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Abstract. In the context of discrete Morse theory, we introduce Morse
frames, which are maps that associate a set of critical simplexes to all
simplexes. The main example of Morse frames are the Morse references.
In particular, these Morse references allow computing Morse complexes,
an important tool for homology. We highlight the link between Morse
references and gradient flows. We also propose a novel presentation of
the Annotation algorithm for persistent cohomology, as a variant of a
Morse frame. Finally, we propose another construction, that takes ad-
vantage of the Morse reference for computing the Betti numbers in mod
2 arithmetic.
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1 Introduction

In this paper, we aim at developing new concepts and algorithm schemes for
computing topological invariants for simplicial complexes, such as cycles, cocy-
cles and Betti numbers (Sec. 2). In [2], one of the authors of the present paper,
introduces a novel, sequential, presentation of discrete Morse theory [8], termed
Morse sequences. By adding enough information to Morse sequences, we can
compute cycles and cocycles that detect “holes”. We achieve our goal by intro-
ducing Morse frames (Sec. 3), i.e., maps that associate a set of critical simplexes
to each simplex. The main one is called the Morse reference (Sec. 4), and is a
by-product of Morse sequences. We discuss the link between reference maps and
gradient flows. This leads us to the Morse complex. We then see (Sec. 5) that
Morse frames allows for a novel presentation of Annotations [6] for computing
persistent cohomology. Then, inspired by the annotation technique, we propose
(Sec. 6) a novel, efficient construction for computing Betti numbers in mod 2
arithmetic. We then discuss (Sec. 7) how to implement the notions presented in
the paper. Finally, we conclude the paper.

2 Simplicial complexes, homology, and cohomology

2.1 Simplicial complexes

Let K be a finite family composed of finite sets. The family K is a (simplicial)
complex if we have σ ∈ K whenever σ ̸= ∅ and σ ⊆ τ for some τ ∈ K.
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An element of a simplicial complex K is a simplex of K or a face of K. A
facet of K is a simplex of K that is maximal for inclusion. The dimension of
σ ∈ K, written dim(σ), is the number of its elements minus one. If dim(σ) = p,
we say that σ is a p-simplex. The dimension of K, written dim(K), is the largest
dimension of its simplices, the dimension of ∅, the void complex, being defined
to be −1. We denote by K(p) the set composed of all p-simplexes of K.

We recall the definitions of the collapses/expansions operators [15].
Let K,L be simplicial complexes. Let σ ∈ K(p), τ ∈ K(p+1). The couple

(σ, τ) is a free pair for K or a free p-pair for K if τ is the only face of K that
contains σ. Thus, τ is necessarily a facet of K. If (σ, τ) is a free pair for K,
then L = K \ (σ, τ) is an elementary (p-)collapse of K, and K is an elementary
(p-)expansion of L. We say that K collapses onto L, or that L expands onto K,
if there exists a sequence ⟨K = K0, . . . ,Kk = L⟩ such that Ki is an elementary
collapse of Ki−1, i ∈ [1, k].

2.2 Homology and cohomology

Let K be a simplicial complex. We write K[p] for the set composed of all subsets
of K(p). Each element of K[p] is a p-chain of K. The symmetric difference of two
elements of K[p] endows K[p] with the structure of a vector space over the field
Z2 = {0, 1}. The set K(p) is a basis for this vector space. With this structure,
a chain c ∈ K[p] may be written as a sum

∑
σ∈c σ, with the convention that∑

σ∈c σ = 0 whenever c = ∅. The sum of two chains is obtained using the modulo
2 arithmetic.

Let K be a simplicial complex. As we are dealing with finite simplicial com-
plex, boundary and coboundary operators can be defined as operators on K[p].
If σ ∈ K(p) we set:

δ(σ) = {τ ∈ K(p+1) | σ ⊂ τ} and ∂(σ) = {τ ∈ K(p−1) | τ ⊂ σ}.
The boundary operator ∂p : K[p] → K[p− 1] is such that, for each c ∈ K[p], we
have ∂p(c) =

∑
σ∈c ∂(σ). The coboundary operator δp : K[p] → K[p+ 1] is such

that, for each c ∈ K[p], we have δp(c) =
∑

σ∈c δ(σ).
We have ∂p ◦ ∂p+1 = 0 and δp ◦ δp−1 = 0.
We define four subsets of K[p] which are vector spaces over Z2:
– the set Zp(K) of p-cycles of K, Zp(K) is the kernel of ∂p;
– the set Bp(K) of p-boundaries of K, Bp(K) is the image of ∂p+1;
– the set Zp(K) of p-cocycles of K, Zp(K) is the kernel of δp;
– the set Bp(K) of p-coboundaries of K, Bp(K) is the image of δp−1.

Fig. 1 depicts an annulus, with various cycles and cocyles, coloured in blue.
In Fig. 1.a, we see a 1-cycle that is the 1-boundary of the two pink triangles. In
Fig. 1.b, we have a 1-cycle that is not a 1-boundary. Such a cycle detects a “hole”
by “contouring” it. In Fig. 1.c, we see a 1-cocycle which is the 1-coboundary of
the four pink points. In Fig. 1.d, we have a 1-cocycle that is not a 1-coboundary.
Such a cocycle detects a “hole” by “cutting” the annulus.
We also define the following quotient vector spaces:
– Hp(K) = Zp(K) \Bp(K), which is the pth homology vector space of K;
– Hp(K) = Zp(K) \Bp(K), which is the pth cohomology vector space of K.
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Fig. 1: An annulus, with various cycles and cocyles. See text for details.

An element h in Hp(K) is such that h = z + Bp(K) for some z ∈ Zp(K). We
write h = [z]p, which is the homology class of the cycle z.
Similarly, an element h in Hp(K) is such that h = z+Bp(K) for some z ∈ Zp(K).
We write h = [z]p, which is the cohomology class of the cocycle z.

Let βp(K) = dim(Hp(K)) and βp(K) = dim(Hp(K)). We have βp(K) =
βp(K) (See [7, Sec. V.1]). The number βp(K) = βp(K) is the pth Betti number
(mod 2) of K.

3 Morse sequences and Morse frames

Let us first introduce the two following basic operators [15].
Let K,L be simplicial complexes. If σ ∈ K is a facet of K, and if L = K\{σ},

we say that L is an elementary perforation of K, and that K is an elementary
filling of L.

The notion of a “Morse sequence” [2] may be defined by simply considering
expansions and fillings of a simplicial complex.

Definition 1. Let K be a simplicial complex. A Morse sequence (on K) is a
sequence

−→
W = ⟨∅ = K0, . . . ,Kk = K⟩ of simplicial complexes such that, for each

i ∈ [1, k], Ki is either an elementary expansion or an elementary filling of Ki−1.

Let
−→
W = ⟨K0, . . . ,Kk⟩ be a Morse sequence. For each i ∈ [1, k]:

– If Ki is an elementary filling of Ki−1, we write σ̂i for the simplex σ such
that Ki = Ki−1 ∪ {σ}. We say that the face σ is critical for

−→
W .

– If Ki is an elementary expansion of Ki−1, we write σ̂i for the free pair (σ, τ)
such that Ki = Ki−1 ∪ {σ, τ}. We say that σ̂i, σ, τ , are regular for

−→
W .

We write Ŵ = ⟨σ̂1, . . . , σ̂k⟩, and we say that Ŵ is a (simplex-wise) Morse se-
quence. Clearly,

−→
W and Ŵ are two equivalent forms. We shall pass from one of

these forms to the other without notice.
There are several ways to obtain a Morse sequence

−→
W from a given com-

plex K. The two following schemes are basic ones to achieve this goal:
1. The increasing scheme. We build

−→
W from the left to the right. Starting

from ∅, we obtain K by iterative expansions and fillings. We say that this
scheme is maximal if we make a filling only if no expansion can be made.
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2. The decreasing scheme. We build
−→
W from the right to the left. Starting from

K, we obtain ∅ by iterative collapses and perforations. We say that this
scheme is maximal if we make a perforation only if no collapse can be made.

See [2, Section 7] for a discussion of the differences between these schemes.

Definition 2. The gradient vector field of a Morse sequence
−→
W is the set of

all regular pairs for
−→
W . We say that two Morse sequences

−→
W and

−→
V on a given

complex K are equivalent if they have the same gradient vector field.

It is worth mentioning that there is no loss of generality when using Morse
sequences as a presentation of gradient vector fields. In fact, it may be proved
that the gradient vector field of an arbitrary Morse function may be seen as the
gradient vector field of a Morse sequence (see [2]).

Let
−→
W be a Morse sequence on a simplicial complex K. We write Ẅ = {σ ∈

K | σ is critical for
−→
W} and Ẅ (p) = {σ ∈ K(p) | σ is critical for

−→
W}.

We write Ẅ [p] for the set composed of all subsets of Ẅ (p), each c ∈ Ẅ [p] is a
p-chain of Ẅ . We have Ẅ [p] ⊆ K[p].

A Morse frame is simply a map which assigns, to each p-simplex of K, a
certain set of critical p-simplexes.

Definition 3. Let
−→
W be a Morse sequence on a simplicial complex K. We say

that Υ is a (Morse) frame on
−→
W if Υ is a map such that:

Υ : σ ∈ K(p) 7→ Υ (σ) ∈ Ẅ [p].
If Υ is a Morse frame on

−→
W , we also denote by Υ the map:

Υ : c ∈ K[p] 7→ Υ (c) ∈ Ẅ [p], where Υ (c) =
∑

σ∈c Υ (σ) and Υ (∅) = 0.

4 The Morse reference

A Morse complex is a basic tool for efficiently computing simplicial homology
using discrete Morse theory. Since a Morse complex is built solely on critical
complexes, its dimension is generally much smaller than the one of the original
complex. In this section, we introduce two frames which allow simplifying the
construction of a Morse complex. In particular, the boundary and co-boundary
operators can easily be extracted from these two frames.

4.1 Reference and co-reference

Definition 4. Let
−→
W be a Morse sequence and let Υ ′, Υ ′′ be two Morse frames

on
−→
W such that, for each critical simplex σ of

−→
W , we have Υ ′(σ) = Υ ′′(σ) = {σ}.

We say that Υ ′ is the (Morse) reference of
−→
W if, for each regular pair (σ, τ)

of
−→
W , we have Υ ′(τ) = 0 and Υ ′(σ) = Υ ′(∂(τ) \ {σ}).

We say that Υ ′′ is the (Morse) co-reference of
−→
W if, for each regular pair (σ, τ)

of
−→
W , we have Υ ′′(σ) = 0 and Υ ′′(τ) = Υ ′′(δ(σ) \ {τ}).

If Υ is the reference of
−→
W , we write Υ ∗ for the co-reference of

−→
W .
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Fig. 2: (a) A torus. Points with the same label are identified. (b) A Morse refer-
ence map. (c) A Morse co-reference map. See text for details.

Let
−→
W be a Morse sequence on K and let Ŵ = ⟨σ̂1, . . . , σ̂k⟩. We see that a

Morse reference Υ of
−→
W may be computed by scanning the sequence Ŵ from

the left to the right. Also, a Morse co-reference Υ ∗ of
−→
W may be computed

by scanning Ŵ from the right to the left. The uniqueness of Υ and Υ ∗ is a
consequence of these constructions. As a limit case, observe that:
– If τ is a facet of K, then we have Υ (τ) = 0 whenever τ is not critical.
– If σ is a 0-simplex of K, then we have Υ ∗(σ) = 0 whenever σ is not critical.

Fig. 2.a depicts a two-dimensional torus. We first illustrate, in Fig. 2.b, the
Morse reference of a Morse sequence

−→
T on this torus obtained by a maximal

increasing scheme (depicted in detail in [2, Fig. 1]). In this figure, any simplex σ
in grey is such that Υ (σ) = 0. At the first step, the first critical simplex σ1 = a
is coloured in pink, with Υ (σ1) = a. After all the possible expansions from a,
we have Υ (σ) = a (in pink) for all σ of dimension 0. At the next stage, we
introduce a first 1-critical simplex b (in blue), and we have Υ (b) = b; this leads
to Υ (σ) = b for all simplexes σ of dimension 1 highlighted in blue. We then
introduce a second critical 1-simplex, c (in green), and we have Υ (c) = c; this
leads to Υ (σ) = c for all simplexes σ of dimension 1 in green. At the penultimate
step of the Morse sequence, we have a free pair (σ, τ), and Υ (σ) = x, in purple,
where x = Υ (∂(τ) \ {σ}) = b+ c. The ultimate step of the Morse sequence is the
critical 2-simplex d, and we have Υ (d) = d, highlighted in yellow.

Conversely, in Fig 2.c, by scanning
−→
T from right to left, we obtain its Morse

co-reference map. In this figure, any simplex σ in grey is such that Υ (σ) = 0.
Starting with the critical 2-simplex d, after several steps in the sequence, we
have Υ ⋆(σ) = d for all simplexes σ of dimension 2, highlighted in yellow. We
then have Υ ⋆(σ) = c for all simplexes σ of dimension 1 highlighted in green,
and Υ ⋆(σ) = b for all simplexes σ of dimension 1 highlighted in blue. Finally,
we have Υ ⋆(σ1) = a for the last simplex of dimension 0, which is critical, and is
coloured in pink.

It is straightforward to check that Morse references are invariant under the
relation of equivalence given in Definition 2:
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Proposition 1. Let
−→
V and

−→
W be two Morse sequences on K. Let ΥV and ΥW

be the references of
−→
V and

−→
W , respectively.

1. The sequences
−→
V and

−→
W are equivalent if and only if ΥV = ΥW .

2. The sequences
−→
V and

−→
W are equivalent if and only if Υ ∗

V = Υ ∗
W .

4.2 Gradient paths, co-gradient paths and gradient flows

References are closely related to the notion of a gradient path. In the following,
we recall the classical definition of such a path. We also introduce the notion of
a co-gradient path, which arises naturally from the definition of a co-reference.

Let
−→
W be a Morse sequence on K.

1. Let π = ⟨σ0, τ0, . . . , σk−1, τk−1, σk⟩ be a sequence, with σi ∈ K(p), τi ∈
K(p+1). We say that π is a gradient path in

−→
W (from σ0 to σk) if, for any

i ∈ [0, k − 1], the pair (σi, τi) is regular for
−→
W and σi+1 ∈ ∂(τi), with

σi+1 ̸= σi.
2. Let π = ⟨τ0, σ1, τ1, . . . , σk, τk⟩ be a sequence, with τi ∈ K(p+1), σi ∈ K(p).

We say that π is a co-gradient path in
−→
W (from τ0 to τk) if, for any i ∈ [1, k],

the pair (σi, τi) is regular for
−→
W and τi−1 ∈ δ(σi), with τi ̸= τi−1.

The following result may be proved by induction, by considering the two
scanning processes of Ŵ that are mentioned above. Proposition 3 may be proved
by changing the extremities of gradient and co-gradient paths.

Proposition 2. Let
−→
W be a Morse sequence on K and let Υ the reference

−→
W .

Let σ be a p-simplex in K and ν be a critical p-simplex of
−→
W .

1. We have ν ∈ Υ (σ) if and only if the number of gradient paths from the
simplex σ to the critical simplex ν is odd.

2. We have ν ∈ Υ ∗(σ) if and only if the number of co-gradient paths from the
critical simplex ν to the simplex σ is odd.

Proposition 3. Let
−→
W be a Morse sequence on K and Υ be the reference of

−→
W .

Let σ be a critical p-simplex of
−→
W and τ be a critical (p+ 1)-simplex of

−→
W .

We have σ ∈ Υ (∂(τ)) if and only if τ ∈ Υ ∗(δ(σ)).

An important concept in discrete Morse theory is the one of gradient flows [8],
by which, using Forman’s own words [9], loosely speaking, a simplex flows along
the gradient paths for infinite time (see also [9] for the dual concept). Gradient
flows are a basic ingredient for setting the fundamental property of a Morse
complex, that is, the equality of homology between a complex and its Morse
complex. In fact, there is a deep link between co-references of a Morse sequence
and gradient flows. For the sake of space, we give only an informal presentation of
this relation, which may be checked by the interested readers. If τ is a p-simplex
of a complex K, the gradient flow which starts from τ is obtained:
1. By considering regular pairs (σ′, τ ′), with σ′ ∈ ∂(τ). Such a pair may be seen

as the beginning of a co-gradient path that starts at τ .
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2. By considering some p-simplexes that are in the boundary of a (p + 1)-
simplex ν, such that (τ, ν) is a free pair.

If τ is a critical simplex, then the case 2. cannot happen. Also, this case cannot
happen for τ ′, since τ ′ belongs to the regular pair (σ′, τ ′). By induction, we see
the gradient flow starting at a critical simplex corresponds exactly to co-gradient
paths. Thus, if σ is a simplex of K and τ is a critical simplex for

−→
W , then:

The simplex σ is in the gradient flow starting at τ if and only if τ ∈ Υ ∗(σ).

It is interesting to compare Υ and Υ ⋆ with the analogous constructions in
smooth Morse theory. A gradient flow associates a critical simplex to a chain
which is invariant under the flow. According to [9], this chain is the discrete
analogue of the unstable (or descending) cell associated to a critical point of a
smooth Morse function, and it is obtained with Υ ⋆. Forman [9] also studies the
dual of the flow, the coflow. The coflow maps a critical simplex to a chain that is
invariant under the coflow. This chain plays the role of the stable (or ascending)
cell associated to a critical point of a smooth Morse function, and it is obtained
thanks to Υ .

4.3 The Morse complex

Now, let us consider a boundary map that is restricted to the critical simplexes.
This map may be easily built with a Morse reference.

Let Υ be the reference of
−→
W . If σ ∈ Ẅ (p), we set d(σ) = Υ (∂(σ)).

We denote by dp the map:
dp : c ∈ Ẅ [p] 7→ dp(c) ∈ Ẅ [p− 1], where dp(c) = Υ (∂p(c)).

Thus, d(σ) =
∑

τ∈∂(σ) Υ (τ) and dp(c) =
∑

σ∈c d(σ).

Theorem 1. Let Υ be the reference of a Morse sequence
−→
W on K.

For each c ∈ K[p], we have dp(Υ (c)) = Υ (∂p(c)).

Proof. Let
−→
W = ⟨∅ = K0, ...,Kk = K⟩ be a Morse sequence on K, and let

Ŵ = ⟨σ̂1, ..., σ̂k⟩. We consider the statement (Si): For each c ∈ Ki[p], we have
dp(Υ (c)) = Υ (∂p(c)). We have K0[p] = {∅}. Thus (S0) holds.
Suppose (Si−1) holds with 0 ≤ i− 1 ≤ k − 1. Let c ∈ Ki[p].
1) Suppose σ̂i = σ, with σ ∈ Ẅ . If σ ̸∈ c, then we are done. Otherwise, we have
c = c′ ∪ {σ}, with c′ ∈ Ki−1[p].
We have ∂p(c) = ∂p(c

′) + ∂(σ). Thus Υ (∂p(c)) = Υ (∂p(c
′)) + Υ (∂(σ)).

By the induction hypothesis and by the definition of d(σ), we obtain Υ (∂p(c)) =
dp(Υ (c

′)) + d(σ). Therefore Υ (∂p(c)) = dp(Υ (c
′)) + dp(Υ ({σ})) = dp(Υ (c)).

2) Suppose σ̂i = (σ, τ) is a free pair. If σ ̸∈ c and τ ̸∈ c, then we are done.
2.1) Suppose σ ∈ c. Let c′ = c+ ∂p+1(τ). We have Υ (c′) = Υ (c) + Υ (∂p+1(τ)) =
Υ (c). We also have ∂p(c

′) = ∂p(c) + ∂p(∂p+1(τ)) = ∂p(c).
But c′ = (c \ {σ}) + d, with d = {η ∈ ∂p+1(τ) | η ̸= σ}. Thus c′ ∈ Ki−1[p].
By the induction hypothesis, it follows that dp(Υ (c

′)) = Υ (∂p(c
′)). By the pre-

vious equalities, we obtain dp(Υ (c)) = Υ (∂p(c)).
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2.2) Suppose τ ∈ c. Let c = c′ ∪ {τ}, with c′ ∈ Ki−1[p]. Since Υ (τ) = 0, we ob-
tain Υ (c) = Υ (c′). Furthermore Υ (∂p(c)) = Υ (∂p(c

′)) + Υ (∂(τ)) = Υ (∂p(c
′)). By

the induction hypothesis, we have dp(Υ (c
′)) = Υ (∂p(c

′)). Therefore dp(Υ (c)) =
Υ (∂p(c)). ⊓⊔

The two following results are direct consequences of Theorem 1.

Proposition 4. Let Υ be the reference of a Morse sequence
−→
W on K. For any

c, c′ ∈ K[p] we have Υ (∂p(c)) = Υ (∂p(c
′)) whenever Υ (c) = Υ (c′).

Proof. Let c, c′ ∈ K[p] with Υ (c) = Υ (c′).Thus, dp(Υ (c)) = dp(Υ (c
′)). By Theo-

rem 1, we have Υ (∂p(c)) = Υ (∂p(c)). ⊓⊔

Proposition 5. If
−→
W is a Morse sequence, then the maps dp are boundary op-

erators. That is, we have dp ◦ dp+1 = 0.

Proof. Let σ ∈ Ẅ (p+1). We have dp+1({σ}) = d(σ) = Υ (∂(σ)) = Υ (∂p+1({σ})).
By Theorem 1, we have dp(Υ (∂p+1({σ}))) = Υ (∂p(∂p+1({σ}))) = Υ (0) = 0.
Thus dp ◦ dp+1({σ}) = 0, which gives the result by linearity. ⊓⊔

Since dp ◦ dp+1 = 0, the couple (Ẅ [p], dp) satisfies the definition of a chain
complex [12]. We say that (Ẅ [p], dp) is the Morse (chain) complex of

−→
W . This

notion of a Morse complex is equivalent to the classical one given in the context
of discrete Morse theory. This fact may be verified using [14, Theorem 8.31],
Proposition 2, and the very definition of the differential dp.

Dual results for Th. 1, Prop. 4 and Prop. 5 can be written by considering Υ ⋆

instead of Υ .
In the following, we denote by Hp(Ẅ ) (resp. Hp(Ẅ )) the pth homology

(resp. cohomology) vector space corresponding to the Morse complex of
−→
W . By

Theorem 1, the map Υ is a chain map [12] from the chain complex (K[p], ∂p)

to the chain complex (Ẅ [p], dp). Hence, Υ induces a linear map between Hp(K)

and Hp(Ẅ ); see [12]. Furthermore, we have the following.

Theorem 2 (from [8]). For all p, the vector spaces Hp(K) and Hp(Ẅ ) are
isomorphic.

5 Annotations

If σ is a p-simplex in a complex K, an annotation for σ, as introduced in [4],
is a length g binary vector, where g is the rank of the homology group Hp(K).
These annotations, when summed up for simplexes in a given cycle, provide a
way to determine the homology class of this cycle. The following definition is an
adaptation for Morse sequences of this notion. The main difference is that we
annotate each simplex with a subset of the critical simplexes of the sequence,
instead of a vector.

Let
−→
W be a Morse sequence on K. We say that a Morse frame Υ on

−→
W is an

annotation on
−→
W if Υ satisfies the three conditions:
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C1: For each σ ∈ K(p), we have Υ (σ) ⊆ V̈ (p) where V̈ (p) is a subset of Ẅ (p);
C2: For each p, we have Card(V̈ (p)) = βp(K);
C3: For any cycles z, z′ ∈ Zp(K), we have Υ (z) = Υ (z′) if and only if their

homology classes are such that [z]p = [z′]p.
Let Υ be a frame on

−→
W . If τ ∈ Ẅ (p), we set Υ ♯(τ) = {σ ∈ K(p) | τ ∈ Υ (σ)}.

The following proposition, derived from [6], indicates that an annotation may
be seen as a way to determine a cohomology basis of the complex.

Proposition 6 (adapted from [6]). Let
−→
W be a Morse sequence on K. A

frame Υ on
−→
W is an annotation on

−→
W if and only if Υ satisfies the conditions

C1, C2, and the following condition C4.
C4: The set of chains {Υ ♯(τ) | τ ∈ V̈ (p)} is a set of cocycles whose cohomology

classes {[Υ ♯(τ)]p | τ ∈ V̈ (p)} constitute a basis of Hp(K).

We give a construction for obtaining an annotation. Again, it is an adaptation
for a Morse sequence of the one given in [5] and [6]. Three cases are considered:
1. If a critical simplex is added, and if the annotation of the boundary of this

simplex is trivial, then a new cycle is created. The label associated to this
simplex is composed solely of the simplex itself.

2. If a critical simplex is added, and if the annotation of the boundary of this
simplex is not trivial, then a cycle is removed. This is done by selecting one
label in the annotation of the boundary of this simplex, and by removing
this label from all the previous annotations.

3. If a free pair is added, we propagate the labels of the annotations to this
pair, according to a simple rule.

See [5] and [6] for the validity of this construction for the cases 1 and 2 The
validity for the case 3 is an easy consequence of the definition of a free pair.

Let
−→
W = ⟨K0, . . . ,Kk⟩ be a Morse sequence and Ŵ = ⟨σ̂1, . . . , σ̂k⟩. We write

−→
Wi = ⟨K0, . . . ,Ki⟩, i ∈ [0, k]. We consider the sequence ⟨Υ0, . . . Υi⟩, i ∈ [0, k],
such that Υi is a frame for

−→
Wi, with Υ0(∅) = 0 and:

1. If σ̂i = σi and Υi−1(∂(σi)) = 0, then Υi is such that Υi(σi) = {σi} and
Υi(τ) = Υi−1(τ) otherwise.

2. If σ̂i = σi and Υi−1(∂(σi)) ̸= 0, then we select an arbitrary critical face
ν ∈ Υi−1(∂(σi)). The map Υi is such that Υi(σi) = 0, Υi(τ) = Υi−1(τ) +
Υi−1(∂(σi)) if ν ∈ Υi−1(τ), and Υi(τ) = Υi−1(τ) otherwise.

3. If σ̂i = (σi, τi), then Υi such that Υi(τi) = 0, Υi(σi) = Υi−1(∂(τi) + {σi}),
and Υi(τ) = Υi−1(τ) otherwise.
Under the above construction, each frame Υi is an annotation on

−→
Wi.

Let V̈
(p)
i = {σ ∈ Ki | Υi(σ) = {σ}}, V̈ (p)

i is composed of critical faces for
−→
Wi.

For each σ ∈ K
(p)
i , we have Υi(σ) ⊆ V̈

(p)
i . Furthermore, for each p, we have

Card(V̈
(p)
i ) = βp(Ki).

The interested reader can check that the reference map of the torus, given
in Fig. 2.b, is indeed an annotation. Here, the above case 2 does not happen.
Due to space constraint, we do not describe in this paper a more meaningful
example.
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Fig. 3: (a) A dunce hat. Points with the same label are identified. (b) A Morse
reference map. (c) A Morse co-reference map. See text for details.

6 Computing Betti numbers with the Morse reference

In the construction described in Sec. 5, we have to remove a label from all previ-
ous annotations. We now present another construction that reduces the amount
of operations required for this task. The basic idea is to use the information
given by the reference of a Morse sequence, and to remove labels only for some
faces which are in the boundary of critical simplexes. Thus, annotations are not
computed for all simplexes, but this construction allows us to obtain the Betti
numbers of the complex.

Let
−→
W be a Morse sequence on a simplicial complex K, and let Υ be a Morse

frame on
−→
W . We say that Υ is perfect if each Betti number βp(K) is exactly

equal to the number of critical p-simplexes σ in
−→
W such that Υ (σ) = {σ}.

A key observation is the following. The Morse reference Υ of
−→
W is perfect

if, and only if, for any critical simplex σ in
−→
W , we have Υ (∂(σ)) = 0. In the

next construction, we take advantage of this observation to iteratively remove
suitable pairs of critical points from the image of Υ .

Let
−→
W = ⟨∅ = K0, ...,Kk = K⟩ be a Morse sequence on a complex K, and

let Υ be the Morse reference of
−→
W . We write Ŵ = ⟨σ̂1, ..., σ̂k⟩. We set:

Ẅ+ = Ẅ ∪ {σ ∈ K | σ ∈ ∂(τ) for some τ ∈ Ẅ}
We consider the sequence of frames Υ0, . . . , Υk such that Υ0 = Υ and:
1. If σ̂i = σi and Υi−1(∂(σi)) ̸= 0, then we select an arbitrary critical simplex

ν ∈ Υi−1(∂(σi)). The map Υi is such that Υi(σi) = 0, Υi(τ) = Υi−1(τ) +
Υi−1(∂(σi)) if τ ∈ Ẅ+ and ν ∈ Υi−1(τ), Υi(τ) = Υi−1(τ) otherwise.

2. Otherwise, we have Υi = Υi−1.
We then have the following: the Morse frame Υk is perfect.

It is easy to check that the Morse reference Υ of the torus, given in Fig. 2.b,
is such that Υ (∂(σ)) = 0 for all critical simplexes σ. Thus, this Morse reference
is perfect, and directly gives the expected Betti numbers (1,2,1) for the torus.

Now, let us consider the Morse reference Υ of the dunce hat that is depicted
in Fig. 3.b (see the corresponding Morse sequence in [2, Fig. 2]). The last critical
simplex c in the sequence is such that Υ (∂(c)) = b + b + b = b. We thus need
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to remove both b and c from the set of annotations, in effect “killing” the blue
cocycle (or dually, “killing” the blue cycle in Fig. 3.c). We then retrieve the
expected Betti numbers (1, 0, 0) for the dunce hat. This result confirms that the
dunce hat is acyclic, although the Morse sequence contains 3 critical simplexes,
a, b and c.

7 Implementing Morse frames

In the literature, specific, independent algorithms are designed for computing
the gradient vector field [13,1,11], the Morse complex [13,10], or the Betti num-
bers [6]. The framework of Morse frames shows that we can compute the gra-
dient vector field and the Morse complex simultaneously, in only one pass, and
the Betti numbers in two passes.

As long as we can check whether a pair is free in constant time (e.g., for
example with cubical complexes and the use of a mask to check the neighborhood
of a simplex), the complexity of a Morse sequence is linear in the number of
simplexes. When we compute a Morse reference map, we need to maintain a
list of labels for each simplex, each label corresponding to a critical simplex.
This leads to a complexity in O(cn), where c is the number of critical simplexes,
and n is the number of simplexes of the complex. The Morse reference also has
a memory complexity of O(cn). In contrast, algorithms that compute a Morse
complex, such as [13], claim a cubic-time complexity (because they have to run
several times on each gradient path); furthermore, such algorithms can only be
applied after the obtention of a gradient vector field.

The framework of Morse frames allow retrieving the concept of annota-
tions [6]. Currently, annotations are implemented [3] using a Morse sequence
with only fillings, i.e., where all simplexes are critics. A key point for efficiency
is the ordering of the simplexes: a heuristic is used to try preventing the cre-
ation of unnecessary cycles. Morse frames show that, with a simple modification
(using, for example, a maximal increasing scheme), the annotation algorithm
can take advantage of gradient fields. The ordering of the simplexes provided by
such a scheme, avoids the creation of unnecessary cycles, by using expansions
and fillings, instead of only fillings.

Section 6 provides an algorithm for computing the Betti numbers in mod 2
arithmetic, that is inspired by annotations. Using the reference map, and consid-
ering only the set of critical simplexes and their boundary, we obtain an efficient
scheme for computing those Betti numbers.

8 Conclusion

Based on Morse sequences, a novel presentation of discrete Morse theory, we
have introduced in this paper Morse frames. Morse frames allow for adding in-
formation to a Morse sequence, hence selecting specific simplexes depending on
the task at hand. The main example of Morse frames, the Morse reference, is
useful for homology. In particular, together with its dual, the Morse co-reference,
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they provide the discrete analogue of ascending/stable and descending/unstable
cell associated to a critical point of a smooth Morse function. The Morse ref-
erence also allows retrieving the Morse chain complex. Using Morse frame, we
give a novel presentation of the Annotations. Inspired by these Annotations, we
describe an efficient scheme for computing Betti numbers in mod 2 arithmetic.

On the theoretical side, for future work, we aim at providing a proof of Th. 2,
that will rely only on the Morse reference. We also intend to generalize the Morse
reference for other fields than the mod 2 arithmetic, and to compute persistence
with the framework. On a more practical level, we also want to test the proposed
algorithms, and to compare their efficiency with respect to the state-of-the-art.
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