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Abstract:

• Bias reduction in tail estimation has mainly been performed in case of Pareto-type models; see for
instance Drees (1996) [11], Peng (1998) [20], Feuerverger and Hall (1999) [14], Beirlant et al. (1999 [3],
2002 [4]), Gomes and Martins (2002) [16] and Caeiro et al. (2005 [9], 2009 [10]). In that context,
Beirlant et al. (2009) [7] and Papastathopoulos and Tawn (2013) [19] constructed distributional
models that are based on second order rates of convergence for distributions of peaks over thresholds
(POT). Such approach also allows to connect the tail and the bulk of the distribution.
Bias reduction for all max-domains of attractions, i.e. without restricting to the Pareto-type case,
received much less attention up to now. Here we extend the second-order refined POT approach
started in Beirlant et al. (2009) [7] providing a bias reduction technique for the classical generalized
Pareto (GP) approximation for POTs. We consider parametric and nonparametric modelling of
the second order component.
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1. INTRODUCTION

Extreme value (EV) methodology starts from the assumption that the distribution
of the available sample X1, X2, ..., Xn belongs to the domain of attraction of a generalized
extreme value distribution, i.e. there exists sequences (bn)n and (an > 0)n such that as n →∞

(1.1)
max(X1, X2, ..., Xn)− bn

an
→d Yξ,

where P(Yξ ≤ y) = exp(−(1 + ξy)−1/ξ), for some ξ ∈ R with 1 + ξy > 0. The parameter ξ is
termed the extreme value index (EVI). It is well-known (see e.g. Beirlant et al., 2004 [5], and
de Haan and Ferreira, 2006 [17]) that (1.1) is equivalent to the existence of a positive function
t 7→ σt, such that

(1.2) P
(

X − t

σt
> y|X > t

)
=

F̄ (t + yσt)
F̄ (t)

→t→x+ H̄GP
ξ (y) = (1 + ξy)−1/ξ,

where F̄ (x) = P(X > x) and x+ denotes the endpoint of the distribution of X. The condi-
tional distribution of X− t given X > t is called the peaks over threshold (POT) distribution,
while H̄GP

ξ is the survival function of the generalized Pareto distribution (GPD).

Estimation of ξ and tail quantities such as return periods is then based on fitting a GPD
to the observed excesses X − t given X > t. The main difficulty in such an EV application
is the choice of the threshold t. Most often, the threshold t is chosen as one of the top data
points Xn−k,n for some k ∈ {1, 2, ..., n} where X1,n ≤ X2,n ≤ ... ≤ Xn,n denotes the ordered
sample. The parameters (ξ, σ) are then estimated by fitting the GPD HGP

ξ

( y
σ

)
to the spacings

Xn,n −Xn−k,n, ..., Xn−k+1,n −Xn−k,n.

The limit result in (1.2) requires t to be chosen as large as possible (or, equivalently,
k as small as possible) for the bias in the estimation of ξ and other tail parameters to be
limited. However, in order to limit the estimation variance, t should be as small as possible,
i.e. the number of data points k used in the estimation should be as large as possible. Several
adaptive procedures for choosing t or k have been proposed, but mainly in the Pareto-type
case with ξ > 0, i.e. when

(1.3) F̄ (x) = x−1/ξ`(x),

for some slowly varying function `, i.e. satisfying `(yt)
`(t) → 1 as t →∞, for every y > 1. One

then typically assumes a second-order specification of (1.3) of the type

(1.4)
`(yt)
`(t)

− 1 = δt

(
y−β − 1

)
,

where δt = δ(t) = t−β ˜̀(t), with β > 0 and ˜̀ slowly varying at infinity.

As an alternative, bias reduction techniques have been proposed in the Pareto-type
case ξ > 0, among others in Feuerverger and Hall (1999) [14], Beirlant et al. (1999 [3], 2002
[4]) and Gomes and Martins (2002) [16]. However while the bias is reduced, the variance is
increased. In Caeiro et al. (2005 [9], 2009 [10]) methods are proposed to limit the variance of
bias-reduced estimators assuming a third-order slow variation model. These methods focus
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on the distribution of the log-spacings of high order statistics. Other construction methods
for asymptotically unbiased estimators of ξ > 0 were introduced in Peng (1998) [20] and Drees
(1996) [11].

Another approach consists of proposing penultimate limit distributions. In case ξ > 0,
Beirlant et al. (2009) [7] proposed an extension of the Pareto distribution (EPD) to approxi-
mate the tail probability of the POT distribution P

(
X
t > y|X > t

)
as t →∞:

(1.5) H̄EP
ξ,δ,ρ(y) = 1−HEP

ξ,δ,ρ(y) = y−1/ξ
(
1 + δt

(
(y−1/ξ)−ρ − 1

))
, y > 1,

with δt satisfying δt ↓ 0 as t →∞ and ρ = −βξ. In the literature, the second order parameter
ρ typically is estimated externally with a different sequence of extreme order statistics than
with ξ and δ, or it is given an appropriate ’canonical’ value such as −1. We suppress the
notation ρ from the extended distribution notation.

Fitting the extended Pareto distribution HEP
ξ,σ to the relative excesses {Xn−j+1,n

Xn−k,n
, j =

1, ..., k} leads to estimates of ξ that are more stable as a function of k compared to the original
ML estimator derived by Hill (1975) [18]

ξ̂H
k,n =

1
k

k∑
j=1

log
Xn−j+1,n

Xn−k,n
,

which is obtained by fitting the Pareto distribution HEP
ξ,0 . Denoting the maximum likelihood

estimators of ξ by ξ̂EP
k , it can indeed be shown under the assumption that the EP model for

the excesses X/t is correct and that ρ is estimated consistently, that the asymptotic bias of
ξ̂EP
k is 0 as long as k(k/n)−2ρ → λ ≥ 0 as k, n →∞, while the asymptotic bias of ξ̂H

k,n is only

0 when k(k/n)−2ρ → 0. On the other hand, the asymptotic variance of ξ̂EP
k equals

(
1−ρ

ρ

)2
ξ2

k ,

where ξ2

k is the asymptotic variance of ξ̂H
k,n.

In case of a real-valued EVI, for the selection of an appropriate threshold or the con-
struction of bias-reduced methods, only a few methods are available. Dupuis (1999) [12]
suggested a robust model validation mechanism to guide the threshold selection, assigning
weights between 0 and 1 to each data point where a high weight means that the point should
be retained since a GPD model is fitting it well. However, thresholding is required at the level
of the weights and hence the method cannot be used in an unsupervised manner. Buitendag
et al. (2019) [8] present a ridge regression method to reduce the bias of the generalized Hill
estimator proposed in Beirlant et al. (2005) [6].

In this paper we concentrate on bias reduction when fitting the GPD to the distribution
of POTs X − t|X > t using maximum likelihood estimation. We hence extend the second-
order refined POT approach based on H̄EP

ξ,δ from (1.5) to all max-domains of attraction. Here
the corresponding basic second order regular variation theory can be found in Theorem 2.3.8
in de Haan and Ferreira (2006) [17] stating that

(1.6) lim
t→x+

P(X − t > yσt|X > t)− (1 + ξy)−1/ξ

δ(t)
= (1 + ξy)−1−1/ξΨξ,ρ̃((1 + ξy)1/ξ),

with δ(t) → 0 as t → x+ and Ψξ,ρ̃(x) = 1
ρ̃

(
xξ+ρ̃−1

ξ+ρ̃ − xξ−1
ξ

)
which for the cases ξ = 0 and ρ̃ = 0

is understood to be equal to the limit as ξ → 0 and ρ̃ → 0. We further allow more flexible
second-order models than the ones arising from second-order regular variation theory such
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as in (1.6) using non-parametric modelling of the second-order component and the flexible
semiparametric GP modelling introduced in Tencaliec et al. (2019) [21]. This newly proposed
method can also be applied to the specific case of Pareto-type distributions.

In the next section we propose our extended GPD models, and detail the estimation
methods. Some basic asymptotic results are provided in Section 3. In the final section we
discuss simulation results and some practical case studies.

2. TRANSFORMED AND EXTENDED GPD MODELS

In this paper we propose to approximate the POT distribution with an extended GPD
model with survival function

(E) : F̄EGP
t (y) = H̄GP

ξ (
y

σ
)
{

1 + δtBη

(
H̄GP

ξ (
y

σ
)
)}

,

where

• δt = δ(t) → 0 as t → x+,

• Bη(1) = 0 and limu→0 u1−εBη(u) = 0 for every 0 < ε < 1,

• Bη is twice continously differentiable.

Here the parameter η represents a second order nuisance parameter. For negative δ-
values one needs δt > {minu(1− d

du (uBη(u))}−1 to obtain a valid distribution.

Note that this model is a transformation model Gt

(
H̄GP

ξ ( y
σ )
)

where the transformation

function Gt : (0, 1) → (0, 1), u 7→ u(1 + δtBη(u)) satisfies Gt(u)
u → 1 as t →∞ for every u ∈

(0, 1) as follows from (1.2).
Also, model (E) generalizes the EPD model (1.5) replacing the Pareto survival function

y−1/ξ (ξ > 0) by the GPD survival function H̄GP
ξ (ξ ∈ R), and considering a general function

Bη(u).

We here detail a parametric and non-parametric estimation procedure for (ξ, σ) under
(E) based on excesses Yj,k = Xn−j+1,n−Xn−k,n (j = 1, ..., k), while considering external esti-
mation of the parameters in the Bη component of the model. In this we use the reparametriza-
tion (ξ, τ) with τ = ξ/σ. Modelling the distribution of the exceedances Y with model (E)
leads to maximum likelihood estimators based on the excesses Yj,k = Xn−j+1,n −Xn−k,n

(j = 1, ..., k):

(ξ̂E
k , τ̂E

k , δ̂E
k ) = argmax


k∑

j=1

log
(
1 + δkbη((1 + τYj,k)−1/ξ)

)

+
k∑

j=1

log
{

τ

ξ
(1 + τYj,k)−1−1/ξ

}(2.1)

with bη(u) = d
du(uBη(u)) for a given choice of Bη.

Estimates of small tail probabilities P(X > c) are then obtained through

P̂E
k (X > c) =

k

n
H̄GP

ξ̂E
k

(
τ̂E
k

ξ̂E
k

(c−Xn−k,n)

)(
1 + δ̂E

k B̂η

(
H̄GP

ξ̂E
k

(
τ̂E
k

ξ̂E
k

(c−Xn−k,n)

)))
.
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A general approach to choose the parameters contained in the Bη component can be to
minimize the variance of the obtained estimates of ξ over k = 2, ..., n. See also the simulation
Section 4.

A parametric approach (Ep). The second-order result (1.6) leads to the parametric
choice Bξ,ρ̃(u) = uξ

ρ̃

(
u−ξ−ρ̃−1

ξ+ρ̃ − u−ξ−1
ξ

)
in case ξ + ρ̃ 6= 0 and ξ 6= 0.

Model (E) allows for bias reduction in the estimation of (ξ, τ) under the assumption
that the corresponding second-order model (1.6) is correct for the POTs X − t|X > t. Note
that here the Bη component contains two parameters ξ and ρ̃. So in this component ξ and ρ̃

will be substituted with an external value.
Here

bη(u) = u−ρ̃

(
1− ρ̃

ρ̃(ξ + ρ̃)

)
+ uξ

(
1 + ξ

ξ(ξ + ρ̃)

)
− 1

ξρ̃
,

in which the classical estimator of ξ (with δk = 0), or an appropriate value ξ0, is used to
substitute ξ. A consistent estimator of ρ̃ is provided in Fraga Alves et al. (2003) [15]. Another
option is to choose (ξ0, ρ̃) minimizing the variance in the plot of the resulting estimates of ξ

as a function of k.

A non-parametric approach (Ep̄). In practice a particular distribution probably
follows laws of nature, environment or business and does not have to follow the second-order
regular variation assumptions as in (1.6). A non-parametric approximation of u 7→ uBη(u) can
be obtained from an estimator Ĝt∗ of Gt∗ , or equivalently Ĝk∗ of Gk∗ , of the transformation
Gt(u) = u(1 + δtBη(u)) (u ∈ (0, 1)) at some particular t∗ or k∗. Indeed, using Ĝ

(m)
k∗

(u)− u as
an approximation of u 7→ δk∗uBη(u), and reparametrizing δk by δk/δk∗ , we obtain b̂η,k∗(u) =
−1 + d

duĜ
(m)
k∗

(u) as an estimator of bη.

For any t, an estimator Ĝt of Gt can be obtained using the Bernstein polynomial
algorithm from Tencaliec et al. (2019) [21]. The Bernstein approximation of order m of a
continuous distribution function G on [0, 1] is given by

G(m)(u) =
m∑

j=0

G

(
j

m

)(
m
j

)
uj(1− u)m−j , u ∈ [0, 1].

As in Babu et al. (2002) [2] one then replaces the unknown distribution function G itself
with the empirical distribution function Ĝn of the available data in order to obtain a smooth
estimator of G:

Ĝ(m)
n (u) =

m∑
j=0

Ĝn

(
j

m

)(
m
j

)
uj(1− u)m−j .

Note that Gt is the distribution function of H̄GP
ξ (Y/σ). Hence, in the present application,

data from Gt are only available after imputing a value for (ξ, τ). This then leads to the
iterative algorithm from Tencaliec et al. (2019) [21], which is applied to every threshold t, or
every number of top k data:
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(i) Set starting values (ξ̂(0)
k , τ̂

(0)
k ). Here one can use (ξ̂ML

k , τ̂ML
k ) from using Gt(u) = u.

(ii) Iterate for r = 0, 1, ... until the difference in log-likelihood taken in (ξ̂(r)
k , τ̂

(r)
k ) and

(ξ̂(r+1)
k , τ̂

(r+1)
k ) is smaller than a prescribed small value:

(a) Given (ξ̂(r)
k , τ̂

(r)
k ) construct rv’s Ẑj,k =

(
1 + τ̂

(r)
k Yj,k

)−1/ξ̂
(r)
k ;

(b) Construct Bernstein approximation based on Ẑj,k (1 ≤ j ≤ k)

Ĝ
(m)
k (u) =

m∑
j=0

Ĝk

(
j

m

)(
m
j

)
uj(1− u)m−j

with Ĝk the empirical distribution function of Ẑj,k;

(c) Obtain new estimates (ξ̂(r+1)
k , τ̂

(r+1)
k ) with ML:

(ξ̂(r+1)
k , τ̂

(r+1)
k ) = argmax


k∑

j=1

log
{

ĝ
(m)
k ((1 + τẐj,k)−1/ξ)

}
+

k∑
j=1

log
{

τ

ξ
(1 + τẐj,k)−1−1/ξ

}
with ĝ

(m)
k denoting the derivative of Ĝ

(m)
k .

As noted in Tencaliec et al. (2019) [21] a theoretical study of these estimates is difficult
and has not been established.

Remark 2.1. The estimation methods described above of course can be rewritten for
the specific case of Pareto-type distributions where the distribution of POTs Y = X

t |X > t

are approximated by transformed Pareto distributions. The model (E) is then rephrased as

(E+) : F̄E
t (y) = H̄P

ξ (y)
{
1 + δtBη

(
H̄P

ξ (y)
)}

.

The likelihood estimation method, now based on the exceedances Yj,k = Xn−j+1,n/Xn−k,n

(j = 1, ..., k), is then adapted to

(2.2) (ξ̂E+
k , δ̂E+

k ) = argmax

{
k∑

j=1

log
(
1 + δkbη(Y

−1/ξ
j,k )

)
+

k∑
j=1

log
{

1
ξ
(Yj,k)−1−1/ξ

}}
.

Note that the (Ep+) approach using the parametric version Bη(u) = u−ρ − 1 for a particular
fixed ρ < 0 equals the EPD method from Beirlant et al. (2009) [7], while (Ep̄+) is new.
Estimators of tail probabilities are then given by

P̂E+
k (X > c) =

k

n
H̄P

ξ̂E+
k

(c/Xn−k,n)
(
1 + δ̂E+

k B̂η

(
H̄P

ξ̂E+
k

(c/Xn−k,n)
))

.

3. BASIC ASYMPTOTICS UNDER MODEL (E)

In this section we discuss the asymptotic properties of the maximum likelihood es-
timators solving (2.1) and (2.2). To this end, as in Beirlant et al. (2009) [7], we develop
the likelihood equations up to linear terms in δk since δk → 0 with decreasing value of k.
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Below we set H̄θ(y) = (1+ τy)−1/ξ when using extended GPD modelling, while H̄θ(y) = y−1/ξ

when using extended Pareto modelling under ξ > 0.

Extended Pareto POT modelling. The likelihood problem (2.2) was already considered
in Beirlant et al. (2009) [7] in case of parametric modelling for Bη. We here propose a
more general treatment. The limit statements in the derivation can be obtained using the
methods from Beirlant et al. (2009) [7]. Denoting the log-likelihood function in (2.2) by `,
the likelihood equations are given by

(3.1)



∂

∂ξ
` = −k

ξ
+

1
ξ2

k∑
j=1

log Yj,k +
δk

ξ2

k∑
j=1

b′η(H̄θ(Yj,k))H̄θ(Yj,k) log Yj,k

1 + δkbη(H̄θ(Yj,k))
,

∂

∂δk
` =

k∑
j=1

bη(H̄θ(Yj,k))− δk

k∑
j=1

b2
η(H̄θ(Yj,k)).

Extended Generalized Pareto POT modelling. The likelihood equations following from
(2.1) up to linear terms in δk are now given by

∂

∂ξ
` = −k

ξ
+

1
ξ2

k∑
j=1

log(1 + τYj,k) +
δk

ξ2

k∑
j=1

b′η(H̄θ(Yj,k))H̄θ(Yj,k) log(1 + τYj,k),

∂

∂τ
` =

k

ξτ

−1 + (1+ ξ)
1
k

k∑
j=1

1
1+ τYj,k

− δk

k

k∑
j=1

b′η(H̄θ(Yj,k))(τYj,k)(1+ τYj,k)−1−1/ξ

 ,

∂

∂δk
` =

k∑
j=1

bη(H̄θ(Yj,k))− δk

k∑
j=1

b2
η(H̄θ(Yj,k)),

from which

(3.2)



δ̂k =

∑k
j=1 bη(H̄θ̂k

(Yj,k))∑k
j=1 b2

η(H̄θ̂k
(Yj,k))

,

1
k

k∑
j=1

log(1 + τ̂kYj,k) = ξ̂k −
δ̂k

k

k∑
j=1

b′η(H̄θ̂k
(Yj,k))H̄θ̂k

(Yj,k) log(1 + τ̂kYj,k),

1
k

k∑
j=1

1
1 + τ̂kYj,k

=
1

1 + ξ̂k

+
δ̂k

1 + ξ̂k

1
k

k∑
j=1

b′η(H̄θ̂k
(Yj,k))H̄θ̂k

(Yj,k)

−1
k

k∑
j=1

b′η(H̄θ̂k
(Yj,k))H̄θ̂k

(Yj,k)
1

1 + τ̂kYj,k

 .

Under the extended model we now state the asymptotic distribution of the estimators
(ξ̂E

k , τ̂E
k ) and ξ̂E+

k . To this end let Q denote the quantile function of F , and let U(x) =
Q(1− x−1) denote the corresponding tail quantile function. Model (E) assumption can be
rephrased in terms of U :

(Ẽ) :

U(vx)−U(v)
σU(v)

− hξ(x)

δ(U(v))
→v→∞ xξBη(1/x),
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where hξ(x) = (xξ − 1)/ξ and δ(U) regularly varying with index ρ̃ < 0. Moreover in the
mathematical derivations one needs the extra condition that for every ε, ν > 0, and v, vx

sufficiently large

(Ẽ2) :

∣∣∣∣∣∣
U(vx)−U(v)

σU(v)
− hξ(x)

δ(U(v))
− xξBη(1/x)

∣∣∣∣∣∣ ≤ εxξ|Bη(1/x)|max{xν , x−ν}.

Similarly, (E+) is rewritten as

(Ẽ+) :
U(vx)
U(v) − xξ

ξδ(U(v)))
→v→∞ xξBη(1/x).

The analogue of (Ẽ2) in this specific case is given by

(Ẽ+
2 ) :

∣∣∣∣∣∣
U(vx)
U(v) − xξ

ξδ(U(v))
− xξBη(1/x)

∣∣∣∣∣∣ ≤ εxξ|Bη(1/x)|max{xν , x−ν},

with δ(U) regularly varying with index ρ < 0.
Finally, in the expression of the asymptotic variances we use

Eb2
η =

∫ 1

0
b2
η(u)du, EBη =

∫ 1

0
Bη(u)du, ECη =

∫ 1

0
uξBη(u)du.

The proof of the next theorem is outlined in the Appendix. It allows to construct
confidence intervals for the estimators of ξ obtained under the extended models.

Theorem 3.1. Let k = kn be a sequence such that k, n →∞ and k/n → 0 such that√
kδ(U(n/k)) → λ ∈ R. Moreover assume that in (2.1) and (2.2), Bη is substituted by a

consistent estimator as n →∞. Then:

i. When ξ > −1/2 with (Ẽ2)(√
k(ξ̂E

k − ξ),
√

k(
τ̂E
k

τ
− 1)

)
→d N2(0,Σ)

Σ =
ξ2

D

 1
(1+ξ)2(1+2ξ)

− (ECη)2

Eb2η

1
ξ(1+ξ)3

− EBηECη

ξ(1+ξ)Eb2η
1

ξ(1+ξ)3
− EBηECη

ξ(1+ξ)Eb2η

1
ξ2(1+ξ)2

(
1− (EBη)2

Eb2η

)  ,

where

D =
(

1
(1 + ξ)2(1 + 2ξ)

− (ECη)2

Eb2
η

)(
1− (EBη)2

Eb2
η

)
−
(

1
(1 + ξ)2

− EBηECη

Eb2
η

)2

;

ii. When ξ > 0 with (Ẽ+
2 )(√
k(ξ̂E+

k − ξ),
√

k(δ̂E+
k − δk)

)
→d N2(0,Σ+),

Σ+ =
1

Eb2
η − (EBη)2

(
ξ2Eb2

η −ξEBη

−ξEBη 1

)
.
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Remark 3.1. The asymptotic variance of ξ̂E+
k is larger than the asymptotic variance

ξ2 of the Hill estimator ξ̂H
k,n. Indeed,

(EBη)2 =
(∫ 1

0
log(1/u)bη(u)du

)2

=
(∫ 1

0
(log(1/u)− 1)bη(u)du

)2

≤
(∫ 1

0
(log(1/u)− 1)2du

)(∫ 1

0
b2
η(u)du

)
= (Eb2

η),

where the above inequality follows using the Cauchy-Schwarz inequality.
Similarly, one can show that

(ECη)2 = ξ−2

(∫ 1

0
(uξ − 1

1 + ξ
)bηdu

)2

≤ 1
(1 + 2ξ)(1 + ξ)2

(Eb2
η).

The asymptotic variance of ξ̂E
k equals

(1 + ξ)2

k

1− (1 + ξ)2(1 + 2ξ)(ECη)2/(Eb2
η)

1− (1+ξ)4(1+2ξ)
ξ2 (Eb2

η)−1[(ECη)2 − 2 (ECη)(EBη)
(1+ξ)2

+ (EBη)2

(1+ξ)2(1+2ξ)
]

which can be shown to be larger than the asymptotic variance (1+ ξ)2/k of the classical GPD
maximum likelihood estimator. In the parametric case with Bη(u) = uξ

ρ̃

(
u−ξ−ρ̃−1

ξ+ρ̃ − u−ξ−1
ξ

)
,

one obtains EBη = (1 + ξ)−1(1− ρ̃)−1, ECη = (1 + ξ)−1(1 + 2ξ)−1(ξ − ρ̃ + 1)−1 and Eb2
η =

2(1 + 2ξ)−1(1− 2ρ̃)−1(ξ− ρ̃ + 1)−1. It then follows that the asymptotic variance of ξ̂E
k equals

(1+ξ)2

k

(
1−ρ̃

ρ̃

)2
.

In case ξ > 0 with Bη(u) = u−ρ−1, the asymptotic variance of ξ̂E+
k is given by ξ2

k

(
1−ρ

ρ

)2

as already found in Beirlant et al. (2009) [7].
Finally, an asymptotic representation of

√
k(δ̂E

k − δk) can be found at the end of the
proof of Theorem 3.1 in the Appendix.

In the case studies in the next section, asymptotic confidence intervals based on
Theorem 3.1 can be added to the analysis.

Remark 3.2. Since in model (E) the Bη factor is multiplied by δt, the asymptotic
distribution of tail estimators based on (E) will not depend on the asymptotic distribution
of the estimator of Bη. As in Beirlant et al. (2009) [7] when using the EPD model in the
Pareto-type setting, one can rely in the parametric approach on consistent estimators of the
nuisance parameter η using a larger proportion k∗ of the data. Alternatively, one can also
consider different values of η in the parametric approach, and of (k∗,m) in the non-parametric
setting, and search for values of this nuisance parameter which stabilizes the plots of the EVI
estimates as a function of k using the minimum variance principle for the estimates as a
function of k. Clearly one loses the asymptotic unbiasedness in Theorem 3.1 if Bη is not
consistently estimated. For the moment no proof is available to show that the estimators of
the parameters in the second order component Bη through the minimum variance principle
are consistent. Note that the estimator of ρ̃ presented in Fraga Alves et al. (2003) [15] has
been shown to be consistent.
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As becomes clear from the simulation results, in many instances the extreme value index
estimators are not very sensitive to such a misspecification, especially in the non-parametric
approach leading to Ep̄ and Ep̄+, and the proposed estimators can still outperform the
classical maximum likelihood estimators based on the first order approximations of the POT
distributions.

4. SIMULATIONS AND CASE STUDIES

Simulation results and practical cases are proposed in a Shinyapp written in R:

https://phdshinygao.shinyapps.io/ExtendedModels/

Under Simulations one finds simulation results with sample sizes n = 200 for different
distributions from each max-domain of attraction. The bias and MSE for the different esti-
mators are plotted as a function of the number of exceedances k. Using the notation from
the preceding sections one has a choice to apply the technique with H̄θ equal to the GPD,
respectively the simple Pareto distribution (only when ξ > 0).

Sliders are provided for the following parameters:

• in case of GPD modelling: ρ̃ in Ep, and (k∗,m) in Ep̄ estimation,

• in case of Pareto modelling: ρ in Ep+, and (k∗,m) in Ep̄+ estimation.

Again one can indicate to choose these parameters so as to minimize the variance of ξ̂k

over k = 2, ..., n. The value of ξ in the parametric function Bξ,ρ̃ in Ep is imputed with the
classical GPD-ML estimator at the given value of k.

Also bias and RMSE plots of the corresponding tail probability estimates of p=P(X >c)
are given, where c is chosen so that these probabilities equal p = 0.005 or p = 0.003. Here the
bias, respectively RMSE, are expressed as the average, respectively the average of squared
values, of log(p/p̂).

One can also change the vertical scale of the plots, smooth the figures by taking moving
averages of a certain number of estimates. Finally one can download the figures in pdf.

While on the above link, several other distributions are used and sliders are provided for
the different parameters ρ, ρ̃, and (k∗,m), we collect here the resulting figures for estimation
of ξ and estimating 0.003 tail probabilities, when using the minimum variance principle for
all parameters, in case of the following subset of models:

• The Burr(τ, λ) distribution with F̄ (x) = (1 + xτ )−λ for x > 0 with τ = 1 and λ = 2,
so that ξ = 1

τλ = 1
2 and ρ = ρ̃ = − 1

λ = −1
2 .

• The Fréchet (2) distribution with F̄ (x) = 1− exp
(
−x−2

)
for x > 0, so that ξ = 1

2

and ρ = ρ̃ = −1.

• The standard normal distribution with ξ = 0 and ρ̃ = 0.

• The Exponential distribution with F̄ (x) = e−λx for x > 0, so that ξ = 0 and ρ̃ = 0.

https://phdshinygao.shinyapps.io/ExtendedModels/
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• The Reversed Burr distribution with F̄ (x) = (1 + (1− x)−τ )−λ for x < 1 with τ = 5
and λ = 1, so that ξ = −1/(τλ) = −1

5 with ρ̃ = −1/λ = −1.

• The extreme value Weibull distribution with F̄ (x) = 1− e−(1−x)α
for x < 1 with

α = 4, so that ξ = −1
4 with ρ̃ = −1.

We also compare the bias and RMSE results for ξ̂E
k with those of the ridge regression

estimator presented in Buitendag et al. (2019) [8]. This regression method is constructed on
the basis of a regression model of the type

Yj = ξ + bn,k

(
j

k + 1

)−ρ̃

, j = 1, ..., k,

where

Yj = (j + 1)

(
log

Xn−j,nξ̂H
j,n

Xn−j−1,nξ̂H
j+1,n

− log(1 +
1
j
) +

1
j

)
, j = 1, ..., n− 1.

In case ξ > 0, the results for ξ̂E+
k are also compared with the corrected Hill method presented

in Caeiro et al. (2005) [9] and (2009) [10], also based on regression representations of top order
statistics Xn−j+1,n, and which have been shown to have asymptotic bias 0 while keeping the
same asymptotic variance ξ2/k as the Hill estimator ξ̂H

k,n under a third-order slow variation
model.

In general the minimum variance principle works well, though in some cases some im-
proved results can be obtained by choosing specific values of the parameters ρ, ρ̃, and (k∗,m).
This is mainly the case for the Pareto-type models when using Ep̄, such as for the Fréchet dis-
tribution. Also, in case of tail probability estimation using Ep for cases with ξ < 0 particular
choices of the corresponding parameters lead to improvements over the minimum variance
principle.

Overall the Ep approach yields the best results, both in estimation of ξ and tail proba-
bilities. The improvement over the classical GPD maximum likelihood approach is smaller for
Ep̄, and in case of situations where the second order parameter ρ̃ equals 0 then Ep̄ basically
equals the ML estimators. Note that when ρ̃ = 0 the conditions of the main theorem are
not met, in which case the GPD and the bias reductions are known to exhibit a large bias.
This is typically the case when ξ = 0. This is also known to be the case using simple Pareto
modelling when ρ = 0.

The proposed methods compare well with the ridge regression method. One excep-
tion is the Fréchet distribution (see Figure 3) in which the ridge regression method offers
exceptionally good results.

In case of simple Pareto modelling for ξ > 0 cases (see Figures 2 and 4) the Ep+ and
Ep̄+ approaches yield serious improvements over the Hill estimator, with small bias for Ep+

and Ep̄+, while the parametric approach Ep+ naturally exhibits the best RMSE. The results
obtained with proposed methods are comparable with the CH estimator (see Figures 2 and 4).

Under Applications the app also offers the analysis of some case studies, some of which
are discussed here in more detail. We use Belgian car insurance claim ultimates of a Belgian
car insurance portfolio discussed in Albrecher et al. (2017) [1], and lifetime data discussed in
Einmahl et al. (2019) [13]. We then present estimates of ξ, σ and tail probabilities P(X > xn,n)
with xn,n denoting the largest observation, so that the estimated probability is supposed to
be close to 1/n. An option is provided in the Shinyapp to construct asymptotic confidence
intervals for ξ for the Ep and Ep+ based estimates of ξ, on the basis of Theorem 3.1.



288 J. Beirlant, G. Maribe, Ph. Naveau and A. Verster

0 50 100 150 200

0.
4

0.
5

0.
6

0.
7

K

E
V

I

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

K

R
M

S
E

0 50 100 150 200

−
0.

2
0.

2
0.

6
1.

0

K

lo
g(

p)
−

lo
g(

p̂)

0 50 100 150 200

0
1

2
3

4

K

R
M

S
E

Figure 1: Burr distribution with ξ = 0.5 and ρ = −0.5. Estimation of ξ (top) and
tail probability (bottom) using minimum variance principle, bias (left),
RMSE (right): GPD-ML (full line), Ep (dash-dotted), Ep̄ (dashed) and
ridge regression estimator (dotted).
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Figure 2: Burr distribution with ξ = 0.5 and ρ = −0.5. Estimation of ξ (top) and
tail probability (bottom) using minimum variance principle, bias (left),
RMSE (right): Pareto-ML (full line), Ep+ (dash-dotted), Ep̄+ (dashed)
and corrected Hill estimator (dotted).
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Figure 3: Fréchet distribution with ξ = 0.5. Estimation of ξ (top) and tail probability (bottom),
bias (left), RMSE (right): GPD-ML (full line), Ep with ρ = −2 (dash-dotted),
Ep̄ with (k∗,m) = (190, 150) (dashed), and ridge regression estimator (dotted).
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Figure 4: Fréchet distribution with ξ = 0.5. Estimation of ξ (top) and tail probability (bottom)
using minimum variance principle, bias (left), RMSE (right): Pareto-ML (full line),
Ep+ (dash-dotted), Ep̄+ (dashed) and corrected Hill estimator (dotted).
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Figure 5: Standard normal distribution (ξ = 0 and ρ̃ = 0). Estimation of ξ (top)
and tail probability (bottom) using minimum variance principle, bias (left),
RMSE (right): GPD-ML (full line), Ep (dash-dotted), Ep̄ (dashed) and
ridge regression estimator (dotted).
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Figure 6: The exponential distribution (ξ = 0 and ρ̃ = 0). Estimation of ξ (top) and
tail probability (bottom) using minimum variance principle, bias (left),
RMSE (right): GPD-ML (full line), Ep (dash-dotted), Ep̄ (dashed) and
ridge regression estimator (dotted).
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Figure 7: Reversed Burr distribution (ξ = −0.2 and ρ̃ = −1). Estimation of ξ (top)
and tail probability (bottom) using minimum variance principle, bias (left),
RMSE (right): GPD-ML (full line), Ep (dash-dotted), Ep̄ (dashed) and
ridge regression estimator (dotted).
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Figure 8: Extreme value Weibull distribution (ξ = −0.25 and ρ̃ = −1). Estimation of ξ (top)
and tail probability (bottom) using minimum variance principle, bias (left),
RMSE (right): GPD-ML (full line), Ep (dash-dotted), Ep̄ (dashed) and ridge
regression estimator (dotted).
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Figure 9: Ultimates of Belgian car insurance claims: estimation of ξ with asymptotic confidence
intervals (left), tail probability estimation at maximum observation (right), Pareto-
based analysis (top) and GPD-based analysis (bottom): classical ML estimation (full
line with dotted confidence intervals), Ep (dashed with shaded confidence intervals)
and Ep̄ (dash-dotted). CH (top left) and ridge regression (bottom left) estimators
are indicated by dotted lines.
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Figure 10: Lifetime data from the Netherlands, female persons who died in 1986. Left: esti-
mation of ξ with asymptotic confidence intervals for classical ML estimation (full
line with dotted confidence intervals), Ep (dashed with shaded confidence intervals,
ρ̃ = −0.5) and ridge regression (dotted). Right: tail probability estimation at maxi-
mum observation for classical ML estimation (full line) and Ep (dashed).

In actuarial statistics, Pareto-type modelling is customary in case of car insurance claim
modelling. So here we provide both the plots of ξ̂H

k,n, Ep+, Ep̄+ and the CH estimator (see top
left in Figure 9), as well as the GPD-ML, Ep, Ep̄ and ridge regression estimator (bottom left
in Figure 9), and the corresponding tail probability estimates at the right hand side. Under
the Pareto approach, confining oneselves to ξ > 0, the level 0.4 clearly appears for the EVI
both using Ep+ and Ep̄+ when using the minimum variance principle. The CH estimator
also shows a stable area around the value 0.5. The tail probability estimates of P(X > xn,n)
are close to 1/n for almost all k values while the plot of the classical estimates is difficult to
interpret.

With GPD based modelling two EVI levels are visible, around 0.2 and 0.4, of which
the lower level is more clearly indicated when using Ep̄ with k∗ = 427 and m = 25 as shown
in Figure 9, bottom left. The ridge estimator is stable at the value 0.4. The corresponding
tail probability estimates based on Ep̄ are also stable at the value 1/n for a long k range.

In Einmahl et al. (2019) [13] the life spans are studied for Dutch males and females
reaching age 92 years and higher, considering their age at death. For every year, from 1986
till 2015, the life spans of this subgroup were analyzed. The authors decided to use k = 1500
for every year when using the classical GPD-ML estimators, and found an EVI estimate ξ̂

between −0.1 and −0.15 for females, while for males a value around −0.15 is common over
the whole period. Here we restrict ourselves to the female data from 1986. The results of
Ep with asymptotic confidence intervals as discussed in Remark 3.1 with ρ̃ = −0.5 are shown
in Figure 10 (left). While the classical GPD-ML estimates decrease with increasing k from
1 to 1500, the Ep estimates show a more stable plot at a negative ξ value which is rather
between −0.05 and −0.1. The ridge regression method shows a similar value for k ≤ 500.
The corresponding tail probability estimates for a larger k indicate a value closer to the
tail probability estimate 1/n based on the empirical distribution function, in contrast to the
classical GPD approach.
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5. CONCLUSIONS

In this contribution we have constructed bias reduced estimators of tail parameters
extending the classical POT method. The bias can be modelled parametrically (for instance
based on second order regular variation theory), or non-parametrically using Bernstein poly-
nomial approximations. A basic asymptotic limit theorem is provided for the estimators
of the extreme value parameters which allows to compute asymptotic confidence intervals.
A shinyapp has been constructed with which the characteristics and the effectiveness of the
proposed methods are illustrated through simulations and practical case studies. From this it
follows that within the proposed methods it is always possible to improve upon the classical
POT method both in bias and RMSE. This approach can also be used as a data analytic tool
to enhance an extreme value analysis.
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A. APPENDIX

In this section we provide details concerning the proof of Theorem 3.1.

Asymptotic distribution of ξ̂E+
k .

From (3.1) we obtain up to linear terms in δk that (denoting ξ̂k for ξ̂E+
k )


δ̂k =

∑k
j=1 bη(Y

−1/ξ̂k

j,k )∑k
j=1 b2

η(Y
−1/ξ̂k

j,k )
,

ξ̂k = ξ̂H
k,n + δ̂kB

(1)
k ,

with B
(1)
k = 1

k

∑k
j=1 b′η(Y

−1/ξ̂k

j,k )Y −1/ξ̂k

j,k log Yj,k. As k, n →∞ and k/n → 0 we have B
(1)
k →p

−ξ
∫ 1
0 b′η(u)u log udu = −ξEBη.

Using a Taylor expansion on the numerator of the right hand side of the first equation
leads to

1
k

k∑
j=1

bη(Y
−1/ξ̂k

j,k ) =
1
k

k∑
j=1

bη(Y
−1/ξ
j,k )− (ξ̂k − ξ)ξ−1(EBη) (1 + op(1)),

so that, with 1
k

∑k
j=1 b2

η(Y
−1/ξ̂k

j,k ) →p Eb2
η, up to lower order terms

δ̂k =
1

Eb2
η

1
k

k∑
j=1

bη(Y
−1/ξ
j,k )− (ξ̂k − ξ)ξ−1 EBη

Eb2
η

(1 + op(1)).

Hence, inserting this expansion into ξ̂k = ξ̂H
k,n + δ̂kB

(1)
k , finally leads to

√
k(ξ̂k − ξ)(1 + op(1)) =

Eb2
η

Eb2
η − (EBη)2

√
k
(
ξ̂H
k,n − ξ

)
− ξEBη

Eb2
η − (EBη)2

√
k

1
k

k∑
j=1

bη(Y
−1/ξ
j,k )


=

Eb2
η

Eb2
η − (EBη)2

√
k
(
ξ̂H
k,n − ξ − ξδkEBη

)
− ξEBη

Eb2
η − (EBη)2

√
k

1
k

k∑
j=1

bη(Y
−1/ξ
j,k )− δkEb2

η

 ,

with δk = δ(U(n/k)). We now show that this final expression is a linear combination of two
zero centered statistics (up to the required accuracy) which is asymptotically normal with
the stated asymptotic variance. To this end let Zn−k,n ≤ Zn−k+1,n ≤ ... ≤ Zn,n denote the
top k + 1 order statistics of a sample of size n from the standard Pareto distribution with
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distribution function z 7→ z−1, z > 1. Then from (Ẽ+
2 )

ξ̂H
k,n =

1
k

k∑
j=1

(log U(Zn−j+1,n)− log U(Zn−k,n))

=
1
k

k∑
j=1

log

{(
Zn−j+1,n

Zn−k,n

)ξ [
1 + ξδ(U(Zn−k,n))Bη

(
Zn−k,n

Zn−j+1,n

)

+ op(1)|δ(U(Zn−k,n))||Bη

(
Zn−k,n

Zn−j+1,n

)
|
(

Zn−j+1,n

Zn−k,n

)ε]}
= ξ

1
k

k∑
j=1

log
Zn−j+1,n

Zn−k,n
+ ξδ(U(Zn−k,n))

1
k

k∑
j=1

Bη

(
Zn−k,n

Zn−j+1,n

)

+ op(1)|δ(U(Zn−k,n))|1
k

k∑
j=1

|Bη

(
Zn−k,n

Zn−j+1,n

)
|
(

Zn−j+1,n

Zn−k,n

)ε

.

Now log Zn−j+1,n − log Zn−k,n =d Ek−j+1,k, the (k − j + 1)-th smallest value from a stan-
dard exponential sample E1, ..., Ek of size k, so that 1

k

∑k
j=1 log Zn−j+1,n

Zn−k,n
=d

1
k

∑k
j=1 Ej and

1
k

∑k
j=1 Bη

(
Zn−k,n

Zn−j+1,n

)
=d

1
k

∑k
j=1 Bη(e−Ej ) =d

1
k

∑k
j=1 Bη(Uj) where U1, ..., Uk is a uniform

(0,1) sample. Hence, since δ(U(Zn−k,n))/δ(U(n/k)) →p 1 and 1
k

∑k
j=1 Bη(Uj) →p EBη, we

have that ξ̂H
k,n − ξ − ξδkEBη is asymptotically equivalent to 1

k

∑k
j=1 ξ(Ej − 1) as

√
kδk → λ.

Similarly

1
k

k∑
j=1

bη(Y
−1/ξ
j,k ) =

1
k

k∑
j=1

bη


U

(
Zn−j+1,n

Zn−k,n
Zn−k,n

)
U(Zn−k,n)

−1/ξ


=
1
k

k∑
j=1

bη

((
Zn−j+1,n

Zn−k,n

)−1 [
1 + ξδ(U(Zn−k,n))Bη

(
Zn−k,n

Zn−j+1,n

)

+ op(1)|δ(U(Zn−k,n))||Bη

(
Zn−k,n

Zn−j+1,n

)
|
(

Zn−j+1,n

Zn−k,n

)ε]−1/ξ
)

=
1
k

k∑
j=1

bη

((
Zn−j+1,n

Zn−k,n

)−1 [
1− δ(U(Zn−k,n))Bη

(
Zn−k,n

Zn−j+1,n

)

+ op(1)|δ(U(Zn−k,n))||Bη

(
Zn−k,n

Zn−j+1,n

)
|
(

Zn−j+1,n

Zn−k,n

)ε])
=

1
k

k∑
j=1

bη(e−Ej )

− δ(U(Zn−k,n))
1
k

k∑
j=1

b′η

(
Zn−k,n

Zn−j+1,n

)
Bη

(
Zn−k,n

Zn−j+1,n

)(
Zn−k,n

Zn−j+1,n

)
(1+ op(1)).

Since δ(U(Zn−k,n))/δk →p 1 and 1
k

∑k
j=1 b′η

(
Zn−k,n

Zn−j+1,n

)
Bη

(
Zn−k,n

Zn−j+1,n

)(
Zn−k,n

Zn−j+1,n

)
→p −Eb2

η

it follows that 1
k

∑k
j=1 bη(Y

−1/ξ
j,k )− δkEb2

η is asymptotically equivalent to 1
k

∑k
j=1 bη(e−Ej ) =d

1
k

∑k
j=1 bη(Uj) as

√
kδk → λ, which is centered at 0 since E(bη(U)) = 0. The results incorpo-

rating δ̂E+
k follow similarly.
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Asymptotic distribution of ξ̂E
k .

This derivation follows similar lines starting from (3.2):

1
k

k∑
j=1

b′η(H̄θ̂k
(Yj,k))H̄θ̂k

(Yj,k) log(1 + τ̂kYj,k) →p −ξEBη,

1
k

k∑
j=1

b2
η(H̄θ̂k

(Yj,k)) →p Eb2
η,

1
k

k∑
j=1

b′η(H̄θ̂k
(Yj,k))H̄θ̂k

(Yj,k) →p bη(1),

1
k

k∑
j=1

b′η(H̄θ̂k
(Yj,k))H̄θ̂k

(Yj,k)
1

1 + τ̂kYj,k
→p ξ(1 + ξ)ECη + bη(1),

as k, n →∞ and k/n →∞, so that the system of equations is asymptotically equivalent to

δ̂k =
1
k

∑k
j=1 bη(H̄θ̂k

(Yj,k))

Eb2
η

,

1
k

k∑
j=1

log(1 + τ̂kYj,k) = ξ̂k + ξ̂kδ̂kEBη,

1
k

k∑
j=1

1
1 + τ̂kYj,k

=
1

1 + ξ̂k

− ξ̂kδ̂kECη.

Using a Taylor expansion on the numerator of the right hand side of the first equation leads
to

δ̂kEb2
η =

1
k

k∑
j=1

bη(H̄θ(Yj,k))−
EBη

ξ
(ξ̂k − ξ) + (1 + ξ)ECη

(
τ̂k

τ
− 1
)

.

Imputing this in the second and third equation in ξ and τ , and expanding these equations
linearly around the correct values (ξ, τ), while using, as k, n →∞ and k/n → 0

1
k

k∑
j=1

τYj,k

1 + τYj,k
→p

ξ

1 + ξ
and

1
k

k∑
j=1

τYj,k

(1 + τYj,k)2
→p

ξ

(1 + ξ)(1 + 2ξ)
,

leads to the linearized equations

(A.1)



(
ξ̂k − ξ

)(
−1 +

(EBη)2

Eb2
η

)
+
(

τ̂k

τ
− 1
)(

ξ

1 + ξ
− ξ(1 + ξ)

EBη ECη

Eb2
η

)
= −

(
1
k

k∑
j=1

log(1 + τYj,k)− ξ

)
+

ξEBη

Eb2
η

1
k

k∑
j=1

bη(H̄θ(Yj,k)),

(
ξ̂k − ξ

)( 1
(1+ ξ)2

− EBηECη

Eb2
η

)
+
(

τ̂k

τ
− 1
)(

− ξ

(1+ ξ)(1+2ξ)
+ ξ(1+ ξ)

(ECη)2

Eb2
η

)
= −

(
1
k

k∑
j=1

1
1 + τYj,k

− 1
1 + ξ

)
− ξECη

Eb2
η

1
k

k∑
j=1

bη(H̄θ(Yj,k)).
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Using similar derivations as in the case ξ̂E+
k , it follows that the right hand sides in (A.1) can

be rewritten as a linear combination of two zero centered statistics from which the asymptotic
normality of

(√
k(ξ̂E

k − ξ),
√

k( τ̂E
k
τ − 1)

)
can be obtained, as stated in Theorem 3.1:

(
ξ̂k − ξ

)(
−1 +

(EBη)2

Eb2
η

)
+
(

τ̂k

τ
− 1
)(

ξ

1 + ξ
− ξ(1 + ξ)

EBη ECη

Eb2
η

)
= −

(
1
k

k∑
j=1

log(1 + τYj,k)− ξ − ξδkEBη

)
+

ξEBη

Eb2
η

(
1
k

k∑
j=1

bη(H̄θ(Yj,k))− δkEb2
η

)
,

(
ξ̂k − ξ

)( 1
(1 + ξ)2

− EBηECη

Eb2
η

)
+
(

τ̂k

τ
− 1
)(

− ξ

(1 + ξ)(1 + 2ξ)
+ ξ(1 + ξ)

(ECη)2

Eb2
η

)
= −

(
1
k

k∑
j=1

1
1 + τYj,k

− 1
1 + ξ

+ ξδkECη

)
− ξECη

Eb2
η

(
1
k

k∑
j=1

bη(H̄θ(Yj,k))− δkEb2
η

)
.

We hence obtain the following asymptotic representation

(
ξ̂E
k − ξ,

τ̂E
k

τ
− 1
)T

= W−1


−1 0 ξ

EBη

Eb2
η

0 −1 −ξ
ECη

Eb2
η

(U (1)
k , U

(2)
k , U

(3)
k

)T

where

W =


−1 +

(EBη)2

Eb2
η

ξ

1 + ξ
− ξ(1 + ξ)

EBη ECη

Eb2
η

1
(1 + ξ)2

− EBηECη

Eb2
η

− ξ

(1 + ξ)(1 + 2ξ)
+ ξ(1 + ξ)

(ECη)2

Eb2
η

 ,

and

√
k
(
U

(1)
k , U

(2)
k , U

(3)
k

)T
:=



1
k

k∑
j=1

log(1 + τYj,k)− ξ − ξδkEBη

1
k

k∑
j=1

1
1 + τYj,k

− 1
1 + ξ

+ ξδkECη

1
k

k∑
j=1

bη(H̄θ(Yj,k))− δkEb2
η


is asymptotically normal with variance-covariance matrix

ΣU =

 ξ2 −ξ2(1 + ξ)−2 ξEBη

−ξ2(1 + ξ)−2 ξ2(1 + ξ)−2(1 + 2ξ)−1 −ξECη

ξEBη −ξECη Eb2
η

 .

Concerning δ̂E
k we find the following representation:

(Eb2
η)
√

k
(
δ̂E
k − δk

)
=

(0 0 1) + (−EBη/ξ (1 + ξ)ECη)W−1


−1 0 ξ

EBη

Eb2
η

0 −1 −ξ
ECη

Eb2
η



U

(1)
k

U
(2)
k

U
(3)
k

 .
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