

#### Enhanced electromechanical coupling of piezoelectric beams through an innovative design

David Gibus, Louison Tourtelier-Gallo, Pierre Gasnier, Adrien Morel, Olivier Freychet, Adrien Badel

#### ► To cite this version:

David Gibus, Louison Tourtelier-Gallo, Pierre Gasnier, Adrien Morel, Olivier Freychet, et al.. Enhanced electromechanical coupling of piezoelectric beams through an innovative design. SMART 2023 - 10th ECCOMAS Thematic Conference on Smart Structures and Materials, Jul 2023, Patras, Greece. hal-04217777

#### HAL Id: hal-04217777 https://hal.science/hal-04217777

Submitted on 28 Sep 2023

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. **D. Gibus, L. Tourtelier-Gallo**, P. Gasnier, A. Morel, O. Freychet, A. Badel

SYMME, Université Savoie Mont-Blanc

CEA Leti

# Enhanced electromechanical coupling of piezoelectric beams through an innovative design













## 2. Solution and simulations



## 3. Experimental validation





SMART2023 - David Gibus

Context

Solution

**Experiments** 

# Vibration energy harvesting



# Challenge

- Linear harvesters efficiencies drastically decrease if their resonant frequency do not match the vibration's frequency
- The intrinsic resonant frequency of piezoelectric energy harvesters may also varies with time, due to aging.

Context

 $\Delta f$  : Frequency bandwidth



Necessity to either enlarge the harvesting bandwidth, or tune the harvester's resonant frequency

Solution





SMART2023 - David Gibus

# Principle



 $\rightarrow$  Increasing the coupling  $k^2$  increases the frequency bandwidth  $\Delta f$ 

<sup>1</sup> A. Morel *et al.*, SMS, 2018

# Electromechanical coupling coefficient



## Cantilever optimization



Long proof mass useful to increase coupling coefficient as the strain becomes uniform

Material thicknesses should be optimized

Gibus et al., Applied Energy 2020



# Material coupling



# Material coupling

#### Take benefit of material parameters



Beam width should be at least twice bigger than the length for piezoelectric ceramics but
As ↗ beam length helps to ↘ resonant frequency, design issues can occur for small devices volumes and with low resonant frequencies

## Is it possible to reach with this behavior without enlarging the beam ?

SMART2023 - David Gibus





## 2. Solution and simulations



## 3. Experimental validation





SMART2023 - David Gibus

Context

Solution

**Experiments** 

## Innovative design

Proposal : adding latteral bars to reduce lateral strain for narrow beams



Example with PMN-PT Material on Comsol (FEM)



Context



## Parametric study

## The improvement of the coupling depends on

#### The initial cantilever

- $\circ$  Coupling coefficients  $k_{31}^{l}^{2}$  and  $k_{31}^{w}^{2}$  of the piezoelectric material,
- $^{\circ}\,$  The stiffness of the piezoelectric material and the substrate
- The geometry (length of the beam, mass and thickness of the piezoelectric materials and the substrate)

#### • The bars

- $^{\circ}\,$  Dimensions (height  $h_{bar}$ , length  $L_{bar}$ )
- The stiffness of the material of the bars
- Number and arrangement (distance between each bar, staggered or face to face arrangement)







# Parametric study

| Fixed parameters                              | Values                        |  |  |  |
|-----------------------------------------------|-------------------------------|--|--|--|
| Materials                                     | PZT 4 and steel               |  |  |  |
| Beam width                                    | 15 mm                         |  |  |  |
| Bar width $L_{bar}$                           | 1 mm                          |  |  |  |
| Beam length                                   | 45 mm                         |  |  |  |
| Variable parameters                           |                               |  |  |  |
| Bar thickness $h_{har}$                       | 0.25-0.5-1-2.5-5-7.5-10 mm    |  |  |  |
| Substrate and piezo thicknesses $(h_p = h_s)$ | 0.3-0.4-0.5-0.6-0.7-0.8-0.9mm |  |  |  |





#### $h_{bar}$ sould be maximized and a plateau is reached



# Parametric study



An optimal value of  $L_{bar}$  exists According to our first studies, the bars should cover around 8 % of the beam length

|                         | U       |          |             | 6           |
|-------------------------|---------|----------|-------------|-------------|
|                         |         |          |             |             |
| SMART2023 - David Gibus | Context | Solution | Experiments | SYMME SYMME |

## Preliminary conclusion





| Parameters                              | Optimal configuration                                              |
|-----------------------------------------|--------------------------------------------------------------------|
| Bar thickness $h_{bar}$                 | At least $4 \times$ substrate thickness ( $h_s$ )                  |
| Bar width $L_{bar}$                     | Around 8 % of the beam length                                      |
| Number of bars                          | At leat 3 one each side.<br>No significant tendency with more bars |
| Arrangement (staggered of face to face) | No significant tendency                                            |





## 2. Solution and simulations



## **3. Experimental validation**

Context



**Experiments** 



## Initial device



 $\begin{array}{ll} f_{sc} = 26.6 \ \text{Hz} & f_{sc} = 25.6 \ \text{Hz} \\ k^2 = 10.5 \ \%^* & k^2 = 9.5 \ \% \end{array}$ 

\* Considered glue thickness of 100  $\mu$ m between the piezoelectric plates and the substrate, and considered distance of the piezoelectric plates from clamp of 500  $\mu$ m



Bimorph :

- 1 mm thick aluminum substrate
- 2  $\times$  0.5 mm thick PZT 5H plates
- 10 mm thick steel proof mass



Pmax=130 μW @ 0.2 m/s<sup>2</sup>

8.5 % bandwidth at Pmax/2

SYMME

UNIVERSITÉ SAVOIE

MONT BLANC





## Enhanced device

### **Results**





 $f_{sc} = 28.2 \text{ Hz}$  $k^2 = 14.3 \%^*$ 

SMART2023 - David Gibus



Context

\* Considered glue thickness of 100 µm between the bars and the piezoelectric plates

Measure admittance and fit



Solution

- 6 Bars:
  - 2 mm x 3 mm steel bars
  - 3 on each side
  - staggered arrangement



Pmax=130 μW @ 0.2 m/s<sup>2</sup>

10.5 % bandwidth at Pmax/2

 $k^2$  is multiplied by 1.42 with the bars (from 9.5 % to 13.7%)

**Experiments** 

The **bandwidth** is expected to be **multiplied by 1.23** 



NIVERSITÉ

# Conclusion





# Conclusion

An innovative design was presented for maximizing the coupling

- $^{\circ}$  to maximize the power
- to maximize the frequency bandwidth

## Experimental validation was made with PZT 5H

- $_{\circ} imes$  1.42 on the electromechanical coupling coefficient  $k^2$
- $_{\circ}$   $\times$  1.24 expected on the frequency bandwith

## Prospects

- Deeper analysis of the materials impact
- Validation with lead free materials









# **ΕΥΧΑΡΙΣΤΩ**

(Thank you)

**D. Gibus,** L. Tourtelier-Gallo, P. Gasnier, A. Morel, O. Freychet, A. Badel david.gibus@univ-smb.fr

