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In this work, we use a numerical framework which consists in solving Navier-Stokes equations coupled to a constitutive equation, namely the Oldroyd-B model. To overcome numerical instability issues arising for high elasticity effects, an integrated lattice Boltzmann and finite difference method is proposed to solve both viscous and elastic parts respectively. The numerical approach is validated on two numerical benchmark test cases, the Poiseuille and Womersley flow. The results present a good agreement with analytical solutions and literature reference data. A physical analysis of the dynamics of viscoelastic fluid flows forced by an oscillatory Womersley flow is performed in the context of mucus clearance in human respiratory system. The results show that the highest flow rate of mucus can be achieved in the case of resonance, i.e. when the frequency of the Womersley flow matches the natural frequency of the viscoelastic fluids. Increasing the elasticity of the fluid is found to increase the mucus flow rate. These results are meaningful in the context of biomedical devices improving mucus clearance of bronchial mucus patients suffering from chronic respiratory diseases associated to mucus transport dysfunction such as asthma or COPD.

Introduction

Viscoelastic fluids are ubiquitous in human body and more generally in nature, and their study has many applications in several industrial sectors, including health, biomedical and pharmacy industry. They play a role in several living system structures, such as the human cardiovascular-pulmonary network, blood and mucus for instance, where they are considered as non-newtonian fluids, exhibiting both viscous and elastic behaviours. Elasticity in these kinds of fluids implies that the stress tensor is calculated based on the strain and deformation history [START_REF] Malaspinas | Lattice Boltzmann method for the simulation of viscoelastic fluid flows[END_REF]. Based on this memory effect, viscoelastic fluids behave very differently than Newtonian ones. In order to describe the viscoelastic fluid behaviour, we require a constitutive equation. This equation provides a connection between the stress and the material deformation rates [START_REF] Su | Lattice Boltzmann method coupled with the Oldroyd-b constitutive model for a viscoelastic fluid[END_REF]. Due to their complex behavior, simulating numerically the dynamics of these fluids still remains challenging, because of the non-linear character of the equations and the associated numerical instabilities. There are numerous models for describing the viscoelastic fluid behavior, such as Oldroyd-B, Finitely Extensible Non-Linear Elastic (FENE) and Giesekus models [START_REF] Malaspinas | Lattice Boltzmann method for the simulation of viscoelastic fluid flows[END_REF]. In this study, the Oldroyd-B model is used because of its simplicity and accuracy in describing polymer solutions. In this model, polymer molecules are considered as two beads connected by a spring surrounded by a viscous fluid. One of the most difficult part of the viscoelastic fluid simulation is to deal with high values of the Weisenberg number. The latter is defined as the elastic force to the viscous force and controls the physics and consequently the stability of the simulations. In an earlier study, Qian and Deng [START_REF] Qian | A lattice BGK model for viscoelastic media[END_REF] imposed the elastic effect into LBM by modifying the equilibrium distribution function. Later, Giraud et al. [START_REF] Giraud | A lattice Boltzmann model for visco-elasticity[END_REF][START_REF] Giraud | A lattice Boltzmann model for Jeffreys viscoelastic fluid[END_REF] and Lallemand et al. [START_REF] Lallemand | Theory of the lattice Boltzmann method: three-dimensional model for linear viscoelastic fluids[END_REF] proposed a scheme coupled with Jeffrey's model, but with a linear traceless stress tensor assumption and without considering some important elastic effect. Wagner et al. [START_REF] Wagner | Simulation of a cusped bubble rising in a viscoelastic fluid with a new numerical method[END_REF] extended the LBM approach to simulate a cusped bubble rising in a viscoelastic fluid. Ispolatov and Grant [START_REF] Ispolatov | Lattice Boltzmann method for viscoelastic fluids[END_REF] considered the elastic effect by adding a Maxwell-like (exponentially decaying) into the lattice Boltzmann force term, but their model was not capable to simulate the complex elastic behaviour in the viscoelastic fluid. Subsequently, Onishi [START_REF] Onishi | Dynamic simulation of multi-component viscoelastic fluids using the lattice Boltzmann method[END_REF] and Ammar [START_REF] Ammar | Lattice Boltzmann method for polymer kinetic theory[END_REF] combined the LBM with the polymer kinetic theory which was described by the Fokker-Planck equation. Numerical results which were mentioned above could only be obtained for homogeneous shear flow and it was not allowed to have a very strong elastic effect [START_REF] Su | Lattice Boltzmann method coupled with the Oldroyd-b constitutive model for a viscoelastic fluid[END_REF]. Although some of these studies show positive results, there are still some issues. First, implementing the boundary conditions are very complicated with these numerical models. Second, these models requires large computer memory to store the distribution functions for the stress tensor [START_REF] Su | Lattice Boltzmann method coupled with the Oldroyd-b constitutive model for a viscoelastic fluid[END_REF]. In this section, the oscillatory flow of a Newtonian fluid in a 2D channel is introduced. The computational domain is illustrated in figure 1. The fluid flows due to an oscillating body force. The flow velocity remains parallel to the x-axis. The force term of the oscillatory flow is defined as follows:

F x = g x (ξ 1 + ξ 2 cos (ωt)). (1) 
Here g x is the characteristic magnitude of the force, ξ 1 and ξ 2 are two non-dimensional parameters controlling the form of F x and ω is the pulsation. When the fluid is Newtonian, the flow momentum equation becomes:

α 2 ∂ u x ∂t = Re(ξ 1 + ξ 2 cos (ωt)) + ∂ 2 u x ∂ y 2 (2)
where α is the Womersley number defined by α = H 2 ω ν and the analytical solution derived by Womersley [START_REF] Womersley | Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known[END_REF] is

u x (y,t) = Reξ 1 2 (y -y 2 ) + Real Reξ 2 iω e (iωπ) 1 - cosh t (y -0.5) α √ 2 cosh t 2 √ 2 . ( 3 
)

Viscoelastic fluid

The constitutive equations describes the behavior of the polymer molecules surrounded by a Newtonian solvent. Two beads connected by a spring are used to model the polymer molecules. The interaction between the polymer molecules and the solvent is taken into account by considering the drag force on the beads. In this article we consider the Oldroyd-B model which is derived from the kinetic theory of concentrated polymer solutions and polymer melts. Oldroyd-B model produces constant values of shear viscosity relative to strain rate:

τ p + λ ▽ τ p = 2µ p D (4) 
where µ p is the polymer viscosity and ▽ τ is defined by:

▽ τ p = Dτ p Dt -( ⃗ ∇ ∇ ∇.u.τ p ) -( ⃗ ∇ ∇ ∇.u.τ p ) T (5) 
In equation 5, Dτ p Dt is the material derivative of the extra stress tensor and is defined as:

Dτ p Dt = ∂ τ p ∂t + u. ⃗ ∇ ∇ ∇τ p . (6) 
In viscoelastic fluids, two non-dimensional numbers, namely Weissenberg (Wi) number and kinematic viscosity ratio (β ) are characterizing viscoelastic fluids, Wi = λ U H and β = ν s ν total . Here ν s is the solvent viscosity and ν total is the summation of the solvent and polymer viscosities.

Lattice-Boltzmann method

In lattice Boltzmann methods (LBM), macroscopic dynamics are governed by the lattice Boltzmann equation (LBE), which comes from the discretization of the Boltzmann equation. While conventional methods such as the finite element method (FEM) or the finite volume method (FVM) directly solve the Navier-Stokes(NS) equations, in LBM we introduce particle distribution functions which represent the density of fluid particles. The evolution of the particles is presented by streaming and collision steps:

f i (x + e i ,t + 1) -f i (x,t) = Ω i (x,t) + S i (x,t) (7) 
where Ω is the collision operator and S i is the contribution of an external body force term. The distribution function equation is discretized based on the velocity and physical space. In the present work we used the D2Q9 scheme, in which the velocity space is discretized by nine velocities:

e i =        (0, 0), i = 0, c cos ( π(i-1) 2 ), sin ( π(i-1) 2 ) , i ∈ [1, 4], √ 2c cos ( π(2i-9) 4 ), sin ( π(2i-9) 4 ) , i ∈ [5, 8]. (8) 
In equation 8, c refers to the lattice velocity. The macroscopic velocity is recovered by:

ρu = 8 ∑ i=0 f i e i + 1 2 S i (9) 
with S i expressed as

S i = 1 - 1 2τ w i e i -u c 2 s + (e i u)e i c 4 s F. (10) 

Hybrid lattice Boltzmann -finite difference method

In finite difference approximations, the domain is discretized in space and in time and approximations of the solution are computed at the space or time points [START_REF] Shi | A hybrid algorithm of lattice Boltzmann method and finite difference-based lattice Boltzmann method for viscous flows[END_REF]. In order to simulate the viscoelastic fluids, LBM was used to model the macroscopic hydrodynamic equations, and the finite difference method was used to describe the elastic part of the fluid. The hybrid algorithm takes advantages of both methods. Finite differences method can guarantee the accuracy of the results in complex geometry and also it can increase the stability of the solver in high Weissenberg number problems. From Oldroyd-B equation, the elastic stress components are discretized and calculated as follows:

∂ τ xx ∂t = [- (∂ u x τ xx ) ∂ x + (∂ u y τ xx ) ∂ y + 2( ∂ u x ∂ x τ xx + ∂ u x ∂ y τ xy ) + 1 Wi [2(1 -Wi) ∂ u x ∂ x -τ xx ]] ∂ τ yy ∂t = [- (∂ u x τ yy ) ∂ x + (∂ u y τ yy ) ∂ y + 2( ∂ u y ∂ x τ yy + ∂ u y ∂ y τ xy ) + 1 Wi [2(1 -Wi) ∂ u y ∂ x -τ yy ]] (11) 
∂ τ xy ∂t = [- (∂ u x τ xy ) ∂ x + (∂ u y τ xy ) ∂ y + ( ∂ u y ∂ x τ xx + ∂ u x ∂ y τ xy ) + 1 Wi [(1 -Wi)( ∂ u x ∂ y + ∂ u x ∂ y ) -τ xy ]]
3 Numerical results

Validation

Steady 2D poiseuille

A viscoelastic 2D poiseuille flow is considered hereafter in order to validate the solver. Periodic boundary conditions are applied at the inlet and outlet of the channel and no slip boundary conditions [START_REF] Zou | On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[END_REF] are implemented on the solid walls at the top and bottom of the geometry. We compared the numerical results with the exact solutions of the velocity and stress tensor [START_REF] Zou | Benchmark numerical simulations of viscoelastic fluid flows with an efficient integrated lattice Boltzmann and finite volume scheme[END_REF][START_REF] Zou | An integrated lattice Boltzmann and finite volume method for the simulation of viscoelastic fluid flows[END_REF]. We use the non-dimensionalized parameters to calculate the exact solution:

y * = y H , t * = ν 0 H 2 t, u * 0 = 1 u 0 u x , τ * = H ηu 0 τ. (12) 
where "*" refers to non-dimensionalized parameters. The channel fluid flows due to a constant body force, g x = 8u 0 ν 0 H 2 [START_REF] Zou | An integrated lattice Boltzmann and finite volume method for the simulation of viscoelastic fluid flows[END_REF]. u 0 is the characteristic velocity and β = 0.1 and Re = 1 in these simulations. The channel length is L = 4 nodes along the flowing direction. At the beginning of the simulation, all polymer molecules are in an equilibrium state. Afterwards, the flow is accelerated by a constant body force. Therefore the velocity profile starts to increase from zero. Meanwhile, stress increases due to the deformation effects. At a certain point, the elastic force prevails over the inertial force. Accordingly, the velocity and stress profiles decrease again with time, these oscillations repeat until both velocity and stress tensor will reach steady state conditions [START_REF] Zou | Benchmark numerical simulations of viscoelastic fluid flows with an efficient integrated lattice Boltzmann and finite volume scheme[END_REF]. The steady velocity and stress components along y-axis could be written as follows: 

u * x (y * ,t * ) = 4y * (1 -y * ), τ xx = 2Wi(1 -β )( ∂ u * ∂ y * ) 2 , τ xy = (1 -β )( ∂ u * ∂ y * ), τ yy = 0. (13) 

Oscillatory flow

In this section, to study periodic pulsatile flow we validate our solver with Newtonian two dimensional Womersley flows. The geometry configuration is illustrated in figure 1 with periodic boundary conditions at the inlet and outlet. The flow is accelerated by a pulsating oscillatory force term defined by eq. 1 [START_REF] Womersley | Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known[END_REF]. Figures 4(a 

Results and discussion

Three types of oscillating viscoelastic fluid flows are studied: (i) purely oscillating flow, (ii) strongly oscillating flow and (iii) weakly oscillating flow. For the purely oscillating flow, the force term only contains the oscillation part (ζ 1 = 0 and ζ 2 = 1), while it contains time-averaged contribution and oscillation part together in weakly and strongly oscillatory flows : We first examine the purely oscillating flow. Figure 5(a) presents the maximal flow rate for different Wi (and thus different elastic properties) as a function of the frequency f / f 0 where f 0 is the resonance frequency. As expected, the maximal flow rate is obtained at the resonance frequency f = f 0 . Furthermore, increasing Wi leads to a higher valuee of the max flow rate. In figure 5(b), we plot the maximal flow rate as a function of the frequency for three different oscillation flows (purely, strongly and weakly). For all cases, the peak of the maximal velocity is obtained at f 0 . Moreover, as the strongly and purely oscillating cases have the same oscillation part, the results are very close to each other, and different from the weakly oscillating case. Also, we observed (not shown) that the mean flow is exactly proportional to the mean force and independent of the oscillating amplitude. As a consequence, the mean flow is null for a purely oscillating case.

ζ 1 /ζ 2 = 0.
Figure 6(a) shows the maximal flow rate as a function of the elasticity number defined by El = Wi Re . For small values of El, it increases as a function of elasticity and then reaches a plateau. Again, because of their difference in the oscillation part of the forcing, strongly and purely oscillating cases are similar while the weakly oscillating case is lower. As shown in figure 6(b), a lower viscosity ratio leads to a higher maximal flow rate. Moreover, it is interesting to note that a difference in flow rates while changing β is only present around the resonance frequency f 0 . Away from it, the maximal flow rate is nearly independent of β .

Space-time diagram of the velocity are presented in figure 7. For each value of Wi and f the flow is visualized using iso-contours of the velocity as a function of time and space, over one oscillating period. The peak velocity in the channel is higher for the resonance frequency f 0 . When increasing Wi, the velocity also increases as a consequence of the elasticity effect on the viscoelastic fluids. 

Conclusions

In this work a hybrid lattice-Boltzmann and finite differences framework is proposed to simulate the dynamics of viscoelastic fluids undergoing oscillating forcings. Oldroyd-B model is chosen to model visco-elasticity because of it simplicity and accuracy. The solver is validated with two test cases, 2D Poiseuille flow and Womersley oscillating flow. In both cases, very good agreement are obtained with reference data and analytical solutions. Oscillatory viscoelastic flows are then studied in a 2D channel for three configurations: purely oscillating flow, weakly oscillating flow and strongly oscillating flow.

The effects of the elasticity, through Wi and β , and of the forcing frequency are characterized through the mean flow rate and the maximal flow rate. In all tested configurations, the peak values of the maximal flow rates are obtained for the resonance frequency. Moreover, very high velocities may be obtained at the resonance frequency, but the results also show that the mean flow rates are independent of the elasticity. In the future, oscillatory forcing of viscoelastic fluids and shear thinning and shear thickening fluids will be studied.
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 1 Figure 1: Illustration of the computational domain.
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 2 Figure 2: (a) comparison between analytical and numerical solution of velocity along y direction for Wi = 1 and (b) center-line velocity according to the time for different Wi.
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 23 Figure2(a) presents the comparison between the numerical solution and the exact solution for u x along the y direction of the channel for Wi = 1. The same test was performed with Wi = 0.5, and in the stationary regime we recover the same Poiseuille velocity profile as for Wi = 1. In figure2(b), we present the center-line velocity for different Wi as a function of time. Even though Wi are different, the center-line velocity will reach the same steady state, but the evolution to the steady state depends on elasticity effects. Newtonian fluids have no oscillations in the velocity and reaches the steady state rapidly. On the other hand, for viscoelastic fluids the center-line velocity first increases with time, since we also have elasticity effects, the velocity starts to decrease and this oscillation repeatably continues up to the steady state as clearly observed in figure2(b). Comparison between numerical and analytical solutions of the stress tensor are quantitatively reported in figure 3(a) and figure 3(b). In 3(a) we
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 4 Figure 4: Comparison between analytical (blue dots) and numerical solution (blue line) of oscillatory flow for Re = 1 and two different Womersley number (a) α = 1 and (b) α = 7.
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 25 Figure 5: Comparison of the (a) Maximal flow rate for the purely oscillation and different Wi and (b) Maximal flow rate for three different regimes (purely, strongly and weakly) for Wi = 1

Figure 6 :

 6 Figure 6: (a) Maximal flow rate for three typical flows (purely, strongly and weakly), for Re = 1 and β = 0.05 and (b) Maximal flow rate for different β as a function of f for Re = 1.
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 7 Figure 7: Space-time diagrams of the velocity (u x /u 0 )/(Re/8) during one period for each couple of f and Wi. For each subplot the x-axis corresponds to the temporal evolution and the y-axis gives the position inside the channel.