myNum + 1) + 1 + 5, where the first match of '@vars' is myNum + 1 and the second is myNum found by the deep match.

('.) Statement pattern nodes. To match statements, a developer can use a backtick followed by a period. Such patterns '.Statement1. match a single statement in Pharo such as "self assert: myVal size equals: 11." . It can also be combined with the list pattern ('@.) to search for a list of successive statements, such as "'@.statements" which will successfully match "x := 1. y := 2. z := OrderedCollection new.".

('{ }) Block Pattern Nodes Is a free-form test where, inside the curly braces, one puts a Pharo block, receiving a node as a parameter and returning a boolean whether this node matches or not. For example: "'{:node|node isVariable and: [node isGlobal]} become: nil" is a pattern that matches a message become: with a nil argument, where the receiver is a global variable.

Examples

After describing the syntax and capabilities of Pharo source code matchers over blocks, literals, statements and so on, we will go through how to use this syntax with a handful of methods defined in RBParseTreeSearcher in this section. While this paper focuses on matching in Pharo, it is important to note that the same syntax can be used with a couple of methods implemented in RBParseTreeWriter to perform some source code transformations. 5 searcher executeTree: (RBParser parseExpression: 'self put').

Listing 1 contains an example of source code pattern matching in Pharo. In line 1, searcher variable is declared as an RBParseTreeSearcher object. The message #matches:do: is sent to this variable in line 2 to start the match, where matches: accepts the pattern expressed using the syntax introduced in the previous section, and do: accepts a block of code that is executed only when the match succeeds. On success, all matches are stored in a dictionary (context), where each key represents a part of the pattern, like "@rcv" and the value contains the matched source code. In cases where the key matches multiple source code fragments, they are encapsulated in a list and stored in the value in pairs with the convenient key. In this example, when the block is executed, it enables storing all matches of context in contextDictionary.

To start matching patterns, the developer needs to use method #executeTree: that takes as input a parsed source code object, such as line 5, using RBParser parseExpression.

MoTion pattern matcher

In this section, we are going to present MoTion, a pattern matching language for objects that relies on specific symbols and a couple of methods to allow matching over objects in a Pharo image.

Syntax

Unlike the previous pattern matching language, MoTion syntax does not have the ability to explicitly represent the Pharo AST being searched for, except for literals. In simpler terms, while the old language enables the creation of patterns that directly describe the syntax of Pharo, MoTion is based on a different approach. In MoTion, representations are based on object types and, if needed, certain methods that correspond to objects in Pharo. This matching capability extends beyond Pharo language objects and includes any other object like Java objects represented in Pharo using the FamixJava metamodel.

Literal matching MoTion is able to match literals (boolean, string, symbols and numbers) by concretely expressing them like true, 1, #foo and 'Pharo Playground'. In order to make it more performant, MoTion also allows matching regular expressions for strings. For example: Pharo.*ground can match with Pharo Playground.

(%) Object match A basic Object match must first include the type of the Object to match as defined in Pharo such as Color%{}, RBMessageNode%{} or FamixJavaModel%{}.

(<=>) Properties A match could be more specific, by specifying the type of the object to match followed by the properties assigned to the specific values. A property represents a predefined method in the object class only if such methods have a return. For example: RBComment % {#size <=> 2} is a pattern that could match any comment that is empty, because the size of comments in Pharo must be bigger than 2 taking into consideration the double quotation marks.

(<∼=>) Negation Sometimes, it may be easier to search for objects that match a pattern, which properties don't fit specific values, instead of specifying numerous properties. For that we implemented the negation symbol that helps developers to specify such patterns easily. For example: RBComment % {#size <∼=> 2} is a pattern that could match any comment that is not empty.

(%%) Subclasses This is again a deep match operation. Pattern expression could be more flexible by using the double %% to match properties of subclasses, such as RBLiteralNode %%{#value <=> 1} that could match any object that extends directly or indirectly RBLiteralNode class.

({.}) Lists More than one property could be specified for the match, by encapsulating all properties in a list after defining the type. For example: RBLiteralNode %%{#value <=> 1. #sourceText <=> #'a text here' } which allows the usage of value and #sourceText.

(@) WildCards Wildcards are used to match a property associated to any value. The importance of wildcards in MoTion is their ability to save and return such values to be treated in following steps using Pharo. For example: RBLiteralNode %%{#value <=> #'@anyValue'}, where @anyValue could be anything associated to #value.

Composed patterns

Examples

Listing 2 is an example of MoTion and how we can use it to match a package. Lines 1 to 8 contain the pattern defined using MoTion syntax. Line 9 is matching this pattern with Talents package as it is required in MoTion using #match: message. The return type of this match is a MatchingContext which contains isMatch of type Boolean, and matchingContexts which contains a list of a bindings dictionary that in turn contains the wildcards (since their values are unknown) as keys, and the matched objects as values. However, MoTion also provides a way to retrieve only the bindings of specific wildcards such as in line 10. The return type of collectedBindings is a list of bindings, each of which has a dictionary of keys and values. If multiple matches exist, this means that multiple bindings are returned in the list.

As for the structure of the pattern, between lines 1 and 8 , it's a pattern of type RPackage which properties are encapsulated in a list. The first property #classes is associated to a wildcard @allClasses (line 2), to store all the classes of the matched package and retrieve them in line 10 using message #collectBindings:for:. The second property is constructed of a MoTion path, as we are interested in methodDict of definedClasses which in turn encapsulates a subpattern. As a summary, listing 2 is a an example of a pattern to be matched with any package in Pharo, which methods contain the selector #ifTrue:ifFalse.

We mentioned earlier that MoTion can match objects, and we are using it to match Java, XML ans SQL Objects parsed in Pharo. Listing 3 is an example of how we can use it to retrieve XML nodes based on their attribute name and value, which cannot be done using RBParseTreeSearcher syntax.

Comparison

By leveraging MoTion's syntax, users can specify complex patterns to match objects based on various criteria, as we chose MoTion syntax to be expressed declaratively. In terms of capabilities, MoTion has been impacted by other matchers like the ones stated in 2 in addition to RBParseTreeSearcher such as deep search and anonymous variables. Since both matchers have some common capabilities, we decided to perform a comparison of matching using the same Pharo 11 image for both of them. We took some basic source code templates, some of which are search rules implemented as examples in the rewrite tool.

Syntax and Expressiveness

• The first example, shown in Listing 4, checks if the source code has a selector #ifTrue:ifFalse:.

With RBParseTreeSearcher, specifying patterns to detect the receiver and the list of arguments inside the blocks is mandatory, while in MoTion, this specification could be skipped as the developer is only interested in knowing if the selector is invoked in this code or not. • Patterns of the second example in Listing 5, are inspired by the third rule of the rewriter tool, whose purpose is to check if nil exists in ifNil to remove it by applying a transformation rule. For this rule, the RBParseTreeSearcher pattern is more efficient as it is able to precisely position nil inside ifNil:. This cannot be done by MoTion, as it cannot precisely determine the nil position in the used blocks. • The third example, shown in Listing 6, is inspired by rule 8 of the rewriter tool, which consists of matching a select: method that contains a receiver followed by not, to be replaced in a later stage by reject:. Again, the precision of not position is mandatory in this example, which is possible by RBParseTreeSearcher as it is able to express the possible existence of temporary variables and statement lists, followed by not positioned at the end inside the block. While that is not possible in MoTion, as the properties declared inside the pattern and associated with some values or subpatterns, do not take into consideration their order.

Matching characteristics

After comparing the speed of match for both languages, we list in Table 3 the characteristics explained in section 2 and if they are applied for each one of them: Based on both comparisons, it is evident that RBParseTreeSearcher exhibits superior performance compared to MoTion, despite the latter being a more generic pattern matching language.

Future work

MoTion lacks for the moment two important features: a debugger and a pattern generator. Currently, we use MoTion to extract source code to do software analysis for cross-language applications, but the expressiveness of such patterns is error-prone, especially while precising the properties of a MoTion path, which sometimes leads us to lose time while expressing such patterns. At the moment, we are employing a simple technique that involves minimising MoTion paths and starting to determine whether or not we have found a match. However, a debugger will be able to automate this process and address the incorrectness of such paths and what properties may be incorrect, thus making it faster and more effective for developers to use. Additionally, we intend to develop a pattern generator that will enable developers-particularly those who are unfamiliar with MoTion-to provide it with the source code they want it to search for. MoTion will then be able to automatically generate patterns that represent such source code, enabling developers to match it against the packages or models they want to search for.

Conclusion

To conclude, we present in this paper two pattern matchers in Pharo. The first one, RBParse-TreeSearcher syntax, is able to match Pharo AST and has the ability to apply transformations using the rewriter tool. The second one, MoTion, implemented recently for matching over objects, including Pharo ASTs, given their types and properties. Both matchers were compared, and the experiment has shown a faster performance for RBParseTreeSearcher over the same patterns, being more specific. However, we also realised that, given the flexibility of the syntax of MoTion, a higher ability to match objects, disregarding their complexity, and is able to support structural patterns, lists, object matching, deep matching, negation, and many other characteristics compared with other tools implemented in the literature by different programming languages.

Listing 1 :

 1 Pattern Matching over source code sample 1 searcher := RBParseTreeSearcher new. 2 searcher 3 matches: '@rcv put' 4 do: [:aNode :answer | contextDictionary := searcher context].

Listing 2 :

 2 Pattern Matching over source code sample 1 pattern := RPackage % { 2 #classes <=> #'@allClasses'.

3 # 4 # 5 # 6 } 7 } 8

 345678 'definedClasses>methodDict' <=> CompiledMethod % { 'ast>allChildren' <=> RBMessageNode % { 'selector>value' <=> #ifTrue:ifFalse: }. 9 pattern match: #Talents asPackage. 10 collectedBindings := pattern collectBindings: {#allClasses} for: (#Talents asPackage).

Listing 3 : 3 #

 33 Pattern Matching over source code sample 1 XMLNodeList % { 2 #'_>attributes' <=> XMLAttribute % 'name' <=> #'Field' .

4 #

 4 'value' <=> #'myButton1'.

Table 1

 1

	Existing approaches(Pattern matching languages)				
	Characteristics / Languages Rascal Haskell Scala Python	Java a	Rust
	Object Matching	x	x	x	x	Matching Types	x
	Structural Pattern	x	x	x	x	planned	x
	Anonymous Variables	x	x	x	x	planned	x
	List Matching	x					
	Negation	x	x				
	Unification	x					
	Nested Match	x	x	x			x
	Deep Match	x	x		x		x
	Recursive Search		x				
	Can yield all results	x					
	a https://dev.java/learn/pattern-matching/						

 Pattern searching may require searching for complex structures, for that, MoTion allows declaring patterns constructed also of subpatterns, such as: RBBlockNode %{ #statements <=> RBValueNode %% { #value <=> 2 } } where #statements is associated to another subpattern. RBMessageNode that returns an object of type RBSelectorNode, which in turn has a property named value. This helps expressing patterns in a more flexible way, by accessing directly a children's property. It is important to note, composed path allows accessing at the same time only one direct children, but the path could be extended to as many subchildren layers as the developer needs, like: definedClasses>methodDict>ast>allChildren. Anonymous properties usage is when the developer doesn't know what is the exact name of the property, or when she/he wants to access a descendant children without caring about the predecessors. In this case, multiple matches could result if multiple properties have the same descendant children. For example: RBMessageNode % { #'_>parent' <=> @anyParent } could return matches for receiver>parent and selector>parent as both have parent as a property. Matcher save The main purpose of this matcher is to encapsulate patterns and subpatterns into variables, in order to be able to retrieve their values after a successful match. For example: RBMethodNode % #'children*' <=> RBMessageNode % #'selector>value' <=> #ifTrue:ifFalse: as: #MyMessageNode where #MyMessageNode contains matching objects of type RBMessageNode.

	(*) Recursive search It enables searching for the same property in many children layers,
	specially when the developer doesn't know what is the depth of such children to pre-
	cise it in a composed path. For example: RBMethodNode % #'children*' <=>
	RBMessageNode % #'selector>value' <=> #ifTrue:ifFalse:	which
	allows searching recursively for all properties named children in different descendent
	layers, to match any one with selector #ifTrue:ifFalse:.	

Block Matcher they are used to generate new matchers dependently on the current object being matched and/or variables captured during the matching process, such as: ObjectA %{ #lint <=> [:collection| collection includes: 4] onCollection } can match objA lint: #(1 2 3 4 5 6 7) because the list contains 4 as described by the block inside the pattern.

Conditional Matcher they are used to write complex conditional matchers dependent on the current object being matched and/or variables captured during the matching process

To make it easier to represent advanced patterns, we developed the MoTion path, which is used solely to express properties within a pattern, allowing the direct access of children's properties instead of defining subpatterns in patterns.

(>) Composed path MoTion paths are composed out of multiple properties as descendent children, which means they are not methods declared in the same class, but they are properties of the return type object. For example: RBMessageNode % { #'selector>value' <=> #ifTrue:ifFalse: } #selector is a property of (_) Anonymous property (as:)

Table 3

 3

	Characteristics comparison		
	Characteristics / Languages MoTion RBParseTreeSearcher
	Object Matching	x	
	Structural Pattern	x	x
	Anonymous Variables	x	x
	List Matching	x	x
	Negation	x	
	Unification	x	x
	Nested Match	x	
	Deep match	x	
	Recursive path	x	x
	Can yield all results	x	x

Listing 4: Match #ifTrue:ifFalse:

1 "--RBParseTreeSearcher --" 2 '@receiv ifTrue: ['@args1] ifFalse: ['@args2]. 3 4 "--MoTion --" 5 RBMessageNode % { 6 #'selector>value' <=> #ifTrue:ifFalse:

Listing 6: Replace #select: by #reject: While both languages excel in pattern matching capabilities, RBParseTreeSearcher has been recognised for its superior speed compared to MoTion as it is dedicated to matching only Pharo ASTs. It is optimised for this only, while MoTion is entirely generic and can match any object at any depth, implying more computation and thus more time to execute.

Matching speed