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TIME-EXPLICIT HYBRID HIGH-ORDER METHOD FOR THE NONLINEAR
ACOUSTIC WAVE EQUATION

Morgane Steins1,2,3,* , Alexandre Ern2,3, Olivier Jamond1 and Florence Drui1

Abstract. We devise a fully explicit scheme for the nonlinear acoustic wave equation in its second-
order formulation in time, using the HHO method for space discretization and the leapfrog scheme for
time integration. The key idea for the explicitation is an iterative procedure to approximate at each
time step the static nonlinear coupling between the cell and face unknowns. This procedure is based on
a splitting of the HHO stabilization operator and, in the linear case, is proved to converge for a large
enough weight of the stabilization uniformly in the mesh size. Increasing the stabilization weight turns
out to have a moderate impact on the CFL condition. The numerical experiments demonstrate the
computational efficiency of the splitting procedure compared to a semi-implicit scheme for the static
coupling between cell and face unknowns.
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1. Introduction

Let Ω ⊂ R𝑑, 𝑑 ∈ {2, 3}, denote an open bounded polyhedral domain with Lipschitz boundary 𝜕Ω, and let
𝐽 = (0,Θ) be a time interval with final time Θ > 0. The problem under study is a generic nonlinear acoustic
wave equation: Find the potential 𝑢 : Ω× 𝐽 → R such that

𝜕2
𝑡 𝑢+∇ · (𝜇(𝑢,∇𝑢)2∇𝑢) = 𝑓, in Ω, ∀𝑡 ∈ 𝐽, (1a)

𝑢|𝑡=0 = 𝑢0, in Ω, (1b)
𝜕𝑡𝑢|𝑡=0 = 𝑣0, in Ω, (1c)

with 𝑓 : Ω×𝐽 → R the source term, 𝜇 : R×R𝑑 → R+ a nonlinear function representing the speed of sound, and
𝑢0, 𝑣0 the initial data for the potential, 𝑢, and the velocity, 𝜕𝑡𝑢. Homogeneous Dirichlet boundary conditions
are enforced on 𝑢, and we assume that the initial data satisfies these conditions. The nonlinear acoustic wave
equation can be used in the modelling of various physical phenomena, such as seismic studies or sound and
water waves. It is also a valuable tool to study numerical schemes before using them on more complex equations
such as structural dynamics.
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When tackling fast transient or nonlinear phenomena, an explicit time integration is favored. Indeed, an
explicit scheme avoids at each time step the inversion of a matrix (other than block-diagonal) in linear problems,
and the use of a fixed-point or a Newton algorithm in nonlinear problems. In both cases, these operations are
costly in terms of computational time, especially when the simulation requires a large number of time steps.
This work focuses on the second-order formulation in time of the nonlinear acoustic wave equation and considers
the hybrid high-order (HHO) method for space discretization and the classical leapfrog (central finite difference)
scheme for time integration. Other possible approaches for space discretization include conforming finite elements
with mass lumping [7,20,21,28] and interior penalty discontinuous Galerkin (DG) with a block-diagonal matrix
[29]. A recent application of DG for the simulation of nonlinear sound waves is presented in [5].

The HHO method was introduced for linear diffusion in [25] and for linear elasticity in [23]. It was extended to
various applications such as solid mechanics with the Biot problem [8], nonlinear elasticity [9], hyperelasticity [1]
and elastoplasticity [2,3]. The HHO method belongs to the class of hybridizable discontinuous Galerkin (HDG)
methods [17], as shown in [18]. Moreover, the HHO method is closely related to nonconforming virtual element
methods [6] and shares the same devising principles as weak Galerkin (WG) methods [41], as shown in [16,26].
Two books were recently devoted to the HHO method [15,24]. This method offers numerous advantages: support
of polyhedral meshes, optimal convergence rates, local conservation principles, and computational efficiency. In
particular, the support of polyhedral meshes allows for a natural use of mesh refinement with hanging nodes.
The HHO unknowns are polynomials attached to the mesh cells and to the mesh faces. The setting is said to
be of equal-order if both unknowns have the same polynomial degree, and of mixed-order if the degree of the
cell unknowns is one order higher than that of the face unknowns.

The space discretization of the linear acoustic wave equation by the HHO method has been devised in [11], for
both second- and first-order formulations in time. Optimal convergence rates in the space semi-discrete case are
established in [10], and an unfitted version of the HHO method is devised in [12]. As shown in [11], combining
the classical leapfrog scheme in time with the HHO method for the second-order formulation in time of the
wave equation leads to a semi-implicit scheme, where, at each time step, the equation for the cell unknowns
is explicit, but there is a static coupling between the face and the cell unknowns. Instead, for the first-order
formulation in time, a fully explicit scheme can be devised by combining an explicit Runge–Kutta time-stepping
scheme with the HHO method in the mixed-order setting. The same difficulty is encountered when using HDG
and WG schemes for space discretization. For instance, for the first-order formulation, both implicit [36,37] and
explicit HDG schemes [40] were devised for the wave equation, with a better computational efficiency for the
explicit version reported in [33]. A symplectic HDG formulation is derived in [39]. The second-order formulation
in time with HDG discretization is conducted in [19] using a Störmer–Numerov scheme, and leads to a fully
implicit scheme (both on the cell and the face unknowns). Similarly, in the WG context, a fully implicit scheme
is developed in [30,31]. The goal of the present work is to derive a fully explicit time discretization of the wave
equation in its second-order formulation in time. As shown in the above discussion, this is a novel development
for HHO methods. Moreover, leveraging on the close links between HHO, HDG and WG methods, the present
work should also be beneficial when using HDG and WG methods. Our main result is an explicitation method
built on a suitable splitting of the stabilization operator. In the linear case, we prove the convergence of this
procedure provided that the stabilization is scaled by a large enough weight uniformly in the mesh size. This
weight has only a moderate impact on the CFL condition. Moreover, numerical experiments illustrate that the
splitting procedure is computationally more efficient compared to the semi-implicit scheme.

This work is organized as follows. Section 2 recalls from [11] the principles of the HHO space semi-
discretization for the linear acoustic wave equation and extends the method to the present nonlinear setting.
Section 3 presents the time discretization of the nonlinear acoustic wave equation with the explicit leapfrog
scheme and discusses its algebraic formulation. Section 4 is dedicated to the splitting procedure in the nonlinear
case, followed by a stability analysis in the linear case and some numerical tests on the splitting parameters.
Finally, Section 5 studies the computational efficiency of the proposed method, first on the linear wave equation
and then on two nonlinear model problems: a so-called p-structure operator and a vibrating membrane.
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2. Space semi-discretization by the HHO method

In this section, the HHO semi-discretization in space of the acoustic wave equation is presented.

2.1. Discrete setting

Standard notation is used for Lebesgue, Sobolev and Bochner spaces. Let (·, ·)Ω denote the 𝐿2-inner product
on Ω and ‖·‖ the associated norm. Boldface notation is used for vectors and vector-valued fields, and calligraphic
notation is used for matrices and matrix-valued fields. Assuming 𝑓 ∈ 𝐿2(𝐽 ;𝐿2(Ω)), we seek the solution of (1)
in 𝑈 := 𝐻2(𝐽 ;𝐿2(Ω)) ∩ 𝐿2(𝐽 ;𝐻1

0 (Ω)) such that

(𝜕2
𝑡 𝑢,𝑤)Ω +

(︀
𝜇(𝑢,∇𝑢)2∇𝑢,∇𝑤

)︀
Ω

= (𝑓, 𝑤)Ω , a.e. 𝑡 ∈ 𝐽, ∀𝑤 ∈ 𝐻1
0 (Ω). (2)

Let (𝒯ℎ)ℎ>0 be a sequence of polyhedral meshes of Ω, such that each mesh 𝒯ℎ covers exactly Ω. For all ℎ > 0,
let 𝑇 denote a generic mesh cell in 𝒯ℎ, ℎ𝑇 its diameter and 𝑛𝑇 its unit outward normal. We set ℎ := max𝑇∈𝒯ℎ

ℎ𝑇

for the mesh size. We say that the (𝑑−1)-dimensional set 𝐹 is a mesh face if there is a hyperplane 𝐻𝐹 such that
either 𝐹 = 𝐻𝐹 ∩ 𝜕𝑇− ∩ 𝑇+ for two distinct mesh cells (and 𝐹 is called mesh interface) or 𝐹 = 𝐻𝐹 ∩ 𝜕𝑇− ∩ 𝜕Ω
(and 𝐹 is called mesh boundary face). The collection of all the mesh faces is denoted ℱℎ. For all 𝑇 ∈ 𝒯ℎ, we
denote by ℱ𝑇 the collection of its faces, and for all 𝐹 ∈ ℱ𝑇 , we set 𝑛𝑇𝐹 := 𝑛𝑇 |𝐹 . The mesh sequence is assumed
to be shape-regular. Here, we only consider meshes composed of cells with simple shape (triangles, tetrahedra,
quadrangles and hexahedra) so that the classical notion of regularity by Ciarlet is sufficient for our purposes; for
mesh regularity with more general shapes, we refer the reader, e.g., to [13,15,22,24]. Mesh regularity implies, in
particular, that for all ℎ > 0, all 𝑇 ∈ 𝒯ℎ and all 𝐹 ∈ ℱ𝑇 , the diameter ℎ𝐹 of 𝐹 is uniformly comparable to ℎ𝑇 .

Let the integer 𝑘 > 0 be the polynomial order of the face unknowns and let 𝑙 ∈ {𝑘, 𝑘+ 1} be the order of the
cell unknowns. Recall that the setting is said to be of equal-order if 𝑙 = 𝑘 and of mixed-order if 𝑙 = 𝑘 + 1. Let
P𝑙

𝑑(𝑇 ) (resp. P𝑘
𝑑−1(𝐹 )) denote the set of 𝑑-variate (resp. (𝑑− 1)-variate) polynomials of degree at most 𝑙 (resp.

𝑘) restricted to the cell 𝑇 ∈ 𝒯ℎ (resp. to the face 𝐹 ∈ ℱℎ). The linear space composed of all the cell degrees of
freedom is denoted 𝒰 𝑙

𝒯 , and the linear space composed of all the face degrees of freedom is denoted 𝒰𝑘
ℱ . These

spaces are defined as Cartesian products in the form

𝒰 𝑙
𝒯 := ×

𝑇∈𝒯ℎ

P𝑙
𝑑(𝑇 ), 𝒰𝑘

ℱ := ×
𝐹∈ℱℎ

P𝑘
𝑑−1(𝐹 ), (3)

and we slightly abuse the notation by viewing an element 𝑤𝒯 = (𝑤𝑇 )𝑇∈𝒯ℎ
∈ 𝒰 𝑙

𝒯 as a function defined a.e. over
Ω such that 𝑤𝒯 |𝑇 := 𝑤𝑇 for all 𝑇 ∈ 𝒯ℎ. The collection of all the cell and face degrees of freedom is the hybrid
space ̂︀𝒰 𝑙,𝑘

ℎ := 𝒰 𝑙
𝒯 × 𝒰𝑘

ℱ . (4)

A generic element of ̂︀𝒰 𝑙,𝑘
ℎ is denoted 𝑤̂ℎ := (𝑤𝒯 , 𝑤ℱ ) ∈ 𝒰 𝑙

𝒯 × 𝒰𝑘
ℱ and, in what follows, variables with hats refer

to hybrid variables. For a given cell 𝑇 ∈ 𝒯ℎ, one also defines a local hybrid space of degrees of freedom

̂︀𝒰 𝑙,𝑘
𝑇 := P𝑙

𝑑(𝑇 )× 𝒰𝑘
𝜕𝑇 , 𝒰𝑘

𝜕𝑇 := ×
𝐹∈ℱ𝑇

P𝑘
𝑑−1(𝐹 ). (5)

Then 𝑤̂𝑇 := (𝑤𝑇 , 𝑤𝜕𝑇 = (𝑤𝐹 )𝐹∈ℱ𝑇
) ∈ ̂︀𝒰 𝑙,𝑘

𝑇 denotes a generic local hybrid unknown in 𝑇 , composed of one cell
unknown and the collection of the face unknowns for all the faces in ℱ𝑇 . As above, we slightly abuse the notation
by viewing an element 𝑤𝜕𝑇 = (𝑤𝐹 )𝐹∈ℱ𝑇

∈ 𝒰𝑘
𝜕𝑇 as a function defined a.e. over 𝜕𝑇 such that 𝑤𝜕𝑇 |𝐹 := 𝑤𝐹 for

all 𝐹 ∈ ℱ𝑇 . Let 𝒰𝑘
ℱ,0 := {𝑣ℱ ∈ 𝒰𝑘

ℱ , s.t. 𝑣𝐹 = 0, ∀𝐹 ⊂ 𝜕Ω} be the ubspace of face unknowns respecting
the homogeneous Dirichlet conditions. The subspace of hybrid unknowns respecting the homogeneous Dirichlet
conditions is denoted ̂︀𝒰 𝑙,𝑘

ℎ,0 := 𝒰 𝑙
𝒯 × 𝒰𝑘

ℱ,0. (6)
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𝐿2-orthogonal projections onto polynomial spaces are denoted with the symbol Π. For instance, for all 𝑇 ∈ 𝒯ℎ,
Π𝑙

𝑇 is the projection onto P𝑙
𝑑(𝑇 ) and for all 𝐹 ∈ ℱℎ, Π𝑘

𝐹 the projection onto P𝑘
𝑑−1(𝐹 ). The 𝐿2-orthogonal

projection onto the broken polynomial spaces 𝒰 𝑙
𝒯 and 𝒰𝑘

ℱ is denoted by Π𝑙
𝒯 and Π𝑘

ℱ respectively. Let (·, ·)𝑇 and
(·, ·)𝐹 respectively denote the 𝐿2-inner product in the cell 𝑇 ∈ 𝒯ℎ and a face 𝐹 ∈ ℱℎ. For all 𝑣𝜕𝑇 , 𝑤𝜕𝑇 ∈ 𝒰𝑘

𝜕𝑇 ,
we also define (𝑣𝜕𝑇 , 𝑤𝜕𝑇 )𝜕𝑇 :=

∑︀
𝐹∈ℱ𝑇

(𝑣𝐹 , 𝑤𝐹 )𝐹 .

2.2. Discrete HHO operators

The HHO discretization relies on two key operators: a gradient reconstruction operator and a stabilization
operator. Both operators are local, i.e. they are defined independently in every cell 𝑇 ∈ 𝒯ℎ. The gradient
reconstruction operator builds a gradient in the cell 𝑇 from the local cell and face unknowns. This operator
𝐺𝑘

𝑇 : ̂︀𝒰 𝑙,𝑘
𝑇 → P𝑘

𝑑(𝑇 ; R𝑑) is evaluated by solving the following problem: For all 𝑣𝑇 ∈ ̂︀𝒰 𝑙,𝑘
𝑇 ,

(𝐺𝑘
𝑇 (𝑣𝑇 ), 𝑞)𝑇 = (∇𝑣𝑇 , 𝑞)𝑇 + (𝑣𝜕𝑇 − 𝑣𝑇 , 𝑞 · 𝑛𝑇 )𝜕𝑇 , ∀𝑞 ∈ P𝑘

𝑑(𝑇 ; R𝑑), (7)

where P𝑘
𝑑(𝑇 ; R𝑑) denotes the set of R𝑑-valued 𝑑-variate polynomials of degree 𝑘 in the cell 𝑇 . In practice, each

component of the reconstructed gradient is found by inverting the mass matrix associated with a chosen basis of
P𝑘

𝑑(𝑇 ). One can also build a potential reconstruction operator 𝑅𝑘+1
𝑇 : ̂︀𝒰 𝑙,𝑘

𝑇 → P𝑘+1
𝑑 (𝑇 ) solving, for all 𝑤̂𝑇 ∈ ̂︀𝒰 𝑙,𝑘

𝑇 ,
the following Neumann problem:

(∇𝑅𝑘+1
𝑇 (𝑤̂𝑇 ),∇𝑞)𝑇 = (∇𝑤𝑇 ,∇𝑞)𝑇 + (𝑤𝜕𝑇 − 𝑤𝑇 ,∇𝑞 · 𝑛𝑇 )𝜕𝑇 , ∀𝑞 ∈ P𝑘+1

𝑑 (𝑇 ), (8)

and the mean-value condition (𝑅𝑘+1
𝑇 (𝑣𝑇 ), 1)𝑇 = (𝑣𝑇 , 1)𝑇 . In this case, the computation of 𝑅𝑘+1

𝑇 (𝑣𝑇 ) requires
inverting the stiffness matrix for a chosen basis of P𝑘+1,0

𝑑 (𝑇 ) := {𝑞 ∈ P𝑘+1
𝑑 (𝑇 ), s.t. (𝑞, 1)𝑇 = 0}.

The role of the stabilization is to weakly enforce the matching between cell and face unknowns on each mesh
face. Let 𝑇 ∈ 𝒯ℎ. For all 𝑤̂𝑇 ∈ ̂︀𝒰 𝑙,𝑘

𝑇 , set 𝛿𝑇 (𝑤̂𝑇 ) := 𝑤𝜕𝑇 − 𝑤𝑇 |𝜕𝑇 on 𝜕𝑇 and 𝛿𝑇𝐹 (𝑤̂𝑇 ) := 𝛿𝑇 (𝑤̂𝑇 )|𝐹 . In the
mixed-order case, the local stabilization operator 𝑆𝑇𝐹 is defined as

𝑆𝑇𝐹 (𝑤̂𝑇 ) := Π𝑘
𝐹 (𝛿𝑇𝐹 (𝑤̂𝑇 )), ∀𝑤̂𝑇 ∈ ̂︀𝒰 𝑙,𝑘

𝑇 , (9)

and leads to the so-called Lehrenfeld–Schöberl stabilization in the HDG setting (see, e.g. [34,35]). In the equal-
order case, the definition of 𝑆𝑇𝐹 requires the computation of 𝑅𝑘+1

𝑇 and writes

𝑆𝑇𝐹 (𝑤̂𝑇 ) := Π𝑘
𝐹

(︀
𝛿𝑇𝐹 (𝑤̂𝑇 ) + (𝐼 −Π𝑘

𝑇 )𝑅𝑘+1
𝑇 (0, 𝛿𝑇 (𝑤̂𝑇 ))|𝐹

)︀
, ∀𝑤̂𝑇 ∈ 𝒰𝑘,𝑘

𝑇 =: 𝒰𝑘
𝑇 . (10)

In both equal- and mixed-order settings, we define, for all 𝑦𝑇 , 𝑣𝑇 , 𝑤̂𝑇 ∈ ̂︀𝒰 𝑙,𝑘
𝑇 , the local stabilization form as

𝜎𝑇 (𝑦𝑇 ; 𝑣𝑇 , 𝑤̂𝑇 ) = 𝛾𝜇̄𝑇 (𝑦𝑇 )2
∑︁

𝐹∈ℱ𝑇

𝜂−1
𝑇𝐹 (𝑆𝑇𝐹 (𝑣𝑇 ), 𝑆𝑇𝐹 (𝑤̂𝑇 ))𝐹 , (11)

with 𝜇̄𝑇 (𝑦𝑇 ) an approximation of the local speed of sound in 𝑇 evaluated using 𝑦𝑇 , the scaling factor 𝜂𝑇𝐹 equal
to ℎ𝐹 or ℎ𝑇 , and 𝛾 > 0 a scaling parameter. Choosing 𝜂𝑇𝐹 = ℎ𝑇 is often more relevant. Finally, in each mesh
cell 𝑇 ∈ 𝒯ℎ, one defines the local stiffness form 𝑏𝑇 , such that, for all 𝑦𝑇 , 𝑣𝑇 , 𝑤̂𝑇 ∈ ̂︀𝒰 𝑙,𝑘

𝑇 ,

𝑏𝑇 (𝑦𝑇 ; 𝑣𝑇 , 𝑤̂𝑇 ) := (𝜇(𝑦𝑇 ,𝐺
𝑘
𝑇 (𝑦𝑇 ))2𝐺𝑘

𝑇 (𝑣𝑇 ),𝐺𝑘
𝑇 (𝑤̂𝑇 ))𝑇 . (12)

Both forms 𝑏𝑇 and 𝜎𝑇 are nonlinear w.r.t. 𝑦𝑇 and linear w.r.t. 𝑣𝑇 and 𝑤̂𝑇 .

Remark 2.1 (Choice of 𝛾). Any positive value can be chosen for the scaling parameter 𝛾. For the plain HHO
method, the choice 𝛾 = 1 is made in [23, 25]. In the present setting, this parameter is introduced to tune the
scale of the stabilization compared to the stiffness term. If 𝛾 ≪ 1, the stabilization is much smaller than the
stiffness, and the problem is close to being singular. The case 𝛾 ≫ 1 does not entail singularity issues but may
lead to larger errors than 𝛾 = 1. Taking larger values of 𝛾 also lowers the CFL stability restriction on the time
step as we shall see below. Very large values of 𝛾 are thus not computationally efficient due to the large number
of time steps. We refer the reader to Section 5.1.2 and Appendix A for further insight.
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2.3. HHO semi-discretization of the wave equation

The global forms 𝑏ℎ and 𝜎ℎ are defined, for all 𝑦ℎ, 𝑣ℎ, 𝑤̂ℎ ∈ ̂︀𝒰 𝑙,𝑘
ℎ,0, as

𝑏ℎ(𝑦ℎ; 𝑣ℎ, 𝑤̂ℎ) :=
∑︁

𝑇∈𝒯ℎ

𝑏𝑇 (𝑦𝑇 ; 𝑣𝑇 , 𝑤̂𝑇 ), 𝜎ℎ(𝑦ℎ; 𝑣ℎ, 𝑤̂ℎ) :=
∑︁

𝑇∈𝒯ℎ

𝜎𝑇 (𝑦𝑇 ; 𝑣𝑇 , 𝑤̂𝑇 ). (13)

Assuming from now on that 𝑓 ∈ 𝐶0(𝐽 ;𝐿2(𝛺)), the space semi-discrete scheme for the nonlinear wave equa-
tion (1) consists of finding 𝑢̂ℎ := (𝑢𝒯 , 𝑢ℱ ) ∈ 𝐶2(𝐽 ; ̂︀𝒰 𝑙,𝑘

ℎ,0) such that, for all 𝑡 ∈ 𝐽 and all 𝑤̂ℎ := (𝑤𝒯 , 𝑤ℱ ) ∈ ̂︀𝒰 𝑙,𝑘
ℎ,0,

(𝜕2
𝑡 𝑢𝒯 , 𝑤𝒯 )Ω + 𝑏ℎ(𝑢̂ℎ(𝑡); 𝑢̂ℎ(𝑡), 𝑤̂ℎ) + 𝜎ℎ(𝑢̂ℎ(𝑡); 𝑢̂ℎ(𝑡), 𝑤̂ℎ) = (𝑓(𝑡), 𝑤𝒯 )Ω . (14)

Notice that the homogeneous Dirichlet boundary condition is enforced by the condition 𝑢̂ℎ(𝑡) ∈ ̂︀𝒰 𝑙,𝑘
ℎ,0 at all times

𝑡 ∈ 𝐽 . Moreover, the initial conditions translate into conditions on 𝑢𝒯 only:

𝑢𝒯 (0) := Π𝑙
𝒯 (𝑢0), 𝜕𝑡𝑢𝒯 (0) := Π𝑙

𝒯 (𝑣0). (15)

Notice that initial conditions on the face degrees of freedom are not needed.

Remark 2.2 (Linear case). In this case, the speed of sound 𝜇 is assumed to be piecewise constant on a
polyhedral partition of Ω, and is assumed to take a constant value denoted by 𝜇𝑇 in each cell 𝑇 . The dependence
of the local forms on the variable 𝑦𝑇 disappears, so that these forms become bilinear:

𝑏𝑇 (𝑣𝑇 , 𝑤̂𝑇 )=𝜇𝑇 (𝐺𝑘
𝑇 (𝑣𝑇 ),𝐺𝑘

𝑇 (𝑤̂𝑇 ))𝑇 , 𝜎𝑇 (𝑣𝑇 , 𝑤̂𝑇 ) = 𝛾𝜇2
𝑇

∑︁
𝐹∈ℱ𝑇

𝜂−1
𝑇𝐹 (𝑆𝑇𝐹 (𝑣𝑇 ), 𝑆𝑇𝐹 (𝑤̂𝑇 ))𝐹 , (16)

and the global bilinear forms read 𝑏ℎ(𝑣ℎ, 𝑤̂ℎ) :=
∑︀

𝑇∈𝒯ℎ
𝑏𝑇 (𝑣𝑇 , 𝑤̂𝑇 ) and 𝜎ℎ(𝑣ℎ, 𝑤̂ℎ) :=

∑︀
𝑇∈𝒯ℎ

𝜎𝑇 (𝑣𝑇 , 𝑤̂𝑇 ).

3. Time discretization and algebraic formulation

In this section, a time discretization of the space semi-discrete wave equation is presented using the leapfrog
scheme. The algebraic formulation is also presented to highlight the implicit coupling between cell and face
unknowns.

3.1. Time discretization

Let 𝑁 be the number of discrete time intervals such that (𝑡𝑛)06𝑛6𝑁 are the discrete time nodes with 𝑡0 = 0
and 𝑡𝑁 := Θ. For the sake of simplicity, we consider a fixed time step ∆𝑡 := Θ

𝑁 . The time discrete unknown
𝑢̂𝑛

ℎ = (𝑢𝑛
𝒯 , 𝑢

𝑛
ℱ ) ∈ ̂︀𝒰 𝑙,𝑘

ℎ,0 is meant to be an approximation of 𝑢̂ℎ(𝑡𝑛). We also define the projection of a function in
𝐻1(Ω) onto the space of hybrid degrees of freedom ̂︀𝒰 𝑙,𝑘

ℎ as

𝐼ℎ(𝑣) := ((Π𝑙
𝑇 (𝑣))𝑇∈𝒯ℎ

, (Π𝑘
𝐹 (𝑣))𝐹∈ℱℎ

) ∈ ̂︀𝒰 𝑙,𝑘
ℎ , ∀𝑣 ∈ 𝐻1(Ω). (17)

Notice that 𝑣 ∈ 𝐻1
0 (Ω) implies 𝐼ℎ(𝑣) ∈ ̂︀𝒰 𝑙,𝑘

ℎ,0.
A classical explicit scheme for the time integration of the wave equation is the leapfrog (central finite differ-

ence) scheme. In the context of the HHO space semi-discretization, this scheme consists of solving, for all 𝑛 > 1
and all 𝑤̂ℎ ∈ ̂︀𝒰 𝑙,𝑘

ℎ,0,

1
∆𝑡2

(𝑢𝑛+1
𝒯 − 2𝑢𝑛

𝒯 + 𝑢𝑛−1
𝒯 , 𝑤𝒯 )Ω + 𝑏ℎ(𝑢̂𝑛

ℎ; 𝑢̂𝑛
ℎ, 𝑤̂ℎ) + 𝜎ℎ(𝑢̂𝑛−1

ℎ ; 𝑢̂𝑛
ℎ, 𝑤̂ℎ) = (𝑓(𝑡𝑛), 𝑤𝒯 )Ω , (18)
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with 𝑢̂𝑛
ℎ, 𝑢̂𝑛−1

ℎ known from prior time steps or given by the initial conditions as follows:

𝑢0
𝒯 = Π𝑙

𝒯 (𝑢0) (19a)

𝑏ℎ(𝑢̂0
ℎ; 𝑢̂0

ℎ, (0, 𝑤ℱ )) + 𝜎ℎ(𝐼ℎ(𝑢0); 𝑢̂0
ℎ, (0, 𝑤ℱ )) = 0, (19b)(︀

𝑢1
𝒯 , 𝑤𝒯

)︀
Ω

=
(︀
𝑢0
𝒯 + ∆𝑡Π𝑙

𝒯 (𝑣0), 𝑤𝒯
)︀
Ω

+
∆𝑡2

2
[(𝑓(0), 𝑤𝒯 )Ω − 𝑏ℎ(𝑢̂0

ℎ; 𝑢̂0
ℎ, (𝑤𝒯 , 0))− 𝜎ℎ(𝑢̂0

ℎ; 𝑢̂0
ℎ, (𝑤𝒯 , 0))], (19c)

where (19b) holds for all 𝑤ℱ ∈ 𝒰𝑘
ℱ,0 and (19c) holds for all 𝑤𝒯 ∈ 𝒰 𝑙

𝒯 . Notice that, in equation (18), the
stabilization term is linear w.r.t 𝑢̂𝑛

ℎ and that in the second equation (19b), the stabilization is linear with respect
to 𝑢̂0

ℎ. This linearization does not influence the accuracy because the speed of sound in the stabilization only
aims at equilibrating the magnitude of the stabilization and stiffness terms. More precisely, the approximation
of the local speed of sound in a cell 𝑇 ∈ 𝒯ℎ is evaluated as

𝜇̄𝑇 (𝑢𝑛−1
𝑇 ) := 𝜇(𝑢𝑛−1

𝑇 (𝑥𝑇 ),𝐺𝑘
𝑇 (𝑢̂𝑛−1

𝑇 )(𝑥𝑇 )), (20)

where 𝑥𝑇 is the barycenter of 𝑇 . If the speed of sound does not vary too much across the mesh and during the
simulation, a constant value 𝜇0 can be taken in all the cells and at all the time steps. For the stiffness operator
𝑏ℎ, the above linearization is not considered in order to preserve the second-order convergence rate in time of
the discrete scheme.

Remark 3.1 (Linear case). In this case, 𝜎ℎ does not depend on 𝑢̂𝑛−1
ℎ , and the fully discrete equation reads for

all 𝑛 > 1 and all 𝑤̂ℎ ∈ ̂︀𝒰 𝑙,𝑘
ℎ,0,

1
∆𝑡2

(𝑢𝑛+1
𝒯 − 2𝑢𝑛

𝒯 + 𝑢𝑛−1
𝒯 , 𝑤𝒯 )Ω + 𝑏ℎ(𝑢̂𝑛

ℎ, 𝑤̂ℎ) + 𝜎ℎ(𝑢̂𝑛
ℎ, 𝑤̂ℎ) = (𝑓(𝑡𝑛), 𝑤𝒯 )Ω . (21)

3.2. Algebraic formulation

Let 𝑁𝒯 := dim(𝒰 𝑙
𝒯 ) and 𝑁ℱ := dim(𝒰𝑘

ℱ,0) and {𝜑𝑖}16𝑖6𝑁𝒯 , {𝜓𝑖}16𝑖6𝑁ℱ be bases of 𝒰 𝑙
𝒯 and 𝒰𝑘

ℱ,0 respectively.
Let (U𝑛

𝒯 ,U
𝑛
ℱ ) ∈ R𝑁𝒯 × R𝑁ℱ be the vector of time-dependent degrees of freedom of the solution 𝑢̂𝑛

ℎ on these
bases, and F𝑛

𝒯 ∈ R𝑁𝒯 the vector having components ((𝑓(𝑡𝑛), 𝜑𝑖)Ω)16𝑖6𝑁𝒯 . To alleviate the notation, we use
the subscript ℱ rather than ℱ,0 for objects related to 𝒰𝑘

ℱ,0. The fully discrete problem (18) can be written in
algebraic form by considering the vector-valued nonlinear stiffness operator B(U𝑛

𝒯 ,U
𝑛
ℱ ) associated with the linear

form 𝑏ℎ(𝑢̂𝑛
ℎ; 𝑢̂𝑛

ℎ, ·), with B𝒯 ,Bℱ respectively collecting the cell and face components. The linearized stabilization
bilinear form 𝜎ℎ(𝑢̂𝑛−1

ℎ ; ·, ·) leads to a symmetric matrix depending on 𝑢̂𝑛−1
ℎ and denoted by 𝒮𝑛−1. Altogether,

the algebraic formulation reads

1
∆𝑡2

[︂
ℳ 0
0 0

]︂(︂
U𝑛+1
𝒯
·

)︂
+
(︂

B𝒯 (U𝑛
𝒯 ,U

𝑛
ℱ )

Bℱ (U𝑛
𝒯 ,U

𝑛
ℱ )

)︂
+
[︂
𝒮𝑛−1
𝒯 𝒯 𝒮𝑛−1

𝒯 ℱ
𝒮𝑛−1
ℱ𝒯 𝒮𝑛−1

ℱℱ

]︂(︂
U𝑛
𝒯

U𝑛
ℱ

)︂
=
[︂

F𝑛
𝒯 − 1

Δ𝑡2ℳ(U𝑛−1
𝒯 − 2U𝑛

𝒯 )
0

]︂
, (22)

with ℳ the cell mass matrix. As a consequence of the structure of the global mass matrix, the face component
is replaced by a “·” in the acceleration term. The submatrix 𝒮𝑛−1

𝒯 𝒯 is block-diagonal, since 𝜎ℎ(𝑢̂𝑛−1
ℎ ; ·, ·) does not

couple cell degrees of freedom from different cells. Is is useful to notice that in the mixed-order case, 𝒮𝑛−1
ℱℱ is

also block-diagonal, since it reduces on each face to the mass matrix associated with a local polynomial basis.
Finally, the cell mass matrix ℳ is also block-diagonal.

The resolution of the wave equation discretized with HHO and the leapfrog scheme proceeds in two steps for
all 𝑛 > 1:

(1) Compute U𝑛
ℱ , i.e., solve Bℱ (U𝑛

𝒯 ,U
𝑛
ℱ ) +𝒮𝑛−1

ℱℱ U𝑛
ℱ = −𝒮𝑛−1

ℱ𝒯 U𝑛
𝒯 using the second row in (22), where U𝑛

𝒯 is the
data (known from the previous time step or the initial condition) and U𝑛

ℱ the unknown;
(2) Compute U𝑛+1

𝒯 , i.e., solve 1
Δ𝑡2ℳU𝑛+1

𝒯 = F𝑛
𝒯 − 1

Δ𝑡2ℳ(U𝑛−1
𝒯 − 2U𝑛

𝒯 ) − B𝒯 (U𝑛
𝒯 ,U

𝑛
ℱ ) − 𝒮𝑛−1

𝒯 𝒯 U𝑛
𝒯 − 𝒮

𝑛−1
𝒯 ℱ U𝑛

ℱ
using the first row in (22).
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The key observation is that (22) is a semi-implicit scheme, and not an explicit scheme. Indeed, the first step
above induces a static nonlinear coupling between cell and face unknowns. Solving this nonlinear equation at
each time step of the leapfrog scheme is not effective because of the heavy computational cost. This problem is
solved in the next section, leading to a fully explicit scheme.

Remark 3.2 (Linear case). In this case, the stabilization matrix does not depend on the previous time step
and is simply denoted by 𝒮. The stiffness form is bilinear and the operator B becomes linear so that it can be
replaced by a matrix product between a stiffness matrix ℬ and the vector of hybrid unknowns (U𝑛

𝒯 ,U
𝑛
ℱ ). In

order to have a more compact notation, we define the complete HHO stiffness matrix as

𝒜 := ℬ + 𝒮. (23)

The cell-cell block matrix 𝒜𝒯 𝒯 is block-diagonal, but the face-face block matrix 𝒜ℱℱ is not block-diagonal
since the gradient reconstruction operator couples the degrees of freedom from all the faces of a given cell.
Equation (22) translates into the semi-implicit scheme

1
∆𝑡2

[︂
ℳ 0
0 0

]︂(︂
U𝑛+1
𝒯
·

)︂
+
[︂
𝒜𝒯 𝒯 𝒜𝒯 ℱ
𝒜ℱ𝒯 𝒜ℱℱ

]︂(︂
U𝑛
𝒯

U𝑛
ℱ

)︂
=
[︂

F𝑛
𝒯 − 1

Δ𝑡2ℳ(U𝑛−1
𝒯 − 2U𝑛

𝒯 )
0

]︂
. (24)

The first step becomes the resolution of the linear system 𝒜ℱℱU𝑛
ℱ = −𝒜ℱ𝒯 U𝑛

𝒯 , where, as above, U𝑛
𝒯 is the data

and U𝑛
ℱ the unknown. This requires the inversion of the sparse matrix 𝒜ℱℱ , either by a direct inversion or by

an iterative process.

4. Splitting

In this section, a splitting procedure on the static coupling equation on the faces is devised. The procedure is
presented for the nonlinear acoustic wave equation and generic sufficient conditions for convergence are given.
A sharper convergence analysis is presented in the linear case. The procedure differs depending on the setting
for the polynomial order in the HHO method (mixed- or equal-order).

4.1. Mixed-order setting

We consider first the mixed-order setting since the definition of the stabilization is simpler. The iterative
splitting procedure proceeds as follows. For all 𝑛 > 1, set 𝑢𝑛,0

ℱ = 𝑢𝑛−1
ℱ and iterate on 𝑚 > 0 by finding

𝑢𝑛,𝑚+1
ℱ ∈ 𝒰𝑘

ℱ,0 such that

𝜎ℎ(𝑢̂𝑛−1
ℎ ; (0, 𝑢𝑛,𝑚+1

ℱ ), (0, 𝑤ℱ )) = −𝑏ℎ((𝑢𝑛
𝒯 , 𝑢

𝑛,𝑚
ℱ ); (𝑢𝑛

𝒯 , 𝑢
𝑛,𝑚
ℱ ), (0, 𝑤ℱ ))− 𝜎ℎ(𝑢̂𝑛−1

ℎ ; (𝑢𝑛
𝒯 , 0), (0, 𝑤ℱ )), (25)

for all 𝑤ℱ ∈ 𝒰𝑘
ℱ,0. The algebraic form is as follows: Setting U𝑛,0

ℱ := U𝑛−1
ℱ , one seeks U𝑛,𝑚+1

ℱ ∈ R𝑁ℱ such that

𝒮𝑛−1
ℱℱ U𝑛,𝑚+1

ℱ = −Bℱ (U𝑛
𝒯 ,U

𝑛,𝑚
ℱ )− 𝒮𝑛−1

ℱ𝒯 U𝑛
𝒯 . (26)

This splitting procedure is computationally effective since, as mentioned above, the face-face stabilization sub-
matrix 𝒮𝑛−1

ℱℱ is block-diagonal, the size of each block being
(︀
𝑘+𝑑−1

𝑑−1

)︀
, i.e., (𝑘 + 1) for 𝑑 = 2 and 1

2 (𝑘 + 1)(𝑘 + 2)
for 𝑑 = 3. The procedure is a fixed-point algorithm, so that its convergence is ensured for 𝛿 < 1, where 𝛿 is the
Lipschitz constant of the vector-valued function (𝒮𝑛−1

ℱℱ )−1Bℱ (U𝑛
𝒯 , ·), i.e.,

‖(𝒮𝑛−1
ℱℱ )−1

(︀
Bℱ (U𝑛

𝒯 , 𝑋)− Bℱ (U𝑛
𝒯 , 𝑌 )

)︀
‖ 6 𝛿‖𝑋 − 𝑌 ‖ ∀𝑋,𝑌 ∈ R𝑁ℱ . (27)
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Remark 4.1 (Linear case). In this case, the iterative scheme writes, for all 𝑚 > 0,

𝜎ℎ((0, 𝑢𝑛,𝑚+1
ℱ ), (0, 𝑤ℱ )) = −𝑏ℎ((𝑢𝑛

𝒯 , 𝑢
𝑛,𝑚
ℱ ), (0, 𝑤ℱ ))− 𝜎ℎ((𝑢𝑛

𝒯 , 0), (0, 𝑤ℱ )), (28)

for all 𝑤ℱ ∈ 𝒰𝑘
ℱ,0, and its algebraic form becomes 𝒮ℱℱU𝑛,𝑚+1

ℱ = −ℬℱℱU𝑛,𝑚
ℱ − 𝒜ℱ𝒯 U𝑛

𝒯 . The convergence
criterion (27) on the Lipschitz constant translates into the algebraic condition

𝜌(𝒮−1
ℱℱℬℱℱ ) < 1, (29)

where 𝜌(𝒬) denotes the spectral radius of the matrix 𝒬. This condition does not depend on the time index 𝑛
since, in the linear case, the stiffness and stabilization matrices do not depend on time.

4.2. Equal-order setting

The equal-order setting does not offer the same simplicity since the stabilization couples together the degrees
of freedom of all the faces of a cell. One can, however, draw on the mixed-order setting and split the stabiliza-
tion form into the mixed-order stabilization form, which leads to a block-diagonal matrix, and the remainder.
Specifically, let 𝜁𝑇 be the local form such that for all 𝑇 ∈ 𝒯ℎ, and all 𝑦𝑇 ∈ ̂︀𝒰 𝑙,𝑘

𝑇 , 𝑣𝜕𝑇 , 𝑤𝜕𝑇 ∈ 𝒰𝑘
𝜕𝑇 ,

𝜁𝑇 (𝑦𝑇 ; (0, 𝑣𝜕𝑇 ), (0, 𝑤𝜕𝑇 )) = 𝛾𝜇𝑇 (𝑦𝑇 )2
∑︁

𝐹∈ℱ𝑇

𝜂−1
𝑇𝐹

{︁(︀
(𝐼 −Π𝑘

𝑇 )𝑅𝑘+1
𝑇 (0, 𝑣𝜕𝑇 )|𝐹 , 𝑣𝐹

)︀
𝐹

+
(︀
𝑣𝐹 , (𝐼 −Π𝑘

𝑇 )𝑅𝑘+1
𝑇 (0, 𝑤𝜕𝑇 )|𝐹

)︀
𝐹

+
(︀
Π𝑘

𝐹 (𝐼 −Π𝑘
𝑇 )𝑅𝑘+1

𝑇 (0, 𝑣𝜕𝑇 )|𝐹 ,Π𝑘
𝐹 (𝐼 −Π𝑘

𝑇 )𝑅𝑘+1
𝑇 (0, 𝑤𝜕𝑇 )|𝐹

)︀
𝐹

}︁
,

(30)

and let 𝜎⋆
𝑇 be the local form defined by

𝜎⋆
𝑇 (𝑦𝑇 ; (0, 𝑣𝜕𝑇 ), (0, 𝑤𝜕𝑇 )) := 𝛾𝜇𝑇 (𝑦𝑇 )2

∑︁
𝐹∈ℱ𝑇

𝜂−1
𝑇𝐹 (𝑣𝐹 , 𝑤𝐹 )𝐹 . (31)

Then the equal-order stabilization form writes

𝜎𝑇 (𝑦𝑇 ; (0, 𝑣𝜕𝑇 ), (0, 𝑤𝜕𝑇 )) = 𝜎⋆
𝑇 (𝑦𝑇 ; (0, 𝑣𝜕𝑇 ), (0, 𝑤𝜕𝑇 )) + 𝜁𝑇 (𝑦𝑇 ; (0, 𝑣𝜕𝑇 ), (0, 𝑤𝜕𝑇 )). (32)

Let us introduce the global forms 𝜎⋆
ℎ(𝑦ℎ; (0, 𝑣ℱ ), (0, 𝑤ℱ )) :=

∑︀
𝑇∈𝒯ℎ

𝜎⋆
𝑇 (𝑦𝑇 ; (0, 𝑣𝜕𝑇 ), (0, 𝑤𝜕𝑇 )) and

𝜁ℎ(𝑦ℎ; (0, 𝑣ℱ ), (0, 𝑤ℱ )) :=
∑︀

𝑇∈𝒯ℎ
𝜁𝑇 (𝑦𝑇 ; (0, 𝑣𝜕𝑇 ), (0, 𝑤𝜕𝑇 )), so that 𝜎ℎ = 𝜎⋆

ℎ + 𝜁ℎ. This leads to the following
iterative procedure, with the same initial condition as for the mixed-order setting: For all 𝑚 > 0, find 𝑢𝑛,𝑚+1

ℱ ∈
𝒰𝑘
ℱ,0 such that

𝜎⋆
ℎ(𝑢̂𝑛−1

ℎ ; (0, 𝑢𝑛,𝑚+1
ℱ ), (0, 𝑤ℱ )) = −𝑏ℎ((𝑢𝑛

𝒯 , 𝑢
𝑛,𝑚
ℱ ); (𝑢𝑛

𝒯 , 𝑢
𝑛,𝑚
ℱ ), (0, 𝑤ℱ ))

−𝜁ℎ(𝑢̂𝑛−1
ℎ ; (0, 𝑢𝑛,𝑚

ℱ ), (0, 𝑤ℱ ))− 𝜎ℎ(𝑢̂𝑛−1
ℎ ; (𝑢𝑛

𝒯 , 0), (0, 𝑤ℱ )),
(33)

for all 𝑤ℱ ∈ 𝒰𝑘
ℱ,0. At the algebraic level, we define two matrices 𝒮⋆,𝑛−1

ℱℱ and 𝒵𝑛−1
ℱℱ such that 𝒮𝑛−1

ℱℱ = 𝒮⋆,𝑛−1
ℱℱ +

𝒵𝑛−1
ℱℱ , 𝒵𝑛−1

ℱℱ corresponds to the bilinear form 𝜁ℎ(𝑢̂𝑛−1
ℎ ; ·, ·) and 𝒮⋆,𝑛−1

ℱℱ to 𝜎⋆
ℎ(𝑢̂𝑛−1

ℎ ; ·, ·). Then the splitting
procedure translates into the following iterative algorithm: For all 𝑚 > 0, find U𝑛,𝑚+1

ℱ ∈ R𝑁ℱ such that

𝒮⋆,𝑛−1
ℱℱ U𝑛,𝑚+1

ℱ = −Bℱ (U𝑛
𝒯 ,U

𝑛,𝑚
ℱ )−𝒵𝑛−1

ℱℱ U𝑛,𝑚
ℱ − 𝒮𝑛−1

ℱ𝒯 U𝑛
𝒯 . (34)

As for the mixed-order setting, the convergence condition is that 𝛿 < 1, where 𝛿 is the Lipschitz constant of the
vector-valued function (𝒮⋆,𝑛−1

ℱℱ )−1(𝒵𝑛−1
ℱℱ (·) + Bℱ (U𝑛

𝒯 , ·)), i.e.,

‖(𝒮⋆,𝑛−1
ℱℱ )−1(𝒵𝑛−1

ℱℱ (𝑋 − 𝑌 ) + Bℱ (U𝑛
𝒯 , 𝑋)− Bℱ (U𝑛

𝒯 , 𝑌 ))‖ 6 𝛿‖𝑋 − 𝑌 ‖, ∀𝑋,𝑌 ∈ R𝑁ℱ . (35)

Remark 4.2 (Linear case). In this case, the matrices 𝒮⋆
ℱℱ and 𝒵ℱℱ are independent of the time index 𝑛, and

the stability condition (35) reads
𝜌((𝒮⋆

ℱℱ )−1(ℬℱℱ + 𝒵ℱℱ )) < 1. (36)



TIME-EXPLICIT HYBRID HIGH-ORDER METHOD FOR THE NONLINEAR ACOUSTIC WAVE EQUATION 2985

4.3. Sharper convergence analysis in the linear case

In this section, we show that, in the linear case, the convergence criteria (29) and (36) can be achieved by
choosing the coefficient 𝛾 scaling the stabilization large enough. Moreover, we derive explicit lower bounds on
the coefficient 𝛾 that are uniform in the mesh size.

Invoking a discrete trace inequality (see, e.g., [27], Lem. 12.8 on simplicial meshes and [22], Lem. 1.46 on
more general meshes), we infer that there exists a trace constant 𝐶tr independent of ℎ and which only depends
on the polynomial order 𝑘 and the mesh regularity parameter 𝜌 such that

max
𝑇∈𝒯ℎ

max
𝐹∈ℱ𝑇

max
𝑣∈P𝑘

𝑑(𝑇 )

|𝑇 |1/2‖𝑣‖𝐹

|𝐹 |1/2‖𝑣‖𝑇
6 𝐶tr. (37)

Moreover, we introduce a nondimensional geometric constant 𝜌♯ such that

max
𝑇∈𝒯ℎ

(︃ ∑︁
𝐹∈ℱ𝑇

𝜂𝑇𝐹 |𝐹 |
|𝑇 |

)︃ 1
2

6 𝜌♯, (38)

recalling that 𝜂𝑇𝐹 is the length scale used in the stabilization. The value of 𝜌♯ can be chosen to be independent
of ℎ owing to the regularity of the mesh sequence.

Lemma 4.3 (Convergence in the mixed-order setting). In the linear case, a sufficient condition ensuring the
convergence of the iterative algorithm (28) in the mixed-order setting is

𝛾 > (𝐶tr𝜌♯)2. (39)

Proof. The main idea of the proof is the following equivalence regarding the convergence condition (29):

𝜌(𝒮−1
ℱℱℬℱℱ ) < 1 ⇐⇒ 𝜎ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )) > 𝑏ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )), ∀𝑤ℱ ∈ 𝒰𝑘

ℱ,0. (40)

Let 𝑤ℱ ∈ 𝒰𝑘
ℱ,0 and let 𝑇 ∈ 𝒯ℎ. Recalling that 𝜇𝑇 denotes the constant value taken by 𝜇 in the cell 𝑇 ∈ 𝒯ℎ, we

have

𝑏𝑇 ((0, 𝑤𝜕𝑇 ), (0, 𝑤𝜕𝑇 )) = 𝜇𝑇

⃦⃦
𝐺𝑘

𝑇 (0, 𝑤𝜕𝑇 )
⃦⃦2

𝑇
= 𝜇𝑇

∑︁
𝐹∈ℱ𝑇

(︀
𝐺𝑘

𝑇 (0, 𝑤𝜕𝑇 ) · 𝑛𝑇𝐹 , 𝑤𝐹

)︀
𝐹

6
∑︁

𝐹∈ℱ𝑇

𝜇
1
2
𝑇 𝜂

1
2
𝑇𝐹

⃦⃦
𝐺𝑘

𝑇 (0, 𝑤𝜕𝑇 ) · 𝑛𝑇𝐹

⃦⃦
𝐹
𝜇

1
2
𝑇 𝜂

− 1
2

𝑇𝐹 ‖𝑤𝐹 ‖𝐹

6

(︃ ∑︁
𝐹∈ℱ𝑇

𝜇𝑇 𝜂𝑇𝐹

⃦⃦
𝐺𝑘

𝑇 (0, 𝑤𝜕𝑇 ) · 𝑛𝑇𝐹

⃦⃦2

𝐹

)︃ 1
2
(︃ ∑︁

𝐹∈ℱ𝑇

𝜇𝑇 𝜂
−1
𝑇𝐹 ‖𝑤𝐹 ‖2𝐹

)︃ 1
2

, (41)

where we used the definition of the gradient reconstruction operator and the Cauchy–Schwarz inequality. Since
𝐺𝑘

𝑇 (0, 𝑤𝜕𝑇 ) · 𝑛𝑇𝐹 ∈ P𝑘
𝑑(𝑇 ) because 𝑛𝑇𝐹 is a constant vector for all 𝐹 ∈ ℱ𝑇 , we can use the discrete inverse

trace inequality (37) to infer that

𝜂
1
2
𝑇𝐹

⃦⃦
𝐺𝑘

𝑇 (0, 𝑤𝜕𝑇 ) · 𝑛𝑇𝐹

⃦⃦
𝐹
6 𝐶tr‖𝐺𝑘

𝑇 (0, 𝑤𝜕𝑇 )‖𝑇

(︁𝜂𝑇𝐹 |𝐹 |
|𝑇 |

)︁ 1
2
, ∀𝐹 ∈ ℱ𝑇 .

Recognizing the definition of the mixed-order stabilization form without 𝛾 in the rightmost sum of (41), we
obtain

𝑏𝑇 ((0, 𝑤𝜕𝑇 ), (0, 𝑤𝜕𝑇 )) 6 𝐶tr𝜇
1
2
𝑇

⃦⃦⃦
𝐺𝑘

𝑇 (0, 𝑤𝜕𝑇 )
⃦⃦⃦

𝑇

(︃ ∑︁
𝐹∈ℱ𝑇

𝜂𝑇𝐹 |𝐹 |
|𝑇 |

)︃ 1
2 (︂ 1

𝛾
𝜎𝑇 ((0, 𝑤𝜕𝑇 ), (0, 𝑤𝜕𝑇 ))

)︂ 1
2

.
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Using the definition of 𝜌♯ and that 𝑏𝑇 ((0, 𝑤𝜕𝑇 ), (0, 𝑤𝜕𝑇 )) = 𝜇𝑇

⃦⃦
𝐺𝑘

𝑇 (0, 𝑤𝜕𝑇 )
⃦⃦2

𝑇
gives

𝑏𝑇 ((0, 𝑤𝜕𝑇 ), (0, 𝑤𝜕𝑇 )) 6
𝐶2

tr𝜌
2
♯

𝛾
𝜎𝑇 ((0, 𝑤𝜕𝑇 ), (0, 𝑤𝜕𝑇 )).

Summing over all the mesh cells, we obtain

𝑏ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )) 6
𝐶2

tr𝜌
2
♯

𝛾
𝜎ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )).

Thus, the splitting converges if 𝐶2
tr𝜌

2
♯

𝛾 < 1, which proves the claim. �

The equal-order setting does not provide the same simplicity and requires a hypothesis on the spectrum of
the matrix (𝒮⋆

ℱℱ )−1𝒮ℱℱ . Let us define

𝛼 := 𝜌((𝒮⋆
ℱℱ )−1𝒵ℱℱ ) = 𝜌((𝒮⋆

ℱℱ )−1𝒮ℱℱ )− 1. (42)

Notice that the value of 𝛼 does not depend on 𝛾 (since all the involved matrices are proportional to 𝛾) and that
the matrices considered in (42) are symmetric.

Lemma 4.4 (Convergence in the equal-order setting). In the linear case and under the assumption 𝛼 < 1, a
sufficient condition for the convergence of the iterative algorithm (33) in the equal-order setting is

𝛾 >
(𝐶tr𝜌♯)2

1− 𝛼
. (43)

Proof. The following equivalence holds regarding the convergence condition (36):

𝜌((𝒮⋆
ℱℱ )−1(ℬℱℱ + 𝒵ℱℱ )) < 1

⇐⇒ 𝜎⋆
ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )) > 𝑏ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )) + 𝜁ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )), ∀𝑤ℱ ∈ 𝒰𝑘

ℱ,0.
(44)

Since 𝜁ℎ and 𝜎⋆
ℎ are symmetric and 𝜎⋆

ℎ is nonnegative, the definition of 𝛼 means that

𝜁ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )) 6 𝛼𝜎⋆
ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )), ∀𝑤ℱ ∈ 𝒰𝑘

ℱ,0. (45)

Considering this, a sufficient condition to obtain the bound announced in (44) is

(1− 𝛼)𝜎⋆
ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )) > 𝑏ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )), ∀𝑤ℱ ∈ 𝒰𝑘

ℱ,0. (46)

Indeed, if (46) holds, we infer that

𝑏ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )) < 𝜎⋆
ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ ))−𝛼𝜎⋆

ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )) 6 𝜎⋆
ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ ))− 𝜁ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )).

Lemma 4.3 established that, if 𝛾 > (𝐶tr𝜌♯)2, then,

𝜎⋆
ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )) > 𝑏ℎ((0, 𝑤ℱ ), (0, 𝑤ℱ )), ∀𝑤ℱ ∈ 𝒰𝑘

ℱ,0. (47)

Therefore, taking 𝛾 > (𝐶tr𝜌♯)
2

1−𝛼 ensures the condition (46). This concludes the proof. �

Remark 4.5 (Assumption 𝛼 < 1). This assumption is verified numerically in Section 4.4, see in particular
Table 2. Although a proof of this assumption is not available, our numerical experiments indicate that it is
reasonable to expect that it holds for polynomial degrees from 0 to 4 and relatively simple mesh shapes.

Remark 4.6 (Local vs. global spectral radius). We notice that the minimal value of 𝛾 given in Lem-
mas 4.3 and 4.4 is derived by reasoning locally on a single mesh cell 𝑇 ∈ 𝒯ℎ. Slightly sharper values can
be derived by reasoning globally on the mesh and taking into account the homogeneous Dirichlet boundary
conditions. This point is further quantified in the next section.
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Figure 1. Spectral radius as a function of the mesh size in right-triangular cells with homo-
geneous Dirichlet conditions in 2D, compared to the reference value on a single cell without
boundary conditions (horizontal lines).

4.4. Numerical study of the stability parameter in the linear case

In this section, we evaluate numerically the influence of the stability parameter 𝛾 on the splitting pro-
cedure for various polynomial orders. Both equal-order and mixed-order settings are tested, with poly-
nomial orders 𝑘 ∈ {0, 1, 2, 3, 4}, as well as various mesh types: Cartesian in two and three dimensions,
unstructured quadrangles, structured and unstructured triangles and unstructured tetrahedra. The polyno-
mial order for the HHO method is indicated via the pair of integers (𝑙, 𝑘) with 𝑙 for the cell unknowns
and 𝑘 for the face unknowns. We first verify that the minimum value of the parameter 𝛾 ensuring the con-
vergence of the splitting procedure is bounded, for all the polynomial orders, uniformly in the mesh size.
To this purpose, we first consider a series of refined right-triangular meshes of Ω := (0, 1)2 and compute
the value of 𝛾 via the spectral radius of 𝒮−1

ℱℱℬℱℱ in the mixed-order setting and the spectral radius of
𝒮−1
ℱℱ (ℬℱℱ + 𝒵ℱℱ ) in the equal-order setting, with homogeneous Dirichlet boundary conditions. We compare

the resulting values to the value 𝛾⋆ obtained in a single cell without boundary conditions. Figure 1 illus-
trates, as expected, that 𝛾⋆ gives a reliable upper bound on 𝛾. This upper bound turns out to be quite
sharp even on moderately refined meshes. Therefore, 𝛾⋆ is a very good minimal value for 𝛾 to be used
in practice.

Table 1 reports the value of 𝛾⋆ for a square cell, a right-isoceles triangular cell as well as estimates for general
quadrangular and triangular cells belonging to shape-regular sequences of unstructured meshes. The triangular
meshes are generated using gmsh, and the quadrangular meshes are created from the triangular meshes by
merging pairs of adjacent triangles. For these two meshes, the reported value of 𝛾⋆ is the largest observed value,
rounded to the above integer on all the mesh cells and for all the meshes in the sequence. One notices that,
in all cases, the value of 𝛾⋆ increases with the polynomial order. Moreover, for a given polynomial order, the
smallest value of 𝛾⋆ is obtained on square cells, and the largest value on unstructured triangular meshes.

As a second verification, we check the condition 𝛼 < 1 in the equal-order setting on all the previous cases.
The value of 𝛼 appears not to depend on the mesh size when homogeneous Dirichlet boundary conditions are
enforced. As before, when unstructured meshes are used, the largest value observed on the mesh sequence is
reported. As seen in Table 2, the value of 𝛼 is in all cases smaller than 1, thereby confirming the assumption
made in Lemma 4.4. The lowest-order setting even yields 𝛼 close to zero. The value of 𝛼 increases with the
polynomial order before it stabilizes for higher orders. For unstructured mesh sequences, the finer meshes are
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Table 1. 𝛾⋆ computed via the spectral radius of 𝒮−1
ℱℱℬℱℱ or 𝒮−1

ℱℱ (ℬℱℱ + 𝒵ℱℱ ) on a single
cell (first two lines) and on a shape-regular mesh sequence (last two lines), 𝑘 ∈ {0, 1, 2, 3, 4},
equal- and mixed-order settings.

Order (cell, face) (0,0) (1,1) (2,2) (3,3) (4,4) (1,0) (2,1) (3,2) (4,3) (5,4)

Squares 1 5 11 19 29 2 6 12 20 30
Right triangles 5 13.48 25.67 42.10 62.10 6 14.33 26.37 42.78 62.69
Unstructured quadrangles 3 9 19 32 48 4 9 19 32 48
Unstructured triangles 6 15 28 45 65 7 15 28 45 65

Table 2. 𝛼, the largest eigenvalue of 𝒮−1
ℱℱ𝒵ℱℱ , 𝑘 ∈ {0, 1, 2, 3, 4}, equal- and mixed-order settings.

Order (cell, face) (0,0) (1,1) (2,2) (3,3) (4,4)

Squares ≈0 ≈0 0.19 0.26 0.23
Right triangles ≈0 0.28 0.38 0.36 0.39
Unstructured quadrangles 0.13 0.21 0.44 0.52 0.61
Unstructured triangles ≈0 0.17 0.25 0.24 0.32

Table 3. ∆𝑡opt(𝛾⋆)/∆𝑡opt(1), showing the tightening of the stability condition induced by 𝛾⋆

on 2D meshes, ℎ = 0.1, 𝑘 ∈ {0, 1, 2, 3, 4}, equal- and mixed-order settings.

Order (cell, face) (0,0) (1,1) (2,2) (3,3) (4,4) (1,0) (2,1) (3,2) (4,3) (5,4)

Squares 1.00 0.75 0.63 0.68 0.60 0.66 0.54 0.52 0.54 0.52
Right triangles 0.37 0.58 0.65 0.54 0.70 0.40 0.36 0.41 0.53 0.63
Unstructured quadrangles 0.60 0.43 0.32 0.37 0.43 0.45 0.41 0.39 0.47 0.51
Unstructured triangles 0.38 0.30 0.42 0.47 0.56 0.25 0.32 0.39 0.44 0.51

more uniform leading to a smaller value of 𝛼. Therefore, the values reported in Table 2 are pessimistic on finer
meshes.

A classical result on the leapfrog scheme (24) gives a stability condition on the time step depending on the
spectral radius of the stiffness matrix (see, e.g., [32]). Here, the stiffness matrix to be considered is

‘𝒟(𝛾) := ℳ−1(𝒜𝒯 𝒯 (𝛾)−𝒜𝒯 ℱ (𝛾)𝒜ℱℱ (𝛾)−1𝒜ℱ𝒯 (𝛾)), (48)

where 𝒜(𝛾) is the stiffness matrix defined in (23) with the dependence on 𝛾 made explicit. The stability condition
on ∆𝑡 then reads

∆𝑡(𝛾) 6 ∆𝑡opt(𝛾) :=
2√︀

𝜌(𝒟(𝛾))
· (49)

This allows us to compare stability conditions for different values of 𝛾. In Table 3, we compare values for 𝛾 = 1,
i.e. without splitting, to those for 𝛾 = 𝛾⋆ from Table 1. The results show that using the splitting procedure
leads to a reduction of the time step by at most a factor of two on squares and by at most three on right-
isoceles triangles. Moreover, increasing the polynomial degree generally alleviates the tightening of the stability
condition except on triangular meshes.

The same studies can be performed on 3D meshes. Only Cartesian hexahedral and unstructured tetrahedral
meshes with polynomial orders up to 𝑘 6 2 are presented. Table 4 summarizes the results. Comparing square and
hexahedral meshes, going to 3D does not deteriorate too much the stability condition. On tetrahedral meshes,
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Table 4. Value of 𝛾⋆ and tightening of the stability condition induced by 𝛾⋆ on 3D meshes
(Cartesian hexahedra and unstructured tetrahedra), ℎ = 0.55, 𝑘 ∈ {0, 1, 2}, equal- and mixed-
order settings.

Order (cell, face) (0,0) (1,1) (2,2) (1,0) (2,1) (3,2)

𝛾⋆ hexahedra 1.83 8.5 17 2.83 9.5 18
Δ𝑡opt(𝛾⋆)/Δ𝑡opt(1) hexahedra 0.57 0.58 0.58 0.5 0.42 0.48
𝛾⋆ tetrahedra 33 60 90 34 60 90.5
Δ𝑡opt(𝛾⋆)/Δ𝑡opt(1) tetrahedra 0.19 0.17 0.51 0.16 0.26 0.57

however, 𝛾⋆ grows faster with the polynomial degree, and the splitting procedure impacts more strongly the
stability condition, by at most a factor of five.

5. Numerical results

In this section, we present numerical results on both linear and nonlinear wave propagation problems. We
start with an analytical linear test case, where we analyze the impact of the number of splitting iterations and
the value of the stabilization parameter 𝛾 on the error and on the execution time. We then discuss two nonlinear
test cases, in order to compare the splitting procedure with the implicit version in terms of execution time. We
also compare the HHO method with first- and second-order finite elements for the space semi-discretization.

All the computations are performed with MANTA, a C++ library developed at CEA Saclay. It relies on PETSc
for the algebraic solvers, and the computations are spatially and equally distributed on MPI processes. The
computations are run on the TGCC (Très Grand Centre de Calcul) computers, on Intel architecture cores,
Skylake@2.7GHz (AVX512) with 3.75 Gb of RAM. All the computations can use the memory of the entire
node, composed of 48 cores.

5.1. Linear test cases

We consider a manufactured solution in Ω := (0, 1)2 with a nonpolynomial behavior in space and a quadratic
time behavior. Specifically, we set 𝜇 := 1 in (1) and

𝑢(𝑥, 𝑦, 𝑡) := 𝑡2 sin(𝜋𝑥) sin(𝜋𝑦), (50)

leading to homogeneous Dirichlet conditions and zero initial conditions. The source term is 𝑓(𝑥, 𝑦, 𝑡) := 2(𝜋2𝑡2 +
1) sin(𝜋𝑥) sin(𝜋𝑦). Here, there is no time discretization error, since the time integration scheme is of order 2.

5.1.1. Convergence rates

Figure 2 illustrates the convergence of the 𝐿2-error at the final time 𝑡 = 1.0 with respect to the number of
iterations in the splitting procedure on a series of spatially refined square meshes, focusing on the equal-order
setting. (The results for the mixed-order setting show the same behavior and are not displayed for brevity.) The
time step is computed so that the ratio ℎ

Δ𝑡 remains constant and smaller than the stability condition (49). The
reference curve is the error without splitting. The value of 𝛾 is determined from Table 1 by setting 𝛾 := 1.5𝛾⋆.
For a given number of iterations in the splitting procedure, the error ends up stagnating below a certain value of
ℎ, which corresponds to the splitting error being larger than the discretization error. The stagnation value and
the mesh size for which stagnation starts both decrease as the number of iterations increases. When the splitting
error is sufficiently small, the space discretization error prevails. Moreover, the higher the polynomial order, the
more iterations needed to converge. Figure 2 also shows the convergence order of the 𝐿2-error depending on the
mesh size ℎ, which is, as expected, ℎ𝑘+2.
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Figure 2. Linear wave problem - Convergence of the 𝐿2-error at 𝑡 = 1.0 as a function of the
mesh size for varying numbers of splitting iterations 𝑚, 𝑘 ∈ {0, 1, 2, 3}, equal-order setting. The
reference corresponds to the semi-implicit scheme (𝑚→∞). (a) (0, 0), 𝛾 = 1.5. (b) (1, 1), 𝛾 = 7.
(c) (2, 2), 𝛾 = 20. (d) (3, 3), 𝛾 = 25.

5.1.2. Impact of the stabilization parameter 𝛾

We now focus on the dependence of the error and of the execution time on the value of 𝛾. Since there is no
error in time, the error is the sum of two errors, coming from the space discretization on the one hand and the
splitting procedure on the other hand. The splitting error has two sources: the truncation error of the iterative
procedure and the error caused by the variation of 𝛾. The previous test case illustrated the convergence of the
truncation error. The impact of the value of 𝛾 on the error is actually quite moderate (see Appendix A for
further insight). Regarding the execution time, we expect that the critical time step decreases as 𝛾 increases,
thus impacting the computational cost. Further insight into this impact is again provided in Appendix A.

Figure 3 shows the discrete energy error at 𝑡 = 0.1 as a function of the execution time for the equal- and mixed-
order settings, with 𝑘 ∈ {0, 1, 2}. Order 3 is not shown for brevity. The discrete energy error, computed using the
projection of the exact solution onto the mesh cells and faces, is the Hilbertian sum of the 𝐿2-error on the cell
velocities and the hybrid 𝐻1-error evaluated using the gradient reconstruction. Computations are performed on
a sequence of unstructured triangular meshes, obtained by repeated refinements of a coarse initial mesh. This
ensures that all the meshes have the same regularity. Computations are run on 16 cores, and the meshes are
equally distributed on all the processors. Each marker on the curves of Figure 3 corresponds to the error and
execution time on a mesh from the sequence. The scaling parameter 𝛾 takes the values {1.5𝛾⋆, 3𝛾⋆, 5𝛾⋆, 10𝛾⋆}
and, when the computational cost is reasonable, 20𝛾⋆. For each value of 𝛾, the critical time step ∆𝑡opt(𝛾) can be
computed via equation (49), and the actual time step is then set to ∆𝑡 := 0.8∆𝑡opt(𝛾). Unlike the experiments
in Figure 2, the number of iterations for the splitting procedure is not fixed here. We rather stop the splitting
procedure when the relative norm of the increment is smaller than 𝜖 := 10−11.

The first salient point is that, for a given mesh, the error does not depend on 𝛾. Indeed, all the corresponding
markers are almost horizontally aligned. This means that a reasonable increase in 𝛾 does not deteriorate the
quality of the solution. The second salient point concerns the execution time. Here, the behavior differs between
equal- and mixed-order settings. In the equal-order setting, the larger 𝛾, the more expensive the computation.
This could have two origins: a smaller critical time step for larger 𝛾, requiring more time steps to reach the
final time, or a higher number of splitting iterations. Figure 4 and Table 5 answer this question. The mean
number of splitting iterations for each time step is displayed in Figures 4a and 4b for polynomial orders (0,0)
and (1,1), respectively. As 𝛾 increases, more iterations are needed for the splitting procedure to converge.
Moreover, Table 5 reports the critical time step ∆𝑡opt(𝛾) for the mesh size ℎ = 0.1 and all polynomial orders.
We observe that the critical time step ∆𝑡opt(𝛾) decreases when 𝛾 increases. When both factors are combined,
this leads to a swift increase of the computational cost with 𝛾. On the contrary, in the mixed-order setting,
there seems to be an optimal value of 𝛾, for which the computational cost is the smallest. Indeed, the number
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Figure 3. Linear wave problem - Energy error at 𝑡 = 0.1 as a function of the execution time,
𝛾 ∈ {1.5𝛾⋆, 3𝛾⋆, 5𝛾⋆, 10𝛾⋆}, 𝑘 ∈ {0, 1, 2}, equal- and mixed-order settings. (a) (0, 0). (b) (1, 1).
(c) (2, 2). (d) (1, 0). (e) (2, 1). (f) (3, 2).

of iterations per time step decreases as 𝛾 increases (see Figs. 4c and 4d), but the critical time step decreases as
well. For the considered polynomial orders, this optimum is in the interval 𝛾 ∈ [3𝛾⋆, 5𝛾⋆]. Moreover, comparing
Figures 4e and 4f with Figures 4g and 4h highlights that, for a given polynomial order, the total number of
iterations in the mixed-order setting is smaller than that in the equal-order setting, by a factor of 10 or more.
At the same time, Table 5 shows that the critical time step is just slightly smaller in the mixed-order setting.
Combining these two factors makes the mixed-order computations faster than the equal-order ones, on a given
mesh and for a given polynomial order.

The above results allow us to determine the optimal value of 𝛾: 𝛾 = 𝛾⋆ in the equal-order setting and
𝛾 ∈ [3𝛾⋆, 5𝛾⋆] in the mixed-order setting. Using these values of 𝛾, we can now compare the error as a function
of the computational cost for all polynomial orders. Figure 5 shows the energy error for polynomial degrees
𝑘 ∈ {0, 1, 2, 3}. These results illustrate the fact that, for a given error or a given execution time, taking higher
orders on a coarse mesh is more efficient than lower orders on a fine mesh. Moreover, the mixed- and equal-order
settings essentially lead to similar curves, but with an offset. Indeed, on a given mesh, the mixed-order setting
is faster than the equal-order in order to reach the same error.

5.2. Nonlinear wave equation with p-structure

In this section, we study the splitting algorithm on a nonlinear wave equation where the diffusion operator
in space has a so-called p-structure:
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Figure 4. Linear wave problem - Mean number of splitting iterations per time step (top)
and total number of splitting iterations in log scale (bottom), as a function of the mesh size,
𝑘 ∈ {0, 1}, equal- and mixed-order settings. (a) (0, 0). (b) (1, 1). (c) (1, 0). (d) (2, 1). (e) (0, 0).
(f) (1, 1). (g) (1, 0). (h) (1, 1).

Table 5. Linear wave problem - Critical time step ∆𝑡opt(𝛾), ℎ = 0.1, 𝛾 ∈ {1.5𝛾⋆, 3𝛾⋆, 5𝛾⋆,
10𝛾⋆, 20𝛾⋆}, 𝑘 ∈ {0, 1, 2, 3}, equal- and mixed-order settings.

Order (0,0) (1,1) (2,2) (3,3) (1,0) (2,1) (3,2) (4,3)

1.5𝛾⋆ 4.61e-2 1.40e-2 3.75e-3 1.12e-3 4.25e-2 7.57e-3 1.75e-3 4.037e-4
3𝛾⋆ 2.30e-2 8.23e-3 2.33e-3 7.11e-4 2.75e-2 5.09e-3 1.23e-3 2.88e-4
5𝛾⋆ 1.39e-2 5.51e-3 1.67e-3 5.14e-4 2.06e-2 3.84e-3 9.46e-4 2.23e-4
10𝛾⋆ 7.07e-3 2.75e-3 1.09e-3 3.34e-4 1.42e-2 2.66e-3 6.58e-4 1.58e-4
20𝛾⋆ 3.59e-3 1.27e-3 5.56e-4 1.82e-4 9.89e-3 1.86e-3 4.61e-4 1.11e-4

𝜕2
𝑡 𝑢+∇ ·

(︀
(𝜇2

0 + |∇𝑢|2)
𝑝−2
2 ∇𝑢

)︀
= 𝑓, in Ω, ∀𝑡 ∈ 𝐽, (51)

with 𝜇0 ∈ R+ and 𝑝 ∈ (1,+∞). For the value 𝑝 = 2, (51) corresponds to the linear wave equation. The associated
Hamiltonian writes ℋ𝑝(𝑔) := 1

𝑝 (𝜇2
0 + |𝑔|2)

𝑝
2 for all 𝑔 ∈ R2, and the nonlinear wave equation (51) can be rewritten

as 𝜕2
𝑡 𝑢+∇ · (∇𝑔ℋ𝑝(∇𝑢)) = 𝑓 . The local nonlinear stiffness form 𝑏𝑇 now writes

𝑏𝑇 (𝑦𝑇 ; 𝑣𝑇 , 𝑤̂𝑇 ) :=
(︀
(𝜇2

0 + |𝐺𝑘
𝑇 (𝑦𝑇 )|2)

𝑝−2
2 𝐺𝑘

𝑇 (𝑣𝑇 ),𝐺𝑘
𝑇 (𝑤̂𝑇 )

)︀
𝑇
. (52)

We set Ω := (0, 1)2,Θ := 0.8, 𝑓 := 0 and we enforce homogeneous Dirichlet boundary conditions, null initial
condition for 𝑢, and the initial velocity 𝑣0(𝑥, 𝑦) := 5 sin(𝜋𝑥) sin(𝜋𝑦). In the linear case (𝑝 = 2), the exact
solution is 𝑢(𝑥, 𝑦, 𝑡) = 5√

2𝜋
sin(

√
2𝜋𝑡) sin(𝜋𝑥) sin(𝜋𝑦). When 𝑝 ̸= 2, the exact solution is not known and the
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Figure 5. Linear wave problem - Energy error with optimal 𝛾 as a function of the execution
time, with (𝑘, 𝛾) ∈ {(0, 9), (1, 22.5), (2, 42), (3, 67.5)} in the equal-order setting and (𝑘, 𝛾) ∈
{(0, 1), (1, 45), (2, 84), (3, 135)} in the mixed-order setting.

Figure 6. Nonlinear (p-structure) wave problem with 𝑝 ∈ {1.25, 1.5, 1.67, 2, 2.5, 3, 5} - Solution
at sensors placed at (0.167, 0.333), (0.025, 0.333) and (0.5, 0.5) on the time interval [0, 0.8].

error is computed using a reference solution (obtained with high polynomial orders (4, 3) and a fine mesh with
ℎ ≈ 0.0003). If 𝜇0 = 0, the diffusion operator essentially behaves as the p-Laplace operator. On the contrary,
if 𝜇0 is much larger than |∇𝑢|, the problem is nearly linear and the behavior does not differ too much from a
linear diffusion operator. In order to avoid such cases, the value of 𝜇0 is chosen so that it is not significantly
smaller than ‖∇𝑢‖𝐿∞(Ω×𝐽). Here, we take 𝜇2

0 := 0.5. Moreover, to scale the stabilization, we take the same
value 𝜇̄2

𝑇 := 5 in each cell and at each time step. Based on our simulations (see Fig. 6) which cover the range
𝑝 ∈ [1.25, 5], this appears to be a reasonable choice for scaling the stabilization.

In our numerical experiments, we consider an unstructured mesh sequence, obtained by repeatedly refining
an initial coarse mesh, thus preserving the same regularity in the entire mesh sequence. To compute the errors,
we consider ten sensors placed in the triangle

{︀
𝑥 ∈ [0, 0.5], 0 6 𝑦 6 𝑥

}︀
, and compute the value of the solution,

𝑢, the velocity, 𝜕𝑡𝑢, the acceleration, 𝜕2
𝑡 𝑢, and of both gradient components, 𝜕𝑥𝑢, 𝜕𝑦𝑢, over the simulation at

these ten sensors. The sensors are placed only in the above triangle by symmetry arguments. In Figure 6, the
solution at three sensors is shown for seven values of 𝑝. The values for which 𝑝 ̸= 2 can be regrouped into pairs
of conjugated values (𝑝, 𝑝′) such that 1

𝑝 + 1
𝑝′ = 1. Specifically, we choose 𝑝 ∈ {2.5, 3, 5} and the conjugate values

𝑝′ ∈ {1.67, 1.5, 1.25}. The larger |𝑝− 2|, the harder the simulation, and the more refined the mesh needs to be
in order to capture the nonlinear variations.
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Table 6. Nonlinear (p-structure) wave problem with 𝑝 = 3 - Minimal value 𝛾min for the
splitting procedure to converge, 𝑘 ∈ {0, 1, 2, 3}, equal- and mixed-order settings.

(0,0) (1,1) (2,2) (3,3) (1,0) (2,1) (3,2) (4,3)

𝑝 = 3 2 10 20 25 5 20 20 25

Figure 7. Nonlinear (p-structure) wave problem with 𝑝 = 3 - Energy error as a function of
execution time (top) and mean number of iterations per time step as a function of mesh size
(bottom), 𝛾 ∈ {𝛾min, 2𝛾min, 5𝛾min, 10𝛾min}, polynomial orders (0, 0) and (1, 0). (a) (0, 0). (b)
(1, 0). (c) (0, 0). (d) (1, 0).

We first make computations with various values of the stability parameter 𝛾 and 𝑝 = 3. The minimal value
𝛾⋆ leading to a converging splitting depends on the polynomial order and on the value of 𝑝, and cannot be
deduced from the linear study. Table 6 reports the smallest value of 𝛾 observed numerically, denoted by 𝛾min

in what follows. Since this value is an estimation, it is rounded to the smallest larger integer.
The objective of the splitting being a reduction of computational costs, we first compare execution times

between the splitting procedure and the semi-implicit scheme (based on a Newton solver). Computations are
run sequentially. The Newton linear system is solved with a direct solver since experiments with iterative
solvers yield similar execution times. The time step is chosen so that the time discretization error and the space
discretization error are equilibrated. For all values of 𝛾, this leads to an equilibrated time step that is smaller
than the critical time step. Thus, the execution time is not affected by the reduction of the critical time step
for larger 𝛾. On the one hand, Figure 7 reports the maximum of the discrete energy error, evaluated using
the reference solution as the maximum value over the ten sensor points and all the time steps. On the other
hand, Figure 7 also reports the mean number of splitting and Newton iterations per time step for each value
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Table 7. Nonlinear (p-structure) wave problem with 𝑝 = 3 - Gain in execution time of the split-
ting procedure over the semi-implicit scheme on the three finest meshes, 𝛾 = 𝛾min, polynomial
orders (0, 0) and (1, 0).

Mesh size ℎ 0.0063 0.0031 0.0016

(0,0) 2.34 6.19 6.80
(1,0) 3.44 5.19 5.74

of 𝛾 and each mesh. The results in Figure 7 deal with the lowest-order cases (0, 0) and (1, 0). The first salient
observation is that, as for the linear case, the behavior differs between the equal- and mixed-order settings.
In the equal-order setting, the number of iterations is higher when 𝛾 increases, whereas there is an optimal
value in the mixed-order setting, which is not 𝛾⋆. In the equal-order setting, the splitting procedure takes more
time than the semi-implicit scheme on the coarsest meshes, but is (much) faster on the finest meshes. The
gain in execution time (i.e. the ratio of the semi-implicit time over the splitting time) is reported in Table 7.
In the mixed-order setting, the splitting procedure is always (much) faster than the semi-implicit scheme, and
the gain in execution time increases as the mesh is refined. The number of iterations for the splitting and the
semi-implicit scheme decreases when the mesh is refined. This is due to the time step being also refined to
satisfy the requirement on error balancing. Hence, the static problem on the face unknowns becomes easier to
solve. On the four coarsest meshes, in the equal-order setting, the number of splitting iterations is very large
(more than 100 on the coarsest mesh). This explains the not so good performance of the splitting procedure on
the coarsest meshes (see Fig. 7a). In the mixed-order setting, the number of iterations is always quite low (less
than 10), which explains the better performances observed in Figure 7b. Since the number of iterations for all
the values of 𝛾 becomes small on the finest meshes, the value of 𝛾 does not impact the execution time in this
case.

The above experiments in the linear case and in the lowest-order nonlinear case show that the error does
not depend on 𝛾 as long as this parameter remains in the range [1, 150]. Thus, for higher polynomial degrees,
we only focus on the execution time. Figure 8 displays the average execution time of a single time step for
each method and each polynomial order on the same family of unstructured triangular meshes as above. Here,
we compare the sequential execution times for the splitting procedure with 𝛾 ∈ {𝛾min, 2𝛾min, 5𝛾min} and the
semi-implicit scheme with either a direct solver or a GMRES iterative solver with a Jacobi preconditioner. The
gain in execution time is reported in Table 8 only for 𝛾 = 𝛾min since the value of 𝛾 does not impact strongly the
execution time on the considered meshes. The gain is given on the four finest meshes, exception made for the
polynomial order 𝑘 = 3, for which the semi-implicit scheme on the finest mesh is too expensive with our current
implementation. As expected, the equal- and mixed-order settings behave differently on the coarse meshes. In
the equal-order setting, the splitting procedure takes more time on the coarse meshes, but this execution time
is reduced as the number of iterations diminishes, so that the splitting procedure becomes computationally
efficient for mesh sizes smaller than ℎ ≈ 0.006. In the mixed-order setting, the execution time of the splitting
procedure is always smaller or equivalent to the execution time of the semi-implicit scheme, but the gain (ratio
of execution times) also increases as the mesh is refined. The gain on the four finest meshes is larger than
2 and reaches 6 for polynomial orders (1,1) and (2,2) when a direct solver is employed in the semi-implicit
scheme.

We now compare the discrete energy error as a function of the execution time for various polynomial orders
using either the HHO method or conforming finite elements for space discretization. We consider 𝑘 ∈ {0, 1, 2}
for HHO in both mixed- and equal-order settings, and 𝑘 ∈ {1, 2} for finite elements. Based on the above results,
we only consider the splitting procedure for HHO simulations, and we choose the best value of 𝛾 in terms of
execution time, i.e. 𝛾 = 𝛾min in the equal-order setting and 𝛾 = 5𝛾min in the mixed-order setting. Figure 9
first highlights the same behavior as in the linear case when comparing the different HHO orders: higher orders
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Figure 8. Nonlinear (p-structure) wave problem with 𝑝 = 3 - Comparison of execution times
of a single time step with splitting procedure and semi-implicit scheme (direct or iterative linear
solvers), 𝛾 ∈ {𝛾min, 2𝛾min, 5𝛾min}, 𝑘 ∈ {1, 2, 3}, equal- and mixed-order settings. (a) (1, 1). (b)
(2, 2). (c) (3, 3). (d) (2, 1). (e) (3, 2). (f) (4, 3).

Table 8. Nonlinear (p-structure) wave problem with 𝑝 = 3 - Gain in execution time of the
splitting procedure over the semi-implicit scheme on the four finest meshes, 𝛾 = 𝛾min, 𝑘 ∈
{1, 2, 3}, equal- and mixed-order settings.

(1,1) (2,1) (2,2) (3,2) (3,3) (4,3)

Mesh size direct gmres direct gmres direct gmres direct gmres direct gmres direct gmres
0.00613 1.01 1.46 2.84 1.62 1.87 1.89 2.42 1.94 2.19 2.13 2.33 1.60

0.00306 3.41 3.01 2.73 1.49 2.04 1.94 3.21 2.11 2.02 2.13 2.90 1.71

0.00156 5.84 3.06 3.97 1.54 3.24 2.21 3.77 2.17 3.01 2.17 3.16 1.67

0.00078 5.15 2.85 4.13 2.07 6.43 2.23 4.25 2.63 NA NA NA NA

on coarse meshes are more computationally efficient than lower orders on finer meshes. Another salient point
is the comparison between mixed- and equal-order settings. Mixed-order settings turns out to be (much) more
efficient. For instance, for the same error, the splitting procedure with polynomial orders (3,2) is ten times faster
than the splitting procedure with polynomial orders (2,2). Furthermore, P1 finite elements are more efficient
than the lowest equal-order HHO method, broadly equivalent to the lowest mixed-order HHO method, and
less efficient than the higher-order HHO methods. The efficiency of P2 finite elements is between the first- and
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Figure 9. Nonlinear (p-structure) wave problem with 𝑝 = 3 - Discrete energy error as a
function of execution time, HHO with (𝑘, 𝛾) ∈ {(0, 2), (1, 10), (2, 20)} in the equal-order setting
and (𝑘, 𝛾) ∈ {(0, 25), (1, 100), (2, 100)} in the mixed-order setting, P1 and P2 finite elements.

second-order HHO settings and quite close to HHO with polynomial orders (2,1). Thus, for a given target error
or time budget, high-order HHO with splitting remains the most effective option.

The above experiments have so far focused on the case 𝑝 = 3 corresponding to mild nonlinearities. We
now investigate other values of 𝑝. The same computations as in Figure 8 are performed, but only for 𝑘 = 1.
Other polynomial orders yield similar results and are not shown for brevity. The considered values of 𝛾 are
{𝛾min, 2𝛾min, 5𝛾min}, unless they are larger than 150. This limit is set to avoid numerical errors induced by
larger values of 𝛾. The computational setting is otherwise unchanged. Results are reported in Figure 10. The
conclusions are similar to the mildly nonlinear case 𝑝 = 3 indicating that the variation in nonlinearity as
quantified by 𝑝 does not impact the performance of the splitting procedure in the equal-order setting. In the
mixed-order setting, 𝑝 < 2 seems to be more favorable to the splitting procedure, whereas with 𝑝 > 2, the gain
in execution time is less pronounced.

In conclusion, this p-structure test case highlights the benefits of the splitting procedure on fine meshes
compared to the semi-implicit scheme. The results also indicate that, when working on fine meshes, the choice
of 𝛾 is not sensitive. Indeed, as long as 𝛾 > 𝛾min and in a reasonable range, here [𝛾min, 150], the error and the
execution time are only marginally affected by the choice of 𝛾. Since 𝛾min can be computed on coarse meshes
and extrapolated on finer meshes, the value of 𝛾 is easy to set in practice.

5.3. Nonlinear 2D vibrating membrane

We now consider a model for a 2D vibrating membrane inspired from [14], where a one-dimensional string
is considered with two unknowns, the transversal and the longitudinal displacements. Here, we neglect the
longitudinal displacement, which leaves us only with the transversal displacement, 𝑢. This leads to the following
nonlinear wave equation (with zero source term):

𝜕2
𝑡 𝑢−∇ ·

(︀
𝜇(∇𝑢)∇𝑢

)︀
= 0, in Ω, ∀𝑡 ∈ 𝐽, (53)

with 𝜇 : R2 → R such that

𝜇(𝑔) = 1− 𝛼
1√︀

|𝑔|2 + 1
, ∀𝑔 ∈ R2, ∀𝛼 ∈ [0, 1). (54)

The nonlinear function 𝜇 is also considered in the literature in the context of mean-curvature flows. The
associated Hamiltonian writes ℋ𝛼(𝑔) := 1

2 |𝑔|
2 − 𝛼

[︁√︀
|𝑔|2 + 1− 1

]︁
for all 𝑔 ∈ R2, and equation (53) rewrites
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Figure 10. Nonlinear (p-structure) wave problem with 𝑝 ∈ {1.25, 1.5, 1.67, 2.5, 3, 5} - Compar-
ison of execution times for a single time step of the splitting procedure and of the semi-implicit
scheme (with either a direct or an iterative solver), polynomial orders (1, 1) and (2, 1). (a) (1, 1).
(b) (2, 1).

𝜕2
𝑡 𝑢 − ∇ · (∇𝑔ℋ𝛼(∇𝑢)) = 0. If 𝛼 = 0, (53) is equivalent to the linear acoustic wave equation. Moreover, if
𝛼 ̸= 0 and if the gradient ∇𝑢 becomes very large, the nonlinear part of 𝜇 becomes negligible with respect to the
linear part. Thus, the most nonlinear behavior is expected for small deformations and 𝛼 close to one. Typically,
𝛼 = 0.8 is considered to lead to a mildly nonlinear behavior, and 𝛼 = 0.99 to a strongly nonlinear behavior. We
consider Ω := (0, 1)2, and homogeneous Dirichlet boundary conditions on the displacement 𝑢 are enforced. We
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Figure 11. Vibrating membrane with 𝛼 ∈ {0, 0.8, 0.99} - Reference solution at sensors placed
at (0.167, 0.5), (0.333, 0.333) and (0.5, 0.5) over the time interval [0, 1].

Figure 12. Vibrating membrane with 𝛼 ∈ {0.8, 0.99} - Discrete energy error as a function
of the computation time, P1 finite elements compared to HHO with 𝑘 ∈ {0, 1, 2}, mixed- and
equal-order settings with splitting (only the best value of 𝛾 is displayed). (a) 𝛼 = 0.8. (b)
𝛼 = 0.99.

consider a zero initial condition for 𝑢 and an initial velocity

𝑣0(𝑥, 𝑦) := 𝑒−𝜋2𝑓2
𝑝𝑟(𝑥,𝑦)2 , with 𝑟(𝑥, 𝑦) := (0.5− 𝑥)2 + (0.5− 𝑦)2, 𝑓𝑝 := 3.33, (55)

which simulates an impact at the center of the domain. The solutions at three sensors located at the
points (0.167, 0.5), (0.333, 0.333) and (0.5, 0.5) are displayed in Figure 11 over the time interval [0, 1] for
𝛼 ∈ {0, 0.8, 0.99}. As 𝛼 increases, the wave propagation is slower and the wave front is sharper.

Figure 12 reports the discrete energy error on the displacement as a function of the execution time for P1
and P2 finite elements as well as the HHO method with polynomial orders 𝑘 ∈ {0, 1, 2} in the mixed- and
equal-order settings. This error is computed as above, but using now 120 sensors positioned in the triangle
{𝑥 ∈ [0, 0.5], 𝑦 ∈ [𝑥, 0.5]} using the points with barycentric coordinates ( 𝑖1

6 ,
𝑖2
6 ,

𝑖3
6 ) with 𝑖1 + 𝑖2 + 𝑖3 = 6. More

points are considered in this test case in order to precisely capture the wave propagation. The same unstructured
mesh sequence as for the p-structure test case is considered. The optimal value of 𝛾 is used for each polynomial
order, namely 𝛾 = 𝛾min in the equal-order setting and 𝛾 = 5𝛾min in the mixed-order setting (𝛾min being as before
the smallest possible integer value of 𝛾 observed experimentally that leads to a converging splitting procedure).
Table 9 reports the value of 𝛾min and the optimal value of 𝛾 used in Figure 12. In the mildly nonlinear case,
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Table 9. Vibrating membrane with 𝛼 ∈ {0.8, 0.99} - 𝛾min defined as the smallest integer
allowing the splitting procedure to converge, and optimal value (in execution time) of 𝛾.

(0, 0) (1, 1) (2, 2) (1, 0) (2, 1) (3,2)

𝛼 = 0.8, (𝛾min, optimal value of 𝛾) (2,2) (4,4) (6,6) (3,20) (5,25) (8,40)
𝛼 = 0.99, (𝛾min, optimal value of 𝛾) (2,2) (4,4) (6,6) (3,20) (5,25) (8,40)

Figure 13. Vibrating membrane with 𝛼 ∈ {0.8, 0.99} - Mean number of iterations per time
step for polynomial orders 𝑘 ∈ {0, 1, 2}, mixed- and equal-order settings, with splitting (only
the best value of 𝛾 is displayed). (a) 𝛼 = 0.8. (b) 𝛼 = 0.99.

𝛼 = 0.8, the curve associated with P1 finite elements is between those associated with the lowest- and the first-
order HHO methods. Moreover, the first- and second-order HHO methods and P2 finite elements are almost
equivalent in terms of error as a function of the execution time. In the strongly nonlinear case, 𝛼 = 0.99, P1
finite elements are faster than the HHO method with polynomial order (0,0) and deliver a similar performance
to that of the other equal-order HHO methods. Moreover, mixed-order settings are (much) faster than equal-
order settings and than P2 finite elements. The worse efficiency of the splitting in the equal-order setting can
be explained by the results of Figure 13, which displays the mean number of splitting iterations per time step
for each polynomial order and 𝛼 ∈ {0.8, 0.99} as a function of the mesh size ℎ. In the equal-order setting, the
number of iterations for 𝛼 = 0.99 is much larger than that for 𝛼 = 0.8, by up to a factor of 10. Instead, in the
mixed-order setting, the number of iterations at each time step remains smaller than 10 for both values of 𝛼.
To sum up, this experiment shows that the HHO method with splitting and high polynomial orders is more
efficient than P1 finite elements and better or equivalent to P2 finite elements in the mildly nonlinear case. In
the strongly nonlinear case, the HHO method with polynomial orders (2,1) and (3,2) is much faster than P2
finite elements. Hence, in this experiment as well, the mixed- and high-order HHO method is the most efficient
choice.

Remark 5.1 (Aitken acceleration). Considering the large number of iterations needed for the splitting pro-
cedure to converge in the equal-order setting, it can be interesting to use acceleration techniques to reduce
the computational cost. We can consider for instance the ∆2 Aitken acceleration introduced in [4], see,
e.g., [38] for the implementation with vector-valued unknowns. Recalling that 𝑢𝑛,𝑚

ℱ denotes the solution
at iteration 𝑚 of the splitting procedure and at time iteration 𝑛, we define ∆𝑢𝑛,𝑚

ℱ := 𝑢𝑛,𝑚+1
ℱ − 𝑢𝑛,𝑚

ℱ ,
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Figure 14. Vibrating membrane with 𝛼 ∈ {0.8, 0.99} - Mean number of iterations per time
step and execution time, polynomial orders (1,1), (2,1), (2,2), splitting procedure with and
without Aitken’s acceleration, optimal value of 𝛾. (a) 𝛼 = 0.8. (b) 𝛼 = 0.99. (c) 𝛼 = 0.8. (d)
𝛼 = 0.99.

∆2𝑢𝑛,𝑚
ℱ := 𝑢𝑛,𝑚+1

ℱ − 2𝑢𝑛,𝑚
ℱ + 𝑢𝑛,𝑚−1

ℱ , and

𝑢̃𝑚
ℱ := 𝑢𝑛,𝑚

ℱ −
(∆𝑢𝑛,𝑚

ℱ )2

∆2𝑢𝑛,𝑚
ℱ

. (56)

The sequence of (𝑢̃𝑚
ℱ )𝑚>0 converges faster to the same limit 𝑢𝑛+1

ℱ as (𝑢𝑛,𝑚
ℱ )𝑚>0 as long as

lim
𝑚→∞

𝑢𝑛,𝑚+1
ℱ − 𝑢𝑛+1

ℱ
𝑢𝑛,𝑚
ℱ − 𝑢𝑛+1

ℱ
= 𝜆 ̸= 1. (57)

Considering the same membrane setting as above, Figures 14a and 14b show the mean number of iterations per
time step and Figures 14c and 14d show the execution time, both with and without Aitken’s acceleration. The
optimal value of 𝛾 is the one from Table 9. As expected, Aitken’s acceleration is more effective when the number
of splitting iterations is large, i.e. in the equal-order setting and the strongly nonlinear case (𝛼 = 0.99). Instead,
the gain is quite moderate in the mixed-order setting where the number of iterations is very small (less than
4). The equal-order setting with (1,1) benefits from Aitken’s acceleration only in the strongly nonlinear case for
the same reason. In this case, the splitting procedure with Aitken’s acceleration is 30% faster than the splitting
procedure without acceleration. In the equal-order setting with polynomial orders (2,2), Aitken’s acceleration
turns out to be very efficient since the number of iterations is large and does not decrease with mesh refinement.
In this case, the gain in execution time is a factor of 5 for the mildly nonlinear case (𝛼 = 0.8) and more than
10 in the strongly nonlinear case (𝛼 = 0.99) and on the finest mesh. In conclusion, Aitken’s acceleration is an
effective tool that helps improve the performance of the equal-order setting in the strongly nonlinear case.

5.4. General conclusions from the numerical tests

The numerical experiments illustrated the effectivity of the splitting procedure. There are four points deserv-
ing to be put forward.

(1) The behavior of the equal- and mixed-order is different. The mixed-order setting is more efficient than the
equal-order setting due to the reduced number of splitting iterations to achieve convergence (Fig. 9 for the
p-structure case and Figure 12 for the vibrating membrane).

(2) The tuning of the parameter 𝛾 does not bring any significant difficulty. Indeed, both linear and nonlinear
experiments show that, for a value of 𝛾 smaller than 100, the quality of the solution is not impacted. All
experiments show minimal values of 𝛾 (𝛾⋆ in the linear case where it can be computed and its approximation
𝛾min in the nonlinear case) smaller than 100. Moreover, the results of Figures 7, 8 and 10 show that, on fine
meshes, the value of 𝛾 does not impact the execution time. On coarse meshes, both linear and nonlinear
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experiments give the same optimal choice: 𝛾 = 𝛾min in the equal-order setting and 𝛾 ∈ [3𝛾min, 5𝛾min] in the
mixed-order setting.

(3) In order to increase the accuracy of the solution, it is more efficient to increase the polynomial order than
to refine the mesh (see Fig. 5 in the linear case and Figs. 9 and 12 in the nonlinear case).

(4) For nonlinear problems, the splitting procedure combined with a mixed-order setting is always faster than
the semi-implicit scheme. The gain in execution time depends on the nonlinearity and increases with mesh
refinement. In the equal-order setting, the splitting procedure becomes more efficient than the semi-implicit
scheme on refined meshes. Moreover, the HHO method with mixed-order setting, splitting procedure and
polynomial order 𝑘 > 1 is always more efficient than the P1 finite element method. In most cases, equal-
order computations are also faster. The splitting procedure with mixed-order and large 𝑘 is therefore the
most effective approach tested in the present work.

Appendix A. Scaling of the stabilization

This appendix is dedicated to provide some further insight into the impact of the scaling of the stabilization
parameter 𝛾 on the HHO method, and in particular to the case 𝛾 → ∞. We start with a study on the linear
diffusion equation, and measure the 𝐿2- and 𝐻1-errors for large values of 𝛾 on various meshes. Then, a study of
the eigenvalues of the splitting matrices is also performed as 𝛾 →∞. Finally, we analyze the stability condition
on the time step as a function of 𝛾 and its behavior as 𝛾 increases.

A.1. Static case

We consider the following problem: Find 𝑢 ∈ 𝐻1
0 (Ω) such that (𝜇∇𝑢,∇𝑤)Ω = (𝑓, 𝑤)Ω for all 𝑤 ∈ 𝐻1

0 (Ω).
The HHO discretization consists of finding 𝑢̂ℎ ∈ ̂︀𝒰 𝑙,𝑘

ℎ,0 such that

𝑏ℎ(𝑢̂ℎ, 𝑤̂ℎ) + 𝜎ℎ(𝑢̂ℎ, 𝑤̂ℎ) = (𝑓, 𝑤𝒯 )Ω , ∀𝑤̂ℎ ∈ ̂︀𝒰 𝑙,𝑘
ℎ,0. (A.1)

We consider an analytical test case with 𝑢(𝑥, 𝑦) := sin(𝜋𝑥) sin(𝜋𝑦) obtained using 𝜇 := 1 in the domain
Ω := (0, 1)2 and the source term 𝑓(𝑥, 𝑦) := 2𝜋2 sin(𝜋𝑥) sin(𝜋𝑦). We study the 𝐿2-error on the cells,
ℰ1 := (∆U𝑇

𝒞ℳ𝒞𝒞∆U𝒞)
1
2 , on the faces, ℰ2 := ℎ−

1
2 (∆U𝑇

ℱℳℱℱ∆Uℱ )
1
2 (evaluated using the face mass matrix),

as well as the (broken) 𝐻1-error, ℰ3 := (∆Û𝑇𝒦(𝛾)∆Û)
1
2 , computed using the complete stiffness matrix

(this error thus includes the stabilization and is therefore affected by the value of 𝛾). We test the values
𝛾 ∈ {1, 10, 100, 1000, 10000}.

Figure A.1 shows the three errors for the equal-order setting and 𝑘 ∈ {0, 1}. Other polynomial orders are
not displayed for brevity, since the results are similar. For the 𝐿2- and 𝐻1-errors, the convergence rates are, as
expected, (𝑘 + 2) and (𝑘 + 1), respectively. The main observation is that, for a fixed ℎ, the error converges to
some value as 𝛾 increases. In other words, the limit 𝛾 → ∞ does not yield a diverging solution, but a suitable
solution with optimal convergence rates. Interestingly, this limit solution is reached for a rather small value of
𝛾 since the error curves for 𝛾 > 10 almost overlap. Regarding the 𝐿2-error on the faces, the behavior differs
between 𝑘 = 0 and the higher orders. For the higher orders, the behavior is the same as for the other errors,
whereas for the lowest order, the error does not change when 𝛾 increases. This indicates that the value on the
faces is not affected by the scaling of the stabilization when 𝑘 = 0.

The behavior as 𝛾 → ∞ can be partially explained by a series expansion in 𝛾. Let us plug the Ansatz
𝑢̂ℎ =

∑︀∞
𝑛=0 𝑢̂

𝑛
ℎ𝛾
−𝑛 into (A.1) and consider test functions having only nonzero face components. This yields

𝛾𝜎ℎ(𝑢̂0
ℎ, (0, 𝑤ℱ )) + 𝑏ℎ(𝑢̂0

ℎ, (0, 𝑤ℱ )) + 𝜎ℎ(𝑢̂1
ℎ, (0, 𝑤ℱ )) + . . . = 0, ∀𝑤ℱ ∈ 𝒰𝑘

ℱ,0. (A.2)

The dominant term in 𝛾 gives 𝜎ℎ(𝑢̂0
ℎ, 𝑤ℱ ) = 0 for all 𝑤ℱ ∈ 𝒰𝑘

ℱ,0. In the mixed-order setting, this condition
reads ∑︁

𝑇∈𝒯ℎ

∑︁
𝐹∈ℱ𝑇

𝜂−1
𝑇𝐹 (Π𝑘

𝐹 (𝑢0
𝑇 )− 𝑢0

𝐹 , 𝑤𝐹 ) = 0, ∀𝑤ℱ ∈ 𝒰𝑘
ℱ,0. (A.3)
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Figure A.1. Errors ℰ1, ℰ2, ℰ3 on the scalar Laplacian as a function of the mesh size for 𝛾 ∈
{1, 10, 100, 1000, 10000}, equal-order setting with 𝑘 ∈ {0, 1}. (a) (0, 0). (b) (1, 1).

Letting 𝒯𝐹 collect the one or two cells adjacent to a face 𝐹 , this translates into the following direct expression
of the face unknowns:

𝑢0
𝐹 =

1
#𝒯𝐹

∑︁
𝑇∈𝒯𝐹

Π𝑘
𝐹 (𝑢0

𝑇 ). (A.4)

This means that, in the mixed-order setting, when 𝛾 →∞, the face unknowns on 𝐹 are equal to the projection
onto P𝑘

𝑑(𝐹 ) of the mean-value of the cell unknowns from the two adjacent cells if 𝐹 is an interface and of the
trace of the cell unknown if 𝐹 is a boundary face. The equal-order setting does not lead to an explicit expression
of the face unknowns in terms of the cell unknowns. Indeed, in this case, the condition 𝜎ℎ(𝑢̂ℎ, (0, 𝑤ℱ )) = 0 for all
𝑤ℱ ∈ 𝒰𝑘

ℱ,0 is not sufficient to determine the face unknowns in terms of the cell unknowns, because the spectrum
of 𝒮ℱℱ contains at least one zero eigenvalue as shown in Figure A.2. The smallest eigenvalue is nonzero owing
to round-off errors. Higher-order polynomials lead to the same behavior and are not displayed for brevity.

A.2. Spectral radius of the iteration matrix as 𝛾 → ∞

Let us now focus on the spectral radius of 𝒮−1
ℱℱℬℱℱ in the mixed-order setting and of (𝒮⋆

ℱℱ )−1(ℬℱℱ +𝒵ℱℱ )
in the equal-order setting. In Section 4.4, a study of the value of 𝛾⋆ as a function of the polynomial order and
the mesh regularity has been performed. Figure A.3 reports the spectral radius of the iteration matrix as 𝛾 →∞
on an unstructured triangular mesh with ℎ = 0.1. In the mixed-order setting, the spectral radius of 𝒮−1

ℱℱℬℱℱ
goes to zero, whereas the spectral radius of (𝒮⋆

ℱℱ )−1(ℬℱℱ + 𝒵ℱℱ ) converges to one in the equal-order setting.
This is the expected behavior.
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Figure A.2. Eigenvalues of 𝒮ℱℱ on different meshes for polynomial orders (0,0). (a) Right
triangles. (b) Unstructured triangles. (c) Unstructured tetrahedra. (d) Cartesian hexahedra.

Figure A.3. Spectral radius of the iteration matrix as a function of 𝛾, equal-order setting
(left) and mixed-order setting (right) on an unstructured triangular mesh with ℎ = 0.1. (a)
Equal-order. (b) Mixed-order.

A.3. Stability condition as 𝛾 → ∞

Equation (49) gives a formula to obtain the critical time step ∆𝑡opt(𝛾) as a function of 𝛾. Figure A.4 reports
the rate ∆𝑡opt(𝛾)/ℎ on 2D unstructured quadrangular and triangular meshes, and 3D Cartesian hexahedral
and unstructured tetrahedral meshes. For each polynomial order, the value of 𝛾⋆ is indicated by a bullet. As
𝛾 →∞, ∆𝑡opt(𝛾) go to zero as 1√

𝛾 . Thus, taking 𝛾 ≫ 𝛾⋆ is not optimal, since this entails very small time steps.
Fortunately, Table 1 has already shown that the value of 𝛾⋆ need not be too large. The fact that ∆𝑡opt(𝛾) → 0
as 𝛾 → ∞ is easily proven using the min-max theorem for the largest eigenvalue. Indeed, since ℬ is a positive
matrix, we have

𝜌(𝒟(𝛾)) = max
𝑋=(𝑋𝒯 ,𝑋ℱ )∈̂︀𝒰𝑙,𝑘

ℎ,0

𝑋𝑇𝒜𝑋
𝑋𝒯ℳ𝑋𝒯

> max
𝑋𝒯 ∈𝒰𝑙

𝒯

𝑋𝑇
𝒯 𝒜𝒯 𝒯𝑋𝒯
𝑋𝒯ℳ𝑋𝒯

> 𝛾𝜌(ℳ−1𝒮𝒯 𝒯 ).

This shows that ∆𝑡opt(𝛾) 6 2√
𝛾𝜌(ℳ−1𝒮𝒯 𝒯 )

∼
𝛾→∞

1√
𝛾 . All the mixed-order curves in Figure A.4 show the expected

asymptotic behavior. For the equal-order curves, this asymptotic behavior is recovered for the larger values 𝛾,
but we also observe that there is a large range of values of 𝛾 for which ∆𝑡opt(𝛾) ≃ 𝐶𝛾−1, where 𝐶 is some
constant depending on the polynomial order and the mesh regularity. For triangular meshes with 𝑘 = 3 and for
hexahedral meshes with 𝑘 = 0, the asymptotic rate 𝛾−

1
2 is not even reached for 𝛾 = 1010.
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Figure A.4. Ratio Δ𝑡opt(𝛾)
ℎ as a function of 𝛾 on 2D and 3D unstructured meshes. (a) Quad-

rangles. (b) Triangles. (c) Hexahedra. (d) Tetrahedra.
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