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Abstract—Although traffic is one of the massively collected
data, it is often only available for specific regions. One concern
is that, although there are studies that give good results for
these data, the data from these regions may not be sufficiently
representative to describe all the traffic patterns in the rest of the
world. In quest of addressing this concern, we propose a speed
prediction method that is independent of large historical speed
data. To predict a vehicle’s speed, we use the trajectory road topo-
graphical features to fit a Shared Weight Multilayer Perceptron
learning model. Our results show significant improvement, both
qualitative and quantitative, over standard regression analysis.
Moreover, the proposed framework sheds new light on the way
to design new approaches for traffic analysis.

Index Terms—Topographical Features, Speed Prediction
Model, Regression Model, Data Point Association

I. INTRODUCTION

The knowledge of a vehicle speed can substantially impact
research fields influenced by traffic. The identification of daily
traffic patterns, energy and pollution emission management, as
well as Intelligent Transportation Systems (ITS), are some of
the expertise that speed information can actively affect.

For many years, traffic speed predictions have relied on
methods such as Historical Average (HA) [1], [2], and Auto
Regressive Integrated Moving Average (ARIMA) [1], [3],
[4]. However, traffic has a stochastic nature that involves the
interconnectivity of many elements (e.g., weather, day, social
events, number of cars) that could not be well represented by
these models. Therefore, by using data as inputs to non-linear
data-driven models, it is possible to include non-deterministic
elements to the prediction and have considerable improve-
ments. These data-driven methods exploit learning models

such as: Artificial Neural Networks (ANN) [5], [6]; Recurrent
Neural Networks (RNN) [7]–[9]; Convolutional Neural Net-
works (CNNs) [10]–[14]; and Graph Neural Networks [15]–
[19].

An issue related to these learning algorithms is the large
amount of data necessary to train them properly. Regarding
speed prediction, many of the works that focus on long and
short term prediction use traffic sensor acquired data, thus
using past speed values registered in a road to predict future
ones. However, most of the roads do not have this historical
speed data that can be used for time-series speed prediction.
In some cases, there is no traffic data at all. The lack of data
does not mean that the regions have no traffic, it just implies
that we do not have a database that stores information from
it. Another associated consequence is that when using these
specific region data, even though there are works able to yield
good predictions, in some cases we cannot transfer this same
model to other regions. Therefore, to address the issue of non-
existing speed historical data and the difficulty of applying
the models to a different region, our work uses topographical
road features to predict a vehicle’s speed. We believe that the
combination of common safety, law enforced driving behaviors
(stopping at a traffic light), and road engineering (affecting a
road’s vehicle flow) have, in average, a wage on vehicle speed
registrations.

Therefore, by using a road’s topographical features asso-
ciated to GPS car trip information, we were able to train a
model to predict a vehicle’s speed given its trajectory. For
this prediction, we based ourselves on a data point association
scheme and a shared weights multilayer perceptron model
(SWMLP). Three data association schemes are proposed, in
which we create inputs for our model from a combination of
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Fig. 1. Methodology pipeline. (1) Use Geco air mobile application to collect
car trips in a region, and HERE database to acquire topographical data from
the region; (2) Process the data to extract viable features for speed prediction;
(3) Associate the data points and generate inputs used for training, validation,
and testing sets; (4) Train the network models; and (5) analyse predictions.

past and future trajectory points. Based on our experiments,
these inputs are capable of introducing to the model a sense of
locality and the influence that one spatial point has on other’s
speed. The advantages of our model is the fact that when
inferring predictions, we only need as inputs easily acquired
topographical road features instead of historical speed data.
We demonstrate in our results that it is possible after training
to use the model in other geographical regions that might not
have historical speed registrations.

This paper is organized as follows. In Section II, our
proposed method is explained, and important concepts used
in this work are clarified. In Section III, we describe the
experiments performed and compare the achieved results to
other standard methods. Finally, some concluding notes and
suggestions for future work are presented in Section IV.

II. PROPOSED METHOD

The objective behind this work is to predict speed all along
a given vehicle trajectory, prediction is based on the road
topographical aspects. A local speed prediction differs from a
short or long-term traffic prediction in a sense that it will be the
speed prediction for a given data point and not a set of future
points. To better understand this work some concepts need to
be clarified: a vehicle’s trip; the road topography; and a data
point. In this work, a vehicle’s trip is a GPS path registered in
a database in which a car has a starting location and journeys,
during a period of time, to a stopping location. We consider the
topography, road features related to the architectural structure
of the street such as traffic light, number of lanes, and the
allowed speed limit, to name a few. Finally, a data point is a
sampled GPS registration of a trip with the exact position of
where the vehicle is and what road is it on. We opted to attend
to this problem with no explicit time variables in the feature
array. In this manner, it was possible to do an analysis of
how predictions behaved without direct temporal elements. An
overview of our work’s pipeline can be observed in Figure 1
and will be discussed in the following subsections.

A. Preprocessing

In this work we consider a road section as a link. This
is done since an entire road might be comprised of multiple
breakouts throughout its length such as intersections, and
signalization (Figure 2). Thus, it is common to break down
these roads in smaller more continuous sections transforming
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Fig. 2. Road sections as links: Along the roads (represented by the rectangles),
traffic lights, cross road, and other sort of cuts to the continuity are present.
To have cleaner stored data with easier access to a specific road segment, a
division is made (for the horizontal axis street of this image) in links 0, 1,
and 4. Travel information: vehicles regularly drive on these maps utilizing
multiple links in a single trip (dotted lines).
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Fig. 3. Data points we acquire for this work: A car trip has a set of multiple
links associated to it, and at each GPS timestamp of the trip the car is at
a different location (in the same link or not). For each trip we have 1 to
N registered points where each of them have a set of topographical features
(based on the link), and the speed registration.

a road map into a link map. With these link maps, similarly
to the roads, we are able to get vehicle travel information.

B. Features

As data points, we get the topographical features and their
catalogued speed of every GPS registration of a car trip. This
is illustrated in Figure 3. Although we get features based on
GPS registration timesteps, we convert time into distance, thus
time is not used as a feature.

We compiled eight features deemed to represent the basic
road topography for each of the mentioned data points:

1) link priority;
2) existence of traffic light at the beginning of the link;
3) existence of traffic light at the end of the link;
4) number of connected neighbor links;
5) number of lanes in a link;
6) speed limit;
7) link length;



T T

T

T

T

T

1 2 3

Data
Points 

Y

Y

Y

Fig. 4. Three data point generation schemes for the SWMLP. After selecting
the target data point, T : (1) Past correlates the target to the features of the
2 most recent past data points; (2) Past and Future joins the immediate past
and future data point to the target; and (3) the Punctual Past similar to 1 but
a distance is allowed for the connected past points.

8) percentage of already traveled link.

Link priority is a type of variable able to describe a level of
importance to a street section, meaning that links with a higher
demand (e.g. highway sections) have also higher values of
priority. The existence of traffic light confirms or not if a link
contains in one or both extremities a stop light. The connected
neighbors are the number of possible different other links a
car can access before or after entering the current section.
Finally, to introduce variability to the feature vector creation,
we calculate the percentage of already traveled (PAT) link.
This feature represent the point in space a car is on a link.
To better explain this we can consider a car driving through
a link of length 50m, at timestep (ts) 2 the simulation placed
the car at 7m, thus the PAT value would be PATts2 = (7m×
100%)/50m = 14%.

C. Prediction schemes

In this work, before prediction, we already have predefined
trips with starting and ending location of the vehicle, as well
as the path the vehicle took to arrive from start to end. Thus,
to generate the inputs for our prediction model, we decided
on the three association schemes, illustrated in Figure 4, as
follows:

1) Past (Pa). We join in the same input three consecutive
data points: a target and the two immediately previous
registered data points. In other words, the target value
will have its speed predicted based on its association with
its two nearest consecutive topographical past points.

2) Past and Future (P&F ). We generate examples by as-
sociating the nearest past and future point topographical
values to the target’s, meaning that the prediction point
is the middle data point.

3) Punctual Past (PuP ). Data points are collected in the
past at a distance d from the target. We used 5 and 10
GPS timesteps away.

It is important to notice that for the targeted prediction
points we do not use the PAT feature mentioned in the previous
subsection. We wanted to verify, without the use of an explicit
historical speed and no indication of where the vehicle will be,
if we would be able to predict the target data point’s speed.

The main idea behind the SWMLP was to combine neigh-
boring data points. By using P&F , Pa, or PuP data point
associations, we are able to introduce to the network a sense
of why and how a vehicle could change behavior in average.
Considering situations where paths are defined, to validate a
P&F data point association we contemplated the fact that the
network might be able to understand that the vehicle will need
to changed significantly the previous driving speed conditions
to comply with the future point topographical features. For
Pa, inspired by the concept of time-series, the network can
implicitly learn, based on previous data points, an average
local speed. Similar to Pa, we consider PuP to verify if
the distant past data point association can be better than an
immediately previous one. We opted to use a neural network
as the prediction model. As our main contribution, we devised
a Shared-Weight Multilayer Perceptron (SWMLP)(Figure 5)
composed of: a layer of three individual linear layers (32
neurons each); a shared weight layer (16 neurons); and five
layers (64, 128, 64, 32, 16 neurons).

In Equations 1 to 4 we show how our model regresses.
After assembling the inputs as sets of three points (either Pa,
or P&F , or PuP ), the SWMLP divides each input in three
streams. Each stream is fed to an embedding linear layer that
will encode the individual features in a vector (Equation 1).
This encoding is previously done so patterns between features
in the same data point can be calculated before joining the
streams.

f1 : xn ∈ Rd 7→ x′
n ∈ Rs f1(x1) = x′

1,

f2 : xn ∈ Rd 7→ x′
n ∈ Rs f2(x2) = x′

2,

f3 : xn ∈ Rd 7→ x′
n ∈ Rs f3(x3) = x′

3.

(1)

We input these embeddings to same linear layer that will
share the weights learned between these inputs (Equation 2).
Weights of these three streams are thus shared and jointly
updated.

g : x′
n ∈ Rs 7→ x′′

n ∈ Rs′ ,

g(x′
1) = x′′

1 , g(x′
2) = x′′

2 , g(x′
3) = x′′

3 .
(2)

Following the weight sharing, we concatenate the layer
outputs (Equation 3) and use them as inputs for a five layered
MLP (Equation 4).

X =
[
x′′
1
>
x′′
2
>
x′′
3
>]>

, (3)

Reg : Xn ∈ Rs′′ 7→ X ′
n ∈ R1,

Reg(X) = p.
(4)

To further assure that time does not explicitly influence the
regression results, we shuffle the inputs to remove an explicit
trajectory order inside the training and validation set.

III. EXPERIMENTS

Experiments were conducted to verify that our SWMLP
model (presented in Section II) was able to reconstruct and
thus predict the speed of a predetermined car trajectory based
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Fig. 5. Representation of the SWMLP structure: we join three related data
points, one target (3) and two neighbor acquired data point registration (1
and 2). In the targeted point features we do not consider the PAT feature
so that it does not influence in prediction. For prediction, these points are
embedded, passed through a shared weight layer, concatenated, and finally
passed through an MLP structure.

on the topographical information of a link. We used real-world
data collected from IFPEN’s mobile application Geco air1, and
HERE2 databases. From these databases, we gather car trip
data as well as obtain the topographical characteristics of the
driven links.

Our model was compared to three standard regression
algorithms: Multilayer Perceptron (MLP), Support Vector Re-
gression (SVR), and Random Forest (RF). These models work
with each data point as an individual input; each feature
vector described in Figure 3 is associated to one speed value,
without combining the neighboring feature vectors. The MLP
is composed of the same final five layers of the SWMLP,
making it the most directly comparable to our approach.
All the other hyper-parameters in MLP, SVR, and RF were
determined by cross-validation. We conducted experiments
with these standart algorithms because we wanted to verify
if the individual data point, without association was able to be
used by itself in prediction. Since we do not have data point
association in these standard experiments we allow the use of
the PAT feature for the single target.

Three link map scenarios were selected: (i) Nanterre; (ii)
Paris; (iii) Lyon. The three scenarios were used individually
to generate data for a training, validation, and testing sets,
respectively. The training set (Nanterre) contained 440’550
data points collected from multiple car trips from January to
May of 2018. The validation set (Paris) was devised so that
the number of final data points was 30% of the size of the
training set, hence, it had 132’000 points. And finally, the
test set (Lyon) was generated from collecting trip data from
1 month during January of 2018, leading to 630 complete
trips. Although being collected at the same time as training
and validation, since we select a different region to create the
test there is no overlapping data between them. We chose to
build our test set from a further region compared to training
and validation to analyse the robustness of the predictions
when dealing with different cities, thus, have a divergence
of topographical feature combinations. In addition, differently
from training and validation sets, we do not shuffle the test set

1https://www.gecoair.fr/en/
2https://www.here.com

Fig. 6. Three randomly chosen trips (labeled 6, 24, and 47). First column:
True speed values for individual trips. Second column: Speed predictions of
the MLP baseline, SV R, and Random Forest RF regression algorithms.

since we need the correct sequence of data points to perform
the prediction inference.

Concerning a qualitative analysis, in Figure 6 we can see
prediction results of the SVR, Random Forest, and MLP
baselines. For this training we conducted a grid search over
the parameters to best fit each algorithm to the train data. It is
possible to observe from the graphs that results from all three
algorithms were noisy. However, with only the topographical
features from the single GPS timestep instance data points
they were able to learn and follow a coherent speed prediction
mean. It is possible to consider the fact that individual data
point regression, in this configuration, poorly regresses speed.
Even when the exact location of where the vehicle is in the
link is disclosed, the baselines still appears to struggles to yield
consistent results compared to the ground truth.

Figure 7 shows a comparison of our three prediction
schemes presented in Section II-C (Pa, P&F , and PuP ).
We compare the three predictions for the same ground truths
presented in Figure 6. Even if qualitatively results are similar
to the ground truth, the best predictions are yielded when
using P&F and Pa. For the P&F , in addition to knowing
where the car was, we assume that the knowledge of its
future spatial configuration brings further information to the
regression model. This means that with the information of
a sudden change in the car’s trajectory, the network can
better preview what would be the target’s speed value. It is
also deducible that the reason prediction is more unstable by
using the PuP association is because with larger spatial gaps



Fig. 7. Different trip (labeled 6, 24, and 47) prediction graphs: First column:
True speed values for individual trips. Second column: Speed prediction of
the proposed SWMLP with Pa, P&F , or PuP scheme. The Y coordinate
represent speed values and the X represent the ordered data point sequence
that compose a full trip.

between the target and associated points (5 and 10 points
further), we lose some information for immediate changes
in speed. However, PuP can still yield better predictions
compared to the isolated data point predictions of the standard
regressors. The balance between these, the Pa data point
association, also generated compatible results to the ground
truth.

To avoid a noisy an unreadable graph comparison and since
the baselines did not show a significant qualitative difference
between them, we chose only the Random Forest results to
compare it to our P&F approach in Figure 8. We can see
that even though P&F also contains noise, it is better fitted
to the ground truth compared to the Random Forest. Another
remark is the ability of P&F to match the ground truth valleys
compared to the other regressors.

Regarding a quantitative analysis, our speed was calculated
in meters per seconds and we can compare the metrics for
the regression algorithms in Table I. Between the baseline
algorithms, MLP had the best values in average for the
predictions while testing; however, Random Forest and SVR
did not differ much from MLP. For our proposed approach,
with all of the different data point associations, we can see
that we were able to significantly reduce the values of error
compared to MLP, Random Forest, and SVR. As regards to
the quantitative comparison between our data point association
we can see that even though qualitatively P&F and Pa had

Fig. 8. Three different trip (labeled 6, 24, and 47) prediction graphs:
Qualitative comparison between Random Forest (RF ) regression algorithm
and our P&F approach. The Y coordinate represent speed values and the X
represent the ordered data point sequence that compose a full trip.

similar predictions, when dealing with metric values P&F had
a superior performance.

IV. CONCLUSION

In this work we devised a method for predicting a car’s
trajectory speed based on topographical features and data point
association. Here, we prove that we are able to use the road’s
topographical features to generate the speed prediction on a
trajectory. The advantages of this approach is that by acquiring
the trajectory and having the topographical map features of its
component links, we do not need time series data to generate
an average behavior. Given that this work is able to predict
a corresponding speed dependant on predetermined paths, it
is also our intention design a solution so that this prediction
becomes more independent. Path dependency signifies that a



TABLE I
QUANTITATIVE COMPARISON BETWEEN REGRESSION ALGORITHMS. THE

PRESENTED METRICS WERE: ROOTED MEAN SQUARED ERROR, MEAN
SQUARED ERROR, AND MEAN ABSOLUTE ERROR. THESE METRICS WERE

AVERAGED OVER THE INDIVIDUAL METRICS CALCULATED OVER ALL
TEST SET AND NOT ONLY THE PRESENTED QUALITATIVE ONES.

RMSE MSE MAE
SVR 5.25 32.25 4.52
RF 4.61 23.93 3.86
MLP 4.29 23.21 3.69
SWMLP (PuP ) 3.75 16.93 3.13
SWMLP (Pa) 2.77 9.81 2.15
SWMLP (P&F ) 2.57 8.67 1.94

link’s speed can vary according to the modification in a car’s
trajectory, thus we will work on the prediction of a range of
possible speed values for specific a data point as well as create
different data point associations schemes able to convey the
idea of path generalization. Finally, it is also our intention to
continue working on trajectory speed prediction and smooth
out the noise of our current prediction, and include in our
features the use of previous speed predicted values to verify
if changes are significant in the results.
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