
HAL Id: hal-04217510
https://hal.science/hal-04217510v2

Submitted on 16 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Background on real and complex elliptically symmetric
distributions

Jean-Pierre Delmas

To cite this version:
Jean-Pierre Delmas. Background on real and complex elliptically symmetric distributions. Springer.
Elliptically symmetric distributions in Signal Processing and Machine Learning, Springer Cham, 2024,
�10.1007/978-3-031-52116-4_1�. �hal-04217510v2�

https://hal.science/hal-04217510v2
https://hal.archives-ouvertes.fr


1

Background on real and complex elliptically

symmetric distributions
Chapter published in the book ”Elliptically symmetric distributions in Signal Processing and

Machine Learning”by Springer with corrections and complements

Jean-Pierre Delmas

Abstract

his chapter presents a short overview of real elliptically symmetric (RES) distributions, complemented

by circular complex elliptically symmetric (C-CES) and noncircular CES (NC-CES) distributions as complex

representations of RES distributions. These distributions are both an extension of the multivariate Gaussian

distribution and a multivariate extension of univariate symmetric distributions. They are equivalently defined

through their characteristic functions and their stochastic representations, which naturally follow from the

spherically symmetric distributions after affine transformations. Particular attention is paid to the absolutely

continuous case and to the subclass of compound Gaussian distributions. Results related to moments, affine

transformations, marginal and conditional distributions, and summation stability are also presented. Some well-

known instances of RES distributions are provided with their main properties. Finally, the estimation of the

symmetry center and scatter matrix is briefly discussed through the sample mean (SM), sample covariance matrix

(SCM) estimate, maximum estimate (ML), M -estimators, and Tyler’s M -estimators. Particular attention will be

paid to the asymptotic Gaussianity of the M -estimators of the scatter matrix. To conclude, some hints about the

Slepian-Bangs formula are provided. his chapter presents a short overview of real elliptically symmetric (RES)

distributions, complemented by circular complex elliptically symmetric (C-CES) and noncircular CES (NC-CES)

distributions as complex representations of RES distributions. These distributions are both an extension of the

multivariate Gaussian distribution and a multivariate extension of univariate symmetric distributions. They are

equivalently defined through their characteristic functions and their stochastic representations, which naturally

follow from the spherically symmetric distributions after affine transformations. Particular attention is paid to the

absolutely continuous case and to the subclass of compound Gaussian distributions. Results related to moments,

affine transformations, marginal and conditional distributions, and summation stability are also presented. Some

well-known instances of RES distributions are provided with their main properties. Finally, the estimation of
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the symmetry center and scatter matrix is briefly discussed through the sample mean (SM), sample covariance

matrix (SCM) estimate, maximum estimate (ML), M -estimators, and Tyler’s M -estimators. Particular attention

will be paid to the asymptotic Gaussianity of the M -estimators of the scatter matrix. To conclude, some hints

about the Slepian-Bangs formula are provided. T

I. INTRODUCTION

Until fifty years ago, most of the procedures in multivariate analysis were developed under the Gaussian

assumption, mainly for mathematical convenience. However, in many applications, Gaussianity is a poor

approximation of reality. As a consequence, elliptically symmetric distributions have been widely used in various

applications due to their flexibility and capability to better model various data behavior. These distributions form

a natural extension of the Gaussian one by allowing for both heavier-than-Gaussian and lighter-than-Gaussian

tails while maintaining the elliptical geometry of the underlying equidensity (when it exists) contours. These real

elliptically symmetric (RES) distributions were equivalently defined in the statistical literature [1]–[4] through

their characteristic functions and their stochastic representations, which naturally follow from the spherically

symmetric distributions after affine transformations. A first systematic treatment of circular complex elliptically

symmetric (C-CES) distributions was provided in the engineering literature [5] and further fully studied in

[6], and in the tutorial paper [7]. Then, the general complex representation of the RES distributions, called

noncircular CES (NC-CES) distributions, was introduced in [8].

The aim of this chapter is twofold. At first, a short overview of RES, C-CES, and NC-CES distributions (as

complex representations of the RES distributions) is introduced with the aim of providing a common background

for the other chapters of this book. Secondly, the main definitions and properties of these distributions are listed

and shortly discussed.

This chapter is organized as follows. Section II defines the RES distributions equivalently through their

characteristic functions and to their stochastic representations. Particular attention is paid to the absolutely

continuous case and to the subclass of compound Gaussian distributions. Section III defines the C-CES and

NC-CES distributions as complex representations of the RES distributions. Section IV presents basic properties

related to moments, affine transformations, marginal and conditional distributions, and summation stability.

Then some well-known instances of RES distributions are provided with their main properties in Section V.

The joint estimation of the symmetry center and scatter matrix is briefly discussed in Section VI through the

SM and SCM estimators, ML, M -estimators, and Tyler’s M -estimators, asymptotic Gaussian distribution of

scatter M -estimators, and Slepian-Bangs formula. Finally, Section VII briefly concludes this chapter.

The following notations are used throughout this chapter. Matrices and vectors are represented by bold

upper case and bold lower case characters, respectively. Vectors are by default in column orientation, while the

superscripts T , H , ∗, and # stand for transpose, conjugate transpose, conjugate, and Moore Penrose inverse,

respectively. (a)k and (A)k,` denote the k and (k, `)-th element of the vector a and the matrix A, respectively.

E(.), |.|, and Tr(.) are the expectation, determinant, and trace operators, respectively. I is the identity matrix with
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the appropriate dimension. vec(A) denotes the “vectorization” operator that turns a matrix A into a vector by

stacking the columns of the matrix one below another and vecs(A) is the vector that is obtained from vec(A) by

eliminating all supradiagonal elements of A. These vectors are used in conjunction with the Kronecker product

A⊗B as the block matrix whose (i, j) block element is ai,jB, and with the commutation matrix K and the

duplication matrix D of appropriate dimension such that vec(CT ) = Kvec(C) and vec(A) = Dvecs(A) where

A is symmetric. ek is the vector of appropriate dimension with 1 in the kth position and zeros elsewhere. The

acronyms r.v., p.d.f. and c.d.f. for respectively random variable, probability density function and cumulative

distribution function are used. Finally, Γ(u)
def
=
∫∞

0
tu−1e−tdt is the Gamma function with Γ(k) = (k− 1)! for

k ∈ N, B(k, `) denotes the Beta function with B(k, `) = Γ(k)Γ(`)
Γ(k+`) and Gam(k, θ) is the Gamma distribution of

scale θ with p.d.f. p(x) = 1
Γ(k)θk

xk−1 exp(−x/θ). x =d y, xn →d D and x ∼ D mean that the r.v. x and y

have the same distribution, the sequence of r.v. xn converges in distribution to D and x follows the distribution

D, respectively. The subscripts r and c are used to refer to the real and complex data cases, respectively.

II. DEFINITION OF THE REAL ELLIPTICALLY SYMMETRIC DISTRIBUTIONS

A. Characteristic function

After earlier works on this topic, RES distributions were formalized by [1] and further studied by [2]–[4].

They were first defined as affine transformations of spherically distributed r.v. Then, by the uniqueness theorem

(see, e.g., [9, pp. 346-351], they were alternatively defined by their characteristic functions.

Definition 1: An r.v. x ∈ Rm is said to have a RES distribution if there exists a vector µ ∈ Rm, an m×m

symmetric positive semi-definite matrix Σ of rank k ≤ m and a function φr(.) : R+ → R called symmetry

center, scatter matrix and characteristic generator, respectively, such that the characteristic function of x is of

the form

Φx(t)
def
= E[exp(itTx)] = exp(itTµ)φr(t

TΣt), t ∈ Rm. (1)

We shall write x ∼ RESm(µ,Σ, φr) and note that the couple (Σ, φr(.)) does not uniquely identify the

distribution of x because (c2Σ, φr(./c
2)) gives the same distribution. This scale ambiguity is easily avoided by

restricting the function φr(.) in a suitable way (e.g., by fixing a moment as it is explained in Section IV-A),

or by putting a constraint on the scatter matrix Σ (e.g., Tr(Σ) = m). Note that for m = 1, these distributions

coincide with the class of one-dimensional symmetric distributions w.r.t. the symmetry center.

B. Stochastic representation

Equivalently to the definition (1), the RES distributed r.v. x can be defined from an affine function

x
def
= µ + Axs (2)

of a k-dimensional spherically distributed r.v. xs, where A ∈ Rm×k is any square root (Σ = AAT ) of the

scatter matrix Σ of rank k, and thus full column rank. Such spherically distributions are defined equivalently

in the following [3, Chap.2]
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Definition 2: An r.v. xs ∈ Rk is spherically distributed i.f.f.

• xs =d Oxs for arbitrary real-valued k-dimensional orthonormal matrix O,

• There exists a function φr(.) : R+ 7→ R, such that the characteristic function of xs is given by

Φxs(t) = φr(‖t‖2), t ∈ Rk, (3)

• For every h ∈ Rk, hTxs =d ‖h‖xsi with xs = (xs1 , .., xsi , .., xsk)T ,

• If xs is absolutely continuous w.r.t. Lebesgue measure on Rk, there exists a function1 gr(.): R+ 7→ R+

such that the p.d.f. of xs w.r.t. this measure is of the form

p(xs) = gr(‖xs‖2), (4)

where

δr,k
def
=

∫ ∞
0

tk/2−1gr(t)dt =
Γ(k/2)

πk/2
, (5)

ensuring that p(xs) integrates to one.

• There exists a non-negative r.v. Qr,k, and ur,k that are independent where ur,k is uniformly distributed on

the unit real k-sphere (ur,k ∼ U(RSk)) such that

xs =d

√
Qr,kur,k. (6)

Consequently from (2) and (3), we find the characteristic function (1) which defines the RES distribution

since

Φx(t) = exp(itTµ)Φxs(A
T t) = exp(itTµ)φr(t

TΣt).

From (2) and (6), we obtain the following

Theorem 1: x is RESm(µ,Σ, φr) distributed, i.f.f. it admits the following stochastic full-rank representation

x =d µ +
√
Qr,kAur,k = µ +Rr,kAur,k. (7)

The r.v. Qr,k and Rr,k
def
=
√
Qr,k are the 2nd-order modular and modular (or generating) variates of the r.v.

x, respectively. We note that there is a one-to-one mapping between the characteristic generator φr and the

c.d.f. FRr of Rr,k (called generating c.d.f.). Thus we can also write x ∼ RESm(µ,Σ, FRr ) and, equivalently

to Definition 1, we retrieve the scale ambiguity in the couple (A,Rr,k) in (7). Theorem 1 provides an obvious

mechanism to generate r.v. x ∼ RESm(µ,Σ, FRr ): it only involves generating Rr,k according to its c.d.f.

FRr and ur,k =
nr,k
‖nr,k‖ where nr,k is k-dimensional zero-mean Gaussian distributed r. v. with covariance I

1both functions φr(.) and gr(.) are generally parameterized by the dimension k and in practice by a finite-dimensional parameter
(see examples in Section V).
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(nr,k ∼ RNk(0, I)). Moreover, the following important property follows from Theorem 1:

Qr,k =d (x− µ)TΣ#(x− µ). (8)

C. The absolutely continuous case

From (2) the r.v. x is absolutely continuous w.r.t. Lebesgue measure on Rm, i.f.f. xs is too. From (6), it is

immediate to verify that this condition is satisfied i.f.f. Qr,k or Rr,k is absolutely continuous w.r.t. Lebesgue

measure on R+. In this case, the p.d.f. of x is defined on the k-dimensional subspace of Rm spanned by the

range space of A.

In the particular case where k = m, i.e., rank(Σ) = m, A is a non singular m ×m square matrix. From

the one to one mapping (2) between x and xs, and the p.d.f. (4), the p.d.f. of x on Rm can be expressed as:

p(x) = |Σ|−1/2gr[(x− µ)TΣ−1(x− µ)]. (9)

We note that unlike the notation used in, e.g., [7], (9) does not explicitly include the usual p.d.f. normalizing

constant. In (9) gr(.): R+ 7→ R+ is an arbitrary function, called density generator such that from (4) and (5)

δr,m
def
=

∫ ∞
0

tm/2−1gr(t)dt =
Γ(m/2)

πm/2
. (10)

Clearly from (9), the couple (Σ, gr(.)) in does not uniquely identify the distribution of x because

(c2Σ, cmgr(. c
2)) gives the same distribution.

We adopt the notation RESm(µ,Σ, g) instead of RESm(µ,Σ, φ). The level sets of p(x) are a family of

hyper ellipsoids in Rm symmetrically centered at µ, where shape and orientation are determined by Σ. This

justifies the terminology of symmetrical elliptical distributions. Furthermore, the stochastic representation (7)

reduces to

x =d µ +
√
Qr,mΣ1/2ur,m = µ +Rr,mΣ1/2ur,m. (11)

Here too, note that (Σ,Qr,m) and (c2Σ, c−2Qr,m) give the same distribution of x. (11) implies that (8) simplifies

to

Qr,m =d (x− µ)TΣ−1(x− µ). (12)

From (9), (11) and (12), the p.d.f. of Qr,m and Rr,m are respectively

p(q) = δ−1
r,mq

m/2−1gr(q) and p(r) = 2δ−1
r,mr

m−1gr(r
2). (13)

Finally, we note that the RES distributions do not necessarily possess a p.d.f. w.r.t. Lebesgue measure on Rm

even when Σ is not singular. Such an example is the U(RSm) distribution which belongs to RESm(0, I, φr)

distributions, where the explicit (but somewhat involved) form of φr can be found in [4, the. 2.51].
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D. The subclass of compound-Gaussian distributions

An important subclass of RES distributions are the compound-Gaussian (CG) distributions, whose circular

complex representations (denoted C-CCG) have been widely used in the engineering literature, for example, for

modeling radar clutter [10]. An r.v. having CG distributions with zero symmetry center is also referred to as

spherically invariant random vectors (SIRV) in the engineering literature (see, e.g., in [11]–[14]) and as scale

mixtures of normal distributions in the statistics literature [15] [16]. These distributions are defined by their

stochastic representation.

Definition 3: An r.v. x ∈ Rm is said to have a real CG distribution (RCG) if it admits the following

representation

x =d µ +
√
τrn, (14)

for some positive real r.v. τr with c.d.f. Fτ (not related neither to dimension m nor to rank k), called the texture

independent of n ∼ RNm(0,Σ), called the speckle. The r.v.
√
τr is often called mixing variable with mixing

distribution in the statistical literature (see e.g., [16]). We write x ∼ RCGm(µ,Σ, Fτ ) to denote this case.

Note that (14) can be rewritten as

x =d µ +
√
τrAn0, (15)

where n0 ∼ RNk(0, I). Then by recalling that n0 = ‖n0‖ur,k with s
def
= ‖n0‖2 ∼ χ2

k = Gam(k/2, 2) and

ur,k ∼ U(RSk), and where s and ur,k are independent. It follows that the stochastic representation (14) can

also be written as

x =d µ +Rr,kAur,k, (16)

where the modular variate Rr,k
def
=
√
τrs and ur,k are independent. Consequently, the RCG distributions form

a subclass of the RES distributions. Furthermore, x ∼ RESm(µ,Σ, φ) belongs to the set of RCG distributions

i.f.f. there exists an r.v. τr such that the 2nd-order modular variate Qr,k = R2
r,k satisfies Qr,k = τrs, i.e., Qr,k

is a scale mixture of the Gam(k/2, 2) distribution. This means that the conditional distribution of Qr,k given

τr = τ is the Gam(k/2, 2τ) distribution and thus the p.d.f of Qr,k is

p(q) =

∫ ∞
0

1

Γ(k/2)(2τ)k/2
qk/2−1 exp(−q/(2τ))dFτ (τ). (17)

The characteristic function of Φxs(t) of a RCG distributed r.v. x defined by (14) is given straightforwardly

by

Φxs(t) = exp(itTµ)

∫ ∞
0

E(exp(itT
√
τn)/τ)dFτ (τ)

= exp(itTµ)

∫ ∞
0

exp
(
−τ

2
tTΣt

)
dFτ (τ)

= exp(itTµ)φr(t
TΣt) (18)
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where the characteristic generator

φr(u) =

∫ ∞
0

exp
(
−τ

2
u
)
dFτ (τ) (19)

does not depend on the dimension m nor on the rank k, unlike the RES distributions which are not RCG whose

characteristic generator can depend on it.

In the particular case where Σ is not singular (k = m), the conditional distribution of x given τr = τ is the

RNm(µ, τΣ) distribution from (14). Consequently, the distribution of x is always continuous w.r.t. Lebesgue

measure on Rm and its p.d.f. is given by

p(x) = (2π)−m/2|Σ|−1/2

∫ ∞
0

τ−m/2 exp

(
− 1

2τ
(x− µ)TΣ−1(x− µ)

)
dFτ (τ). (20)

Note that the p.d.f. (20) can always be written in the form (9) with the density generator

gr(t) = (2π)−m/2
∫ ∞

0

τ−m/2 exp

(
− t

2τ

)
dFτ (τ), (21)

and similarly to the RES distributions, we are faced with scale ambiguity where (c2Σ, c−2τr, c
mgr(.c

2)) gives

the same R-CG distribution. Note that (21) reduces to the density generator (70) of the Gaussian distribution

when τr is a degenerate r.v. putting all the probability at τr = 1. Note also that the ε-contaminated Gaussian

distribution belongs to the class of CG distributions and is obtained when τr is a discrete r.v. with P (τr = a2) = ε

and P (τr = 1) = 1− ε, where (a2, ε) are parameters that control the heaviness of the tails as compared to the

Gaussian distribution.

III. DEFINITION OF THE COMPLEX ELLIPTICALLY SYMMETRIC DISTRIBUTIONS

A. Characteristic function

An r.v. x ∈ Cm is said to have a noncircular complex elliptically symmetric (NC-CES) distribution (also

called generalized complex elliptical in [17] if the r.v. x̄
def
= (Re(x)T , Im(x)T )T ∈ R2m is RES distributed.

Denote the symmetry center and the scatter matrix (of rank k ≤ 2m) of x̄ by µ̄ ∈ R2m and Σ̄ ∈ R2m×2m,

respectively. Using the one-to-one mapping x̄ 7→ x̃
def
= (xT ,xH)T =

√
2Mx̄ where M

def
= 1√

2

(
I iI

I −iI

)
is unitary, we obtain t̄T µ̄ = Re(tHµ), t̄T Σ̄t̄ = 1

2 t̃H(MΣ̄MH)t̃ = 1
4 t̃HΣ̃t̃ with t̄

def
= (Re(t)T , Im(t)T )T ,

µ̄
def
= (Re(µ)T , Im(µ)T )T , t̃

def
= (tT , tH)T and Σ̃

def
= 2MΣ̄MH of rank k structured as

Σ̃ =

 Σ Ω

Ω∗ Σ∗

 , (22)

where Σ and Ω defined from 2MΣ̄MH , are positive semi-definite Hermitian and complex symmetric matrices,

respectively. Consequently, we obtain the following theorem by the definition (1)
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Theorem 2: The characteristic function of an NC-CES distributed r.v. x ∈ Cm is of the form

Φx(t)
def
= E[exp(it̄T x̄)] = exp(iRe(tHµ))φc

(
1

2
t̃HΣ̃t̃

)
t ∈ Cm, (23)

where

φc(u)
def
= φr

(
1

2
u

)
(24)

is the characteristic generator, and where µ ∈ Cm and Σ̃ ∈ C2m×2m denote respectively the symmetric center

and the extended scatter matrix of the NC-CES distributed r.v. x.

We shall write x ∼ CESm(µ,Σ,Ω, φc). In the particular case where Ω = 0, the rank of Σ̃ is even with

rank(Σ̃) = 2rank(Σ) = k and x is C-CES distributed [5]–[7]. The term circular is often dropped in the

current terminology used in signal processing where the distribution of a C-CES r.v. is usually indicated as

x ∼ CESm(µ,Σ, φc). Moreover, from (23), we get:

Theorem 3: The characteristic function of a C-CES distributed r.v. x ∈ Cm is of the form

Φx(t) = exp(iRe(tHµ))φc(t
HΣt) t ∈ Cm, (25)

where µ ∈ Cm and Σ ∈ Cm×m denote the symmetric center, and the scatter matrix of the C-CES distributed

r.v. x, respectively.

B. Stochastic representation

From the definition of the NC-CES distribution, a simple complex-valued extension of the stochastic

representation (7) is only possible if the rank of Σ̃, which is equal to the rank of Σ̄, is even (it is, in particular,

the case of the C-CES distribution and the case where Σ̃ is not singular for which k = 2m). Let 2k be the rank

of Σ̃. In this case, there exists an m× k full column rank matrix A such that Σ = AAH and Ω = A∆κA
T

where ∆κ = Diag(κ1, . . . , κk) is a real diagonal matrix with non-negative real entries (κi)i=1,..,k [18, Corollary

4.6.12(b)]. Furthermore, it has been proved in [8], that 0 ≤ κi ≤ 1. This parameterization allows us to state

that the stochastic representation of this distribution, proved in [19], is a multivariate extension of the univariate

generation of NC-CES r.v. presented in [20, sec. IV.C].

Theorem 4: x is CESm(µ,Σ,Ω, φc) distributed i.f.f. it admits the following stochastic representation

x =d µ +
√
Qc,kA[∆1uc,k + ∆2u

∗
c,k], (26)

where Qc,k
def
= 1

2Qr,2k and uc,k ∼ U(CSk) are independent, ∆1
def
= ∆++∆−

2 and ∆2
def
= ∆+−∆−

2 where

∆+
def
=
√

I + ∆κ and ∆−
def
=
√

I−∆κ.

In the particular case of C-CES distributions, Ω = 0, which is equivalent to ∆κ = 0, i.e., ∆1 = I and

∆2 = 0 and consequently the stochastic representation (26) reduces to the well known stochastic representation

reported in [7]:

x =d µ +
√
Qc,kAuc,k. (27)
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Note that similarly to the RES distribution, the C-CES distribution can be defined from the affine function

(2), where here xs is k-dimensional spherically distributed defined by the equality xs =d Uxs for arbitrary

complex-valued k-dimensional unitary matrix U , and where A ∈ Cm×k is any square root (Σ = AAH ) of

the scatter matrix [5], [6]. Such r.v. xs is also characterized by the stochastic representation xs =d

√
Qc,kuc,k

where the non-negative r.v. Qc,k, and uc,k are independent, with uc,k ∼ U(CSk). xs is also characterized

by a characteristic function of the form Φxs(t) = φc(‖t‖2), t ∈ Ck. Consequently, from (2), we find

the characteristic function (25) which defines the C-CES distribution since Φx(t)
def
= E[exp(iRe(tHx))] =

exp(iRe(tHµ))Φxs(A
Ht) = exp(iRe(tHµ))φc(t

HΣt).

C. The absolutely continuous case

The p.d.f. of x is defined on Cm i.f.f. x̄ is absolutely continuous w.r.t. Lebesgue measure on R2m. Assuming

that rank(Σ̃) = 2m and using the identities (x̄− µ̄)T Σ̄−1(x̄− µ̄) = (x̃− µ̃)HΣ̃−1(x̃− µ̃) and |Σ̄| = 2−2m|Σ̃|,

the p.d.f. (9) becomes

p(x) = |Σ̃|−1/2gc

[
1

2
(x̃− µ̃)HΣ̃−1(x̃− µ̃)

]
, (28)

where gc(t) is defined by

gc(t)
def
= 2mgr(2t), (29)

and gr(t) is the density generator associated with the distribution RES2m(µ̄, Σ̄, φr), which satisfies

δc,m
def
=

∫ ∞
0

tm−1gc(t)dt = δr,2m =
Γ(m)

πm
. (30)

We note that in this case, (26) is written equivalently in the form x̃ =d µ̃ + Σ̃1/2ũc,m (where ũc,m
def
=

(uTc,m,u
H
c,m)T ), then it follows that

Qc,m =
1

2
Qr,2m (31)

and

Qc,m =d
1

2
(x̃− µ̃)HΣ̃−1(x̃− µ̃). (32)

For C-CES distributed x, (28) reduces to

p(x) = |Σ|−1gc[(x− µ)HΣ−1(x− µ)], (33)

and (27) implies

Qc,m =d (x− µ)HΣ−1(x− µ). (34)

Following the same derivation as for the RES distribution, we get the following p.d.f. of Qc,m and Rc,m

p(q) = δ−1
c,mq

m−1gc(q) and p(r) = 2δ−1
c,mr

2m−1gc(r
2). (35)
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D. The subclass of compound Gaussian distributions

In many engineering applications, only the circular complex case is considered. A r.v. x ∈ Cm is said to be

circular complex compound Gaussian (C-CCG) distributed if the r.v. x̄ ∈ R2m is RCG distributed (see definition

3) where the associated extended scatter matrix (22) is bloc-diagonal Σ̃ =

 Σ 0

0 Σ∗

. Consequently from

the one to one mapping x̄ 7→ x̃, definition (3) gives the following stochastic representation

x =d µ +
√
τcn, (36)

where τc = 2τr with τr, independent from n, is associated with the 2m-dimensional RCG distribution and

n ∼ CNm(0,Σ).

As a consequence, all the properties given in Section II-D can be deduced from this real to complex

representation. In particular with Σ = AAH of rank k: n0 ∼ CNk(0, I), (16) with now Rc,k
def
=
√
τcs where

s
def
= ‖n0‖2 ∼ 1

2χ
2
2k = Gam(k, 1). Then, the C-CCG distributions form a subclass of the C-CES distributions

and x ∼ C-CESm(µ,Σ, φ) belongs to the set of C-CCG distributions i.f.f. the p.d.f of Qc,k is

p(q) =

∫ ∞
0

1

Γ(k)τk
qk−1 exp(−q/τ)dFτ (τ) (37)

and (20) becomes

p(x) = π−m|Σ|−1

∫ ∞
0

τ−m exp

(
−1

τ
(x− µ)HΣ−1(x− µ)

)
dFτ (τ). (38)

IV. BASIC PROPERTIES

In this section and throughout the rest of this chapter, we mainly consider the RES distributions, knowing

that the C-CES distributions are only a particular representation of them for even m, where the complementary

scatter matrix Ω defined in (22) is zero. Consequently we drop the indices r in δr,k, gr, φr, Qr,k, Rr,k and

ur,k associated with the v.a. x. We will show that these distributions benefit from most of the properties of

the Gaussian distribution except the additive stability, whose conditions are more restrictive (see e.g., the quick

surveys in [21], [22]).

A. Moments

From the full-rank stochastic representation (7), it is clear that x admits pth-order moments i.f.f.

E(Rpk) <∞. Using the characteristic function (1), E(Rpk) <∞ i.f.f. the characteristic generator φ(t) is p times

differentiable. In this case, the pth-order moments of x are given by E(xp11 x
p2
2 ...x

pm
m ) = 1

ip
∂pΨx(t)

∂t
p1
1 ∂t

p2
2 ...∂tpmm

|t=0

with p =
∑m
i=1 pi and x = (x1, x2, ..., xm)T .

Assuming that the correspondent moments are finite, one has

E(x) = µ (39)

Cov(x) =
E(R2

k)

k
Σ =

E(Qk)

k
Σ = −2φ′(0)Σ. (40)
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In particular for RCG distributions (40) becomes

Cov(x) = E(τ)Σ. (41)

We see from (40) and (41) that under finite second-order moment assumption, the covariance of x does

not necessarily coincide with the scatter matrix Σ, but these two matrices are proportional. Note that many

second-order signal processing methodologies, such as, for example, subspace-based processing (where k = m),

require an estimate of the covariance only at up to a multiplicative scalar. In this case, the shape matrix, defined

as a scaled version of the scatter matrix

Vs
def
=

1

s(Σ)
Σ (42)

can be adopted to characterize the correlation structure. The scalar factor s(Σ) must follow the conditions

s(aΣ) = as(Σ), ∀a > 0 and s(I) = 1. Even if the choice of the scale functionals s(Σ) is entirely arbitrary, in

signal processing literature, the most popular scale is the one on the trace of the scatter matrix, i.e., s(Σ)
def
=

Tr(Σ)/m leading to the following shape matrix Vs = m
Tr(Σ)Σ. One can also find s(Σ)

def
= [Σ]1,1 and s(Σ)

def
=

|Σ|1/m, leading to [Vs]1,1 = 1 and |Vs| = 1, respectively.

Otherwise, (40) and (41) can be used to resolve the scale ambiguity of the couple (Σ, φ(.)) in the definition

(1) of the RES distribution by fixing the constraint on the characteristic generator φ(.)

E(R2
k) = E(Qk) = k = rank(Σ) or E(τ) = 1 for RCG distributions, (43)

which ensures that Cov(x) = Σ.

When the r.v. x is absolutely continuous w.r.t. Lebesgue measure on Rm and k = m, (43) is equivalent to

the following constraint on the density generator g(.) thanks to (13)

δ−1
m

∫ ∞
0

qm/2g(q)dq = m. (44)

If E(Qm) is not finite, rather imposing Median(Rm) = 1, i.e., from (13) the constraint 2δ−1
m

∫ 1

0
rm−1g(r2)dr =

1
2 or equivalently δ−1

m

∫ 1

0
tm/2−1g(t)dt = 1

2 , is a more appropriate scaling constraint as its avoids any finite

moment assumptions. Similarly for RCG distributions, if E(τ) is not finite, the constraint Median(τ) = 1 (i.e.,

Fτ (1) = 1
2 ) can be used. Indeed many RES distributions do not have finite second-order moments.

To consider higher-order multivariate central moments, let us consider σi1,i2,..,i`
def
= E[(xi1 − µi1)(xi2 −

µi2)...(xi` − µi`)] with µ = (µ1, µ2, ..., µm)T and (i1, i2, .., i`) ∈ {1, ..,m}`. By symmetry, all odd-order

central moments are zero, provided that the corresponding moments do exist. As for fourth-order moments, if

E(R4
m) <∞ (with k = m), they all satisfy the identity [23, p. 2]

σi,j,k,` = (κ+ 1)(σi,jσk,` + σi,kσj,` + σi,`σj,k), (i, j, k, `) ∈ {1, ...,m}4 (45)

January 16, 2025 DRAFT



12

where

κ
def
=

1

3

(
σi,i,i,i
σ2
i,i

− 3

)
=

m

m+ 2

E(R4
m)

(E(R2
m))2

− 1 =
φ”(0)

(φ′(0))2
− 1. (46)

κ is the kurtosis parameter of the marginal r.v. xi [24], [25]. It usually depends on the dimension m, but,

remarkably, the kurtosis of the ith component does not depend on i, nor on the scatter matrix Σ. Consequently

taken Σ = I, we get for all RCG distributions: σi,i,i,i = 3E(τ2) and σi,i = E(τ) and thus

κ =
Var(τ)

[E(τ)]2
. (47)

Consequently the kurtosis parameter does not depend on the dimension m for RCG distributions. Note that

κ = 0 for the Gaussian distribution and that there exist other definitions of the kurtosis parameter or coefficient

in the literature as κ def
=

σi,i,i,i
σ2
i,i
− 3 and κ

def
=

σi,i,i,i
σ2
i,i

. Note also that the kurtosis is bounded below such that

κ ≥ −2/(m+ 2) [26].

B. Affine transformations and marginal distributions

Let b ∈ Rn and B ∈ Rn×m, and consider the transformed r.v. y = Bx + b. Its characteristic function

Φy(t) is deduced from the characteristic function (1) of x by

Φy(t) = exp(itTb)Φx(BT t) = exp(itT (Bµ + b))φ(tTBΣBT t), t ∈ Rn. (48)

Consequently, y is RESn(Bµ+b,BΣBT , φ)-distributed, and thus the class of RESm(µ,Σ, φ) distributions is

closed under affine transformations. Note that the parameters are transformed as (µ,Σ) 7→ (Bµ+ b,BΣBT ),

which is the usual transformation for the couple (expectation, covariance) (when it exists) for the affine

transformation x 7→ Bx + b. Note also that for n 6= m, y may not belong to the same family as that of

the r.v. x because the characteristic generator φ may depend on the dimension m.

From the full-rank stochastic representation of x (7), we derive

y =d Bµ + b +Rk(BA)uk, (49)

which is not necessarily a full-rank stochastic representation of y because rank(BA) ≤

min(rank(B), rank(A)) ≤ min(n, k). If ` def
= rank(BA), there exist full column rank n × ` matrices

C such that BΣBT = CCT . And thus, similarly to x, where its distribution is equivalently defined by its

stochastic full rank representation (7) and by its characteristic function (1), we get from (48) a stochastic full

rank representation of y

y =d Bµ + b +R`Cu`, (50)

where the non-negative r.v. R`, and u` are independent, u` is uniformly distributed on the unit real `-sphere.

Of course, it directly follows that univariate and multivariate marginals of x also are RES distributed

with φ remains unchanged. If x = (x1, ..., xm)T = (xT1 ,x
T
2 )T , µ = (µ1, ..., µm)T = (µT1 ,µ

T
2 )T and
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Σ = (σi,j)
m
i,j=1 =

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)
, where x1 and µ1 are m1-dimensional vectors, Σ1,1 and Σ2,2 are

m1 × m1 and m2 × m2 matrices, respectively (with m1 + m2 = m), then x1 ∼ RESm1
(µ1,Σ1,1, φ),

x2 ∼ RESm2(µ2,Σ2,2, φ), and xi ∼ RES1(µi, σi,i, φ), i = 1, ...,m. Of course, their stochastic representations

(49) and (50) also, follow. For example for m1 ≥ k, if A =

[
A1

A2

]
where A1 is a m1 × k full column rank

matrix

x1 =d µ1 +RkA1uk (51)

is a stochastic full-rank representation of the marginal x1. As for the univariate marginal xi, the stochastic

representations (49) and (50) reduce to

xi =d µi +RkaTi uk =d µi +R1‖ai‖u1, (52)

where ai is the i-th column of AT (thus ‖ai‖2 = σi,i), Rk and R1 are the modular variates of x and xi,

respectively, and where u1 reduces to the uniform discrete r.v. {−1,+1}.

Now we take a closer look at the marginal distributions when k = m. In this case, the stochastic full-rank

representation (51) and (52) of arbitrary univariate or multivariate marginal r.v. x1 and xi reduce to

x1 =d µ1 +Rm1
Σ

1/2
1,1 um1

and xi =d µi +R1σ
1/2
i,i u1, (53)

where the modular variates Rm1 of x1 (which includes the modular variates of the univariate marginal r.v. xi

for m1 = 1) and Rm of x are related by the relation [4, Corollary p.59]

Rm1
=d Rm βm1

2 ,
m2
2
. (54)

In (54) the r.v. Rm and βm1
2 ,

m2
2

are independent and β2
m1
2 ,

m2
2

∼ Beta(m1

2 ,
m2

2 ).

Moreover in the absolutely continuous case w.r.t. Lebesgue measure on Rm, i.e., x ∼ RESm(µ,Σ, g), (54)

allows us to relate the p.d.f. pm1
(r) of Rm1

to the p.d.f. pm(r) of Rm [4, rel. 2.5.15]

pm1(r) =
2rm1−1

B(m1

2 ,
m2

2 )

∫ +∞

r

t−(m−2)(t2 − r2)
m2
2 −1pm(t)dt (55)

and to the density generator g(.) of x using pm(r) given by (13)

pm1(r) =
2πm/2rm1−1

Γ(m1

2 )Γ(m2

2 )

∫ +∞

r2
(t− r2)

m2
2 −1g(t)dt. (56)

This allows us to derive the density generators gm1|m(.) of the multivariate and univariate marginal r.v. x1

and xi thanks to (13) pm1
(r) = 2δ−1

m1
rm1−1gm1|m(r2)

gm1|m(u) = δ−1
m2

∫ +∞

u

(t− u)
m2
2 −1g(t)dt. (57)

Therefore the p.d.f. of the multivariate marginal r.v. x1 ∼ RESm1
(µ1,Σ1,1, gm1|m) and xi ∼
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RES1(µi, σi,i, g1|m) are given respectively by

pm1|m(x1) = |Σ1,1|−1/2gm1|m[(x1 − µ1)TΣ−1
1,1(x1 − µ1)]. (58)

pi|m(xi) =
1
√
σi,i

g1|m

(
(xi − µi)2

σi,i

)
. (59)

Note that there is no guarantee that the integral in (57) leads to a closed-form expression when a closed-

form expression of g(u) is available, except for the class of RCG distributions for which gm1|m(u) ∝ g(u). In

particular for the Gaussian distribution, we obtain gm1|m(u) = 1
(2π)m1/2

exp(−u2 ).

For the RCG distributions defined in Subsection II-D, it is clear from the stochastic representation (14) that

x1 =d µ1 +
√
τn1, (60)

with n1 ∼ RNm1(0,Σ1,1). Consequently, all the marginals belong to the same subclass of RCG distributions

with the same c.d.f Fτ (.) and the density generator (57) reduces thanks to (21) to

gm1|m(t) = (2π)−m1/2

∫ ∞
0

τ−m1/2 exp

(
− t

2τ

)
dFτ (τ). (61)

In fact this property characterizes the RCG distributions. This point is specified by a consistency result [27,

Th. 1]. This result states that any univariate and multivariate marginal distribution of an r.v. x belong to the

same family as that of the r.v. x, i.f.f. the RES distribution belongs to the class of RCG distributions. This

condition is also equivalent to the characteristic generator φ not related to the dimension m. This consistency

result shows that not all elliptically symmetric distributions can be used to define random processes. Indeed

from Kolmogorov’s theorem, only among the elliptically symmetric distributions, the m dimensional RGG

distributed r.v. x = (x1, ..., xm)T for all m can define a unique random process (xn)n∈N that is characterized

by the distribution of τ , symmetric center and scatter of the process [28].

C. Conditional distributions

Let x = (xT1 ,x
T
2 )T ∼ RESm(µ,Σ, φ) where x1 ∈ Rm1 . The conditional distribution of x2 given x1 is

generally more difficult to describe than its marginal distribution presented in Section IV-B. For the sake of

simplicity, we consider here only the full rank case (k = m); see e.g. [2] and [22, Th. 7, Cor. 8] for more

general statements. In this case, it is proved [3, Th 2.18], that x2 given x1 = x0
1 (denoted x2|x1 = x0

1) is

RESm2(µ2|1,Σ2|1, φ2|1) = RESm2(µ2|1,Σ2|1, F2|1) distributed with

µ2|1 = µ2 + Σ2,1Σ
−1
1,1(x0

1 − µ1) (62)

Σ2|1 = Σ2,2 −Σ2,1Σ
−1
1,1Σ1,2, (63)
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and where φ2|1 and F2|1 correspond respectively to the characteristic generator of x2|x1 = x0
1 and the c.d.f. of

the conditional modular variate R2|1 defined by the following stochastic full rank representation

(x2|x1 = x0
1) =d µ2|1 +R2|1A2|1um2 , (64)

where A2|1 is an arbitrary square root of Σ2|1 (i.e., Σ2|1 = A2|1A
T
2|1 and R2|1 and um2

are independent. R2|1

is given by

R2|1 =d [R2
m − (x0

1 − µ1)TΣ−1
1,1(x0

1 − µ1)]1/2|x1 = x0
1. (65)

Otherwise if the conditional covariance Cov(x2|x1 = x0
1) exists, its expressions can be derived from (40)

and we get

Cov(x2|x1 = x0
1) =

1

m2

(
E[R2

m|x1 = x0
1]− (x0

1 − µ1)TΣ−1
1,1(x0

1 − µ1)
)
Σ2|1. (66)

We note that the expressions of the conditional symmetry center µ2|1 and conditional scatter matrix Σ2|1 are

those obtained for the Gaussian distribution, but the conditional characteristic generator φ2|1 no longer belongs

to the same family of RES, except for the Gaussian distribution.

For RCG distributions, the p.d.f. of x2|x1 = x0
1, (denoted p(x2/x

0
1), is given by

p(x2/x
0
1) =

1

p(x0
1)

∫ ∞
0

p(x2/x
0
1, τ)p(x0

1/τ)dFτ (τ) (67)

where p(x0
1/τ) = (2πτ)−m1/2|Σ1,1|−1/2 exp(− 1

2τ d
2
Σ1,1

(x0
1,µ1)) and p(x2/x

0
1, τ)

= (2πτ)−m2/2|Σ2|1|−1/2 exp(− 1
2τ d

2
Σ2|1

(x2,µ2|1)) with d2
Σ1,1

(x0
1,µ1)

def
= (x0

1 − µ1)TΣ−1
1,1(x0

1 − µ1) and

d2
Σ2|1

(x2,µ2|1)
def
= (x2 − µ2)TΣ−1

2|1(x2 − µ2). This yields

p(x2/x
0
1) =

(2π)−m2/2|Σ2|1|−1/2∫∞
0
τ−m1/2 exp(− 1

2τ d
2
Σ1,1

(x0
1,µ1))dFτ (τ)

×
∫ ∞

0

τ−m/2 exp

(
− 1

2τ
d2

Σ2|1
(x2,µ2|1

)
exp

(
− 1

2τ
d2

Σ1,1
(x0

1,µ1)

)
dFτ (τ). (68)

Comparing (68) to (9), we check that x2|x1 = x0
1 is RESm2

(µ2|1,Σ2|1, F2|1) distributed. Moreover, comparing

(68) to (20), we see that x2|x1 = x0
1 is RCG distributed, but with a differently distributed texture τ than x and

the marginal x1.

D. Summation stability

Consider now the sum y of n independent r.v. x1, ..,xi, ..,xn with the same scatter matrix, where xi ∼

RESm(µi,Σ, φi). The characteristic function Φy(t) of y =
∑n
i=1 xi is

Φy(t) =

n∏
i=1

Φxi(t) = exp

(
itT (

n∑
i=1

µi)

)
n∏
i=1

φi(t
TΣt) = exp(itTµ)φ(tTΣt), (69)
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where µ
def
=
∑n
i=1 µi and φ(u)

def
=
∏n
i=1 φi(u), which is structured as (1). Consequently, the sum y is RES-

distributed too [22]. Similarly, for independent univariate r.v. x1, ..., xi, ..., xn but with arbitrary scatters σi, where

xi ∼ RES1(µi, σi, φi), the characteristic function Φy(t) of y =
∑n
i=1 xi is given by Φy(t) = exp(itµ)φ(t2)

where µ def
=
∑n
i=1 µi and φ(u)

def
=
∏n
i=1 φi(σiu) and then y ∼ RES1(µ, 1, φ). The sum y is then symmetrically

distributed w.r.t. µ.

However, it is worth underlying that if the r.v. x1, ..,xi, ..,xn belong to the same family of RES distribution

(i.e., with φi = φ, i = 1, .., n), the sum is not of the same family except for the so-called elliptical α-stable

distributions [29], (i.e., of characteristic functions Φx(t) = exp(itTµ) exp(− 1
2 (tTΣt)α/2) with α ∈ (0, 2]),

which includes the Gaussian distribution for α = 2. Finally note that if the scatter matrices Σi of x1, ..,xi, ..,xn

are not identical, the summation stability is generally lost for independent multivariate non-Gaussian, RES

distributed r.v..

The independence condition of the v.a. xi can be relaxed by the following properties proved in [30, th.

4.2]. If the full-rank stochastic representations (7) xi =d µi +RikAuik, i = 1, 2 with Σ = AAT satisfy the

condition (R1
k,R2

k), u1
k,u

2
k are mutually independent, whereas R1

k,R2
k may be dependent on each other, the

sum y is also RESm(µ,Σ, φ)-distributed, where the expression of φ is given in [30, th. 4.2]. φ reduces to the

product φ1φ2 when R1
k and R2

k are independent. A natural application of this property is in the context of a

multivariate time series.

V. EXAMPLE OF ELLIPTICALLY SYMMETRIC DISTRIBUTIONS

In this section, we present some examples of elliptically symmetric distributions and discuss their main

specific properties. Throughout this section, we mainly consider the case of distributions absolutely continuous

w.r.t. Lebesgue measure on Rm with rank(Σ) = m. Each distribution is defined by its density generator under

a functional form parameterized by m and a finite-dimensional parameter. We mainly use their real-valued

definition through the p.d.f. (9) where the characteristic and density generators, and the texture (14) are simply

denoted here by respectively φ, g and τ , knowing that C and NC complex-valued definitions (28) and (33)

are simply deduced from the real-valued definition with double dimension (24), (29). For C-CES distributions,

interested readers can consult [7].

A. Gaussian distribution

The Gaussian distribution is the best-known and widely used distribution among the RES class in classical

signal processing applications. Its ubiquity is mainly due to the central limit theorem (CLT) that allows for

the use of the Gaussian distribution as a good and handy approximation of the statistical behavior of a set of

observations in many practical scenarios.

As a particular case of RES distribution, the Gaussian distribution denoted hereafter by RNm(µ,Σ), is

characterized by a characteristic and a density generators that can be expressed respectively as:

φ(u) = exp
(
−u

2

)
and g(t) =

1

(2π)m/2
exp

(
− t

2

)
. (70)

January 16, 2025 DRAFT



17

Using (13), when Σ is non-singular, it is immediately verified that the p.d.f. of the second-order modular variate

Q of a Gaussian r.v. is given by:

p(q) =
δ−1
m

(2π)m/2
qm/2−1 exp

(
−q

2

)
=

1

2m/2Γ(m/2)
qm/2−1 exp

(
−q

2

)
, q ∈ R+, (71)

where δm = Γ(m/2)
πm/2

from (5). It is immediate to verify that the p.d.f. in (71) is the one of a central χ2-distribution

with m degrees of freedom, i.e., Q ∼ χ2
m. Note that this result is perfectly in line with the well-known property

of the Gaussian r.v. with mean value µ and covariance matrix Σ whose quadratic form (x−µ)TΣ−1(x−µ)

is χ2
m-distributed.

Using again (13), we can express the p.d.f. of the modular variate R ∼
√
χ2
m as :

p(r) =
1

2m/2−1Γ(m/2)
rm−1 exp

(
−r

2

2

)
, r ∈ R+. (72)

Note that from the real to complex representation given in Section III, the density generator of complex

Gaussian distributions becomes from (29)

g(t) =
1

πm
exp(−t) (73)

and consequently, the p.d.f. of the circular and non-circular Gaussian distribution, denoted respectively by

CNm(µ,Σ) and CNm(µ,Σ,Ω) are given from (33) and (28) by respectively

p(x) = π−m|Σ|−1 exp[(x− µ)HΣ−1(x− µ)],

p(x) = π−m|Σ̃|−1/2 exp

[
1

2
(x̃− µ̃)HΣ̃−1(x̃− µ̃)

]
, (74)

where Σ and Ω are the covariance and complementary covariance (or pseudo covariance) of x, respectively.

The Gaussian distribution is usually used as a reference to define heavier-tailed and lighter-tailed distributions

in the RES class. Some examples will be given below.

B. Student’s t-distribution

A popular example of heavy-tailed distribution is the Student t-distribution (or simply t-distribution). The

t-distribution belongs to the RES class, and it is characterized by the following density generator [31]:

g(u) =
Γ(ν+m

2 )

(νπ)m/2Γ(ν/2)

(
1 +

u

ν

)− ν+m2
, u ∈ R+ (75)

with 0 < ν < ∞ degrees of freedom. The parameter ν controls the tails of the distribution that are uniformly

heavier than the Gaussian ones. In particular, for small values of ν, the sampled r.v. are highly non-Gaussian

while, as ν → ∞, the t-distribution collapses into the Gaussian one. The case ν = 1 is called the Cauchy

distribution.

As shown in [31], the second-order modular variate of an m-dimensional t-distributed r.v. satisfies the
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following property:

Q/m ∼ Fm,ν , (76)

where Fm,ν denotes the F -distribution with m and ν degrees of freedom [32]. Moreover, using (13), the p.d.f.

of the second-order modular variate Q and of the modular variate R can be directly derived.

It is worth mentioning that the t-distribution belongs to the subclass of the CG distribution described in

Section III-D. Specifically, t-distributed r.v. can be obtained by generating the texture τ such that its inverse is

distributed as a Gamma random variable,

τ−1 ∼ Gam(ν/2, 2/ν), (77)

Since the t-distribution belongs to the subclass of the CG distributions, it holds that the marginals belong to

the same family. Hence in particular the univariate marginals xi are t-distributed with parameter ν, symmetry

center (µ)i and scatter (Σ)i,i with density generator given by (75) where m = 1.

This distribution has first, second and fourth-order moments if, respectively, ν > 1, ν > 2, and ν > 4. In

particular, we have E(τ) = ν
2(ν−2) , E(Q) = mν

ν−2 and Cov(x) = ν
ν−2Σ for ν > 2, while the kurtosis, defined

in subsection IV-A in (46) is κ = 2
ν−4 for ν > 4.

C. Generalized Gaussian distributions

The Generalized Gaussian (GG) distribution is a RES distribution with the remarkable ability to characterize

both heavy-tailed and light-tailed (with respect to the Gaussian one) data behavior. The multivariate GG

distribution was introduced in [33] as a multivariate generalization of the power exponential distribution. As a

member of the RES class, using the parametrization [7, rel. (27)] and (29), the GG distribution has a density

generator given by:

g(u) =
sΓ(m/2)

(2π)m/2bm/2sΓ(m/2s)
exp

(
− us

2sb

)
, u ∈ R+ (78)

where s > 0 and b > 0 are two parameters generally called exponent (or shape) and scale, respectively. The

scale parameter b is used to ensure that p(x) integrates to 1 in (9), while the exponent parameter s controls the

non-Gaussianity. In particular, for 0 < s < 1, the tails of the GG distribution are heavier with respect to the

Gaussian one, while for s > 1 they are lighter. For s tending to ∞, this distribution converges to a uniform

distribution in an ellipsoid centered on µ. Clearly, for s = 1 we get the Gaussian distribution. Otherwise for

s = 1/2, we get the Laplace distribution (also called double exponential distribution). Note that (78) is consistent

with [34] and [35] with different definitions of the scale.

It was proved in [36] that for s ∈ (0, 1], the GG distributions belong to the subset of CG distributions

whose p.d.f. of the mixing variable
√
τ is given by [36, (2.2)]. On the contrary for s > 1, the GG distributions

no longer belong to the CG family and the marginals are no longer GG distributed. In particular, in this case,

the univariate marginals of a multivariate GG distribution are not power exponential distributed, i.e., with p.d.f.
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given by [37]

p(x) =
1

σΓ(1 + 1
2s )21+ 1

2s

exp

(
−1

2

(
x− µ
σ

)2s
)
. (79)

Regarding the second-order modular variate Q of an m-dimensional GG-distributed r.v., it is straightforward

to deduce from (13) and (78) that:

Qs ∼ Gam
(m

2s
, 2sb

)
, (80)

We can exploit again (13) to get a closed-form expression of the p.d.f. of Q and R.

We note that the moments exist at all orders and Cov(x) = Σ if the parameters s and b are related by

the relation b = [m2 Γ(m2s )/Γ(m/2+1
s )]s. Note that in this case the kurtosis κ defined in (46) depends on the

dimension m, e.g., for m = 1 we get κ = Γ(5/2s)Γ(1/2s)
3[Γ(3/2s)]2 − 1 which gives κ = 0 for s = 1 (Gaussian case).

D. The K-distribution

Another example of RES distribution belonging to the CG-subclass is the K-distribution. An m-dimensional

r.v. x is said to be K-distributed if it has the CG-representation (14) characterized by a Gamma-distributed

texture,

τ ∼ 1

2
Gam(ν, 1/ν), (81)

where ν > 0 is a shape parameter. So the p.d.f. of τ is

p(τ) =
2νν

Γ(ν)
(2τ)ν−1 exp(−2ντ), τ ∈ R+ (82)

with E(τ) = 1/2.

By using the definition of CG-distribution, it can be shown that the density generator is given by:

g(u) =
νm/2

2ν−1πm/2Γ(ν)
(2νu)(2ν−m)/4K(2ν−m)/2

(√
2νu

)
, u ∈ R+, (83)

where Kα(·) denotes the modified Bessel function of the second kind of order α. The shape ν > 0 is a

parameter that controls the tails of the K-distribution: when ν → 0, the tails become heavier while for ν →∞

the K-distribution collapses onto the Gaussian one. Moreover, using (13), the p.d.f. of the second-order modular

variate Q and of the modular variate R can be directly derived.

Since the K-distribution belongs to the subclass of the CG distributions, it holds that the marginals belong to

the same family. Hence, in particular the univariate marginals xi are K-distributed with parameter ν, symmetry

center (µ)i and scatter (Σ)i,i with density generator given by (83) where m = 1.

To conclude, we note that the moments of all orders of the K-distribution exist and it can be shown that

the kurtosis in (46) is given by κ = 1
ν .
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E. Related distribution: the angular central Gaussian distribution

To conclude this section, let us introduce a distribution that has a strong link with the RES family, even if

it does not belong to this class. An r.v. x is said angular central Gaussian (ACG) distributed if it admits the

stochastic representation:

x =d
n

‖n‖
, where n ∼ RNm(0,Σ). (84)

For non-singular Σ, the p.d.f. of this distribution is given by [38]

p(x) =
2πm/2

Γ(m/2)
|Σ|−1/2 (

xTΣ−1x
)−m/2

, x ∈ RSm. (85)

Even if this expression may look similar to the p.d.f. of a centered RES-distributed r.v., it is worth underlying a

crucial difference: the density of a RES r.v., given in (9), is defined w.r.t. the Lebesgue measure on Rm, while

the density of an ACG r.v. in (85) is defined w.r.t. the Lebesgue measure on real unit sphere RSm. For this

reason, the stochastic representation provided in Sec. II-B does not hold for ACG r.v.. It can be noted from

(84) or (85), that the parameter Σ can only be identified up to a multiplicative scalar factor.

Furthermore, it turns out that if x is arbitrarily centered RES distributed (not necessarily Gaussian), i.e.,

if x ∼ RESm(0,Σ, φ), we get from its stochastic representation (7) with Σ = AAT of rank k and where

uk =d
n0

‖n0‖ and n0 ∼ RNk(0, I)

x

‖x‖
=d

Auk
‖Auk‖

=d
An0

‖An0‖
=d

n

‖n‖
, where n ∼ RNm(0,Σ). (86)

Consequently the projection of x onto the unit real m-sphere is also ACG-distributed. In its definition (84),

RNm(0,Σ) can be replaced by any RESm(0,Σ, φ) distribution and the term ACG appears to be a slight

misnomer.

Finally, note that this class of distribution is closed under standardized linear transformations, i.e., x ∼

ACGm(0,Σ), then w
def
= Bx/‖Bx‖ ∼ ACGk(0,BΣBT ) for any nonzero k ×m matrix B.

VI. PARAMETER ESTIMATION

We are interested in this Section to the estimation of the symmetry center µ and scatter matrix Σ (assumed

invertible here) of RES distributions. Suppose we have an i.i.d. sample x1, ..,xi, ..,xn of size n > m from

a RESm(µ,Σ, g) distribution absolutely continuous w.r.t. Lebesgue measure on Rm under finite second-order

moments. The identifiability issue is solved here by imposing constraint (43) which ensures that Cov(xi) = Σ.

A. Sample mean and sample covariance matrix

A natural estimate of the parameters µ and Σ are the sample mean µ̂
def
= 1

n

∑n
i=1 xi and the sample

covariance matrix (SCM) Σ̂
def
= 1

n−1

∑n
i=1(xi − µ̂)(xi − µ̂)T , respectively. It is well known that µ̂ and Σ̂ are

unbiased and mutually uncorrelated estimators. Under the particular case of Gaussian data, the two estimators are

then independent. µ̂ is RES distributed with symmetry center µ and scatter matrix 1
nΣ by imposing constraint
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(43) on this distribution which does not necessarily belong to the same RES distribution family as xi (see

Section IV-D). Under finite fourth-order moments, applying the CLT to
∑n
i=1 xix

T
i and

∑n
i=1 xi, it can be

shown that Σ̂ is asymptotically Gaussian distributed, i.e.,

√
n
(

vec(Σ̂)− vec(Σ)
)
→d RNm2 (0,RΣSCM ) (87)

with [23, p. 5]

RΣSCM = (1 + κ)(I + K)(Σ⊗Σ) + κvec(Σ)vecT (Σ), (88)

where κ is the kurtosis parameter (46) of the RESm(µ,Σ, g) distribution. Note that this asymptotic distribution

would also be the asymptotic distribution of the estimate 1
n

∑n
i=1(xi − µ)(xi − µ)T of Σ when µ is known.

For heavier tails than Gaussian distributions, κ > 0 and can be very large without any upper-bound (see e.g.

in Section V-B when κ approaches 4 for Student’s t-distribution) and consequently, the SCM estimate can be

a very bad estimator.

B. ML estimation

To take into account the particular RES distribution of the data, the maximum likelihood (ML) estimator is

often considered as the reference estimator because it is generally (when it exists and is unique) asymptotically

efficient with a speed of convergence in
√
n. From Slepian-Bangs formula (115), the Fisher information matrix

(FIM) for the parameter (µ, vecs(Σ)) is given by

FIM

 µ

vecs(Σ)

=n

 a0Σ
−1 0

0 DT [a1(Σ−1 ⊗Σ−1)+a2vec(Σ−1)vecT (Σ−1)]D

 , (89)

where

a0 =
E[Qϕ2(Q)]

m
, a1 =

E[Q2ϕ2(Q)]

2m(m+ 2)
and a2 =

1

4

(
E[Q2ϕ2(Q)]

m(m+ 2)
− 1

)
, (90)

assuming that g is continuously differentiable with ϕ(t)
def
= −2g′(t)/g(t). Hence under existence, uniqueness

and usual regularity conditions, the ML estimate (µ̂, Σ̂) is asymptotically Gaussian distributed:

√
n

 µ̂− µ

vec(Σ̂)− vec(Σ)

→d RNm+m2

 0

0

 ,

 RµML 0

0 RΣML

 , (91)

where RµML and RΣML can be deduced from (89) using the efficiency of the ML estimate:

RµML = σ0Σ and RΣML = σ1(I + K)(Σ⊗Σ) + σ2vec(Σ)vecT (Σ), (92)

with [39]

σ0 =
m

E[Qϕ2(Q)]
, σ1 =

m(m+ 2)

E[Q2ϕ2(Q)]
and σ2 = − 2σ1(1− σ1)

2 +m(1− σ1)
, (93)
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where σ1 and σ2 are free of scale ambiguity in contrast to σ0. Note that this asymptotic distribution was first

given in [39] by using the general structure of the covariance of random matrices whose distributions are radial.

Using the Delta method (see, e.g., [9, chap. 6]), the asymptotic distribution of the ML estimate V̂s of any

shape matrix Vs defined by (42) from the scale s(Σ) can be deduced:

√
n
(

vec(V̂s)− vec(Vs)
)
→d RNm2

(
0,RVs,ML

)
, (94)

with

RVs,ML = σ1Ps(Vs)(I + K)(Vs ⊗Vs)P
T
s (Vs), (95)

where Ps(Vs)
def
= I − vec(Vs)

ds(Σ)
dvecT (Σ)

is given for s(Σ) = [Σ]1,1, s(Σ) = 1
mTr(Σ) and s(Σ) = |Σ|1/m

by Ps(Vs) = I − vec(Vs)e
T
1 , Ps(Vs) = I − 1

mvec(Vs)vecT (I) and Ps(Vs) = I − 1
mvec(Vs)vecT (V−1

s ),

respectively. Finally, note that for s(Σ) = |Σ|1/m, (95) reduces to the simple expression:

RVs,ML = σ1(I + K)(Vs ⊗Vs)−
2σ1

m
vec(Vs)vecT (Vs). (96)

The ML estimator of µ and Σ are the vector µ̂ and the symmetric positive definite matrix Σ̂ that minimize

the negative log-likelihood function equal from (9)

L(µ,Σ) =
n

2
log |Σ| −

n∑
i=1

log
(
g[(xi − µ)TΣ−1(xi − µ)]

)
. (97)

Setting the derivatives of L(µ,Σ) w.r.t. µ and Σ to zero yields the following estimation equations:

0 =
1

n

n∑
i=1

ϕ[(xi − µ̂)T Σ̂−1(xi − µ̂)](xi − µ̂) (98)

Σ̂ =
1

n

n∑
i=1

ϕ[(xi − µ̂)T Σ̂−1(xi − µ̂)](xi − µ̂)(xi − µ̂)T . (99)

Except for the case where the function ϕ is constant, the set of implicit equations (98)-(99) does not guarantee

neither the existence nor the uniqueness of the ML estimators µ̂ and Σ̂. Some sufficient conditions to ensure

their existence and uniqueness are given in [40]. Note that for the Gaussian distribution, ϕ(t) = 1 from

(70) and (98)-(99) yield the sample mean µ̂ = 1
n

∑n
i=1 xi and the biased sample covariance matrix Σ̂ =

1
n

∑n
i=1(xi − µ̂)(xi − µ̂)T , respectively.

C. M -estimators

Since the ML estimator may be drastically affected by the presence of outliers or when the data distribution

deviates slightly from the RES distribution of the model, robust estimators have been proposed. Among the

different families of robust estimators, in the following we focus our attention on the class of M -estimators. As

for the ML estimator, an M -estimator can be obtained form the minimization of a function on the observation

with respect to the parameters of interest. A classical example consists in replacing in the negative log-likelihood

(97), the function − log(g([.]) by a loss function ρ(.) : R+ 7→ R (generally not related to g) to form another
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objective function. If ρ is also continuously differentiable with u(t)
def
= 2ρ′(t), an M -estimator is obtained by

minimizing this new objective function. By replacing ϕ(t) with u(t) and setting again the derivatives of this

objective function to zero, we obtain similar equations to (98) and (99). Some sufficient conditions are also

given in [40] to ensure the existence and uniqueness of this M -estimator.

The seminal paper by Maronna [41] defined a more general class of M -estimator by replacing ϕ(.) by the

weight functions u1([.]1/2) and u2(.) in (98) and (99), respectively, i,e.,

0 =
1

n

n∑
i=1

u1

(
[(xi − µ̂)T Σ̂−1(xi − µ̂)]1/2

)
(xi − µ̂) (100)

Σ̂ =
1

n

n∑
i=1

u2

(
(xi − µ̂)T Σ̂−1(xi − µ̂)

)
(xi − µ̂)(xi − µ̂)T . (101)

The functions u1([.]1/2) and u2(.) : R+ 7→ R need not be the same function and hence the more general

M -estimators need not be related to a minimization problem. Under sufficient conditions (called Maronna

conditions), it is proved in [41, Th. 4], the existence and uniqueness of solution (µ̂, Σ̂) of (100), (101) but also

[41, Th. 2] of (t,V) solution of

0 = E
[
u1

(
[(x1 − t)TV−1(x1 − t)]1/2

)
(x1 − t)

]
(102)

V = E
[
u2

(
(x1 − t)TV−1(x1 − t)

)
(x1 − t)(x1 − t)T

]
. (103)

Sufficient conditions are also given in [41, Th. 5] to ensure the strong consistency of the estimate (µ̂, Σ̂)

solution of (100), (101) to the solution (t,V) of (102), (103) with t = µ and V = σ−1Σ, where σ is the

unique solution of E[σQu2(σQ)] = m [39, Appendix 3].

Using a general result on M -estimators given in [42, Sec. 4], Maronna proved in [41, Th. 6] the asymptotic

gaussianity of (µ̂, Σ̂), where µ̂ and Σ̂ are asymptotically independent and where only the covariance of the

asymptotic distribution of µ̂ was specified. Then, using the affine invariance property of any M -estimators and

the general structure of the covariance of radial random matrices, the covariance of the asymptotic distribution

of Σ̂ was specified in [39, Appendix 2] to get:

√
n

 µ̂− µ

vec(Σ̂)− vec(σ−1Σ)

→d RNm+m2

 0

0

 ,

 RµM 0

0 RΣM

 , (104)

where

RµM =
α

β2
V =

ασ−1

β2
Σ (105)

where α = 1
mE[ψ2

1(
√
σQ)] and β = E[(1−m−1)u1(

√
σQ) +m−1ψ′1(

√
σQ)] with ψ1(t)

def
= tu1(t), and

RΣM = σ1(I + K)(V ⊗V) + σ2vec(V)vecT (V), (106)

where σ1 = (m+2)2a1
(2a2+m)2 and σ2 = a−1

2

[
(a1 − 1)− 2(a2 − 1)a1

m+(m+4)a2
(2a2+m)2

]
with a1 =

E[ψ2
2(σQ)]

m(m+2) and a2 =
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E[σQψ2
′
(σQ)]

m where ψ2(t)
def
= tu2(t) and ψ

′

2(t)
def
= dψ2(t)

dt . Furthermore, using the general structure of the

covariance of radial random matrices, it is proved in [39, Th. 1] that

σ2 ≥ −
2

m
σ1. (107)

Finally note that for u1(t) = u2(t2) = ϕ(t2), the M -estimate reduces to the ML estimate for which σ = 1 and

(104) reduce to (91).

To the best of our knowledge, when both µ and Σ are unknown parameters, it does not exist in the literature

an analysis of sufficient conditions under which an algorithm would jointly converge toward the solution of

the implicit equations (100), (101). However, when µ is known, an algorithm which is essentially a fixed-point

algorithm with a scale adjustment made at each iteration, with less severe conditions than that required in [41]

was presented in [43]. Without loss of generality, µ can be taken to 0 and the following algorithm is proved

in [43] to converge to the unique solution of Σ̂ = 1
n

∑n
i=1 u2[xTi Σ̂−1xi]xix

T
i :

Σ0 =
1

n

n∑
i=1

xix
T
i , Σk+1 =

1

n

n∑
i=1

u2[ckx
T
i Σ−1

k xi]xix
T
i , (108)

ck being the unique positive scalar satisfying 1
n

∑n
i=1 ψ2[ckx

T
i Σ−1

k xi] = m with ψ2(t)
def
= tu2(t).

D. Tyler’s M -estimator

When µ is known (equal to 0 without loss of generality), the M -estimator proposed by Tyler [44] has

become a very popular robust scatter estimator in the signal processing literature. This M -estimator is defined

by its weight function u2(t) = m
t associated with the loss function ρ(t) = m

2 log t, leading to the following

objective function

LT (Σ) =
n

2
log |Σ|+ m

2

n∑
i=1

log(xTi Σ−1xi) (109)

that is minimized by Σ̂, solution of the implicit equation

Σ̂ =
m

n

n∑
i=1

xix
T
i

xTi Σ̂−1xi
. (110)

Note that LT (c2Σ) = LT (Σ) +a where a does not depend on Σ. Consequently, if Σ̂ is solution of (110), c2Σ̂

is it too. The existence proof of solution of (110) given in Maronna [41] does not apply here, but existence

and uniqueness (up to a multiplicative constant) under continuous RES distribution in Rm is proved in [44], by

showing that it is the limiting point of the following specific fixed point algorithm: with Σ0 arbitrary symmetric

positive definite matrix,

Σ′k+1 =
m

n

n∑
i=1

xix
T
i

xTi Σ−1
k xi

, Σk+1 =
m

Tr(Σ′k+1)
Σ′k+1. (111)
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Under this same condition, it is also proved in [44] that the solution of (110) standardized so that Tr(Σ̂) = m

is strongly consistent to the symmetric positive definite matrix Σ which is also solution of

Σ = mE

[
x1x

T
1

xT1 Σ−1x1

]
with Tr(Σ) = m. (112)

Furthermore, under continuous RES distribution in Rm, it is proved in [44] that the solution Σ̂ of (110)

constrained to Tr(Σ̂) = m is asymptotically Gaussian distributed, i.e.,

√
n
(

vec(Σ̂)− vec(Σ)
)
→d RNm2

(
0,RΣTy

)
(113)

with

RΣTy =

(
1 +

2

m

)
(I + K)(Σ⊗Σ)− 2

m

(
1 +

2

m

)
vec(Σ)vecT (Σ). (114)

Comparing (106) to (114), we see that σ2 = − 2
mσ1 and therefore we have equality in (107).

Note that when xi are SIRV distributed, i.e., xi ∼ RCGm(0,Σ, Fτi) where here τi are assumed deterministic

and unknown, the ML estimate of Σ coincides with Tyler’s M -estimate (110). This estimate was introduced in

[45] and existence and uniqueness were studied in [46]. Tyler’s M -estimator enjoys four interesting properties:

• Objective function (109) is also the negative log-likelihood of i.i.d. data from an ACGm(0,Σ) distribution

(see (85)). Consequently Tyler’s M -estimator of Σ is the ML estimator Σ̂ (satisfying the constraint Tr(Σ̂) =

m) under the ACGm(0,Σ) distribution.

• Replacing xi by xi
‖xi‖ in (110) does not affect the solution of (110). Since xi

‖xi‖ is ACGm(0,Σ) distributed

for arbitrary RESm(0,Σ, g) distribution, the distribution of Tyler’s M estimator Σ̂ does not depend on

the density generator of this RES distribution. This is the reason why Tyler referred to his estimate as a

distribution-free estimator [44].

• Suppose x1, ..,xi, ..,xn are independent where xi ∼ RESm(0, c2iΣ, gi) with unknown parameters c2i and

arbitrary unknown density generators gi, then the ML of Σ corresponds to Tyler’s M -estimate [47, Th. 1].

• Tyler’s M -estimator can be considered as the most robust estimator of the scatter matrix of a RES

distribution in the sense of minimizing the maximum asymptotic covariance w.r.t. the generator density

(see [44, Remark 3.1], and [48, Th. 1].

Also, note that Tyler’s M -estimate has been extensively studied in the statistics literature (e.g., [49] has

specified the existence proof of solution of (110) and [50] have proved that Tyler’s iterative procedure (111)

has a linear convergence rate).

We finally note that many complementary results have been carried out on RES distributions (see e.g.,

[35] for ML estimate of GG scatter, [51] for Tyler’s estimate of structured scatter). Furthermore, most of the

definitions and results presented in this section have been extended to CES distributions with many new results

(see, e.g., [46], [52]–[57]).
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E. Slepian-Bangs formula

We use in this Section the real to complex representation to unify the Slepian-Bangs (SB) for RES, C-CES

and NC-CES distributed data. The SB formula provides a convenient way to compute the FIM and thus the

Cramer-Rao bound (CRB) on the real-valued parameter α parameterizing and characterizing the couple (µ,Σ)

of elliptically symmetric distributions. We omit this dependence in α to simplify the notations. To derive this

formula, it is necessary that the scatter matrix Σ is not singular and the second-order moments of x are finite,

which is equivalent to the first-order moments of Q being finite. Furthermore, to avoid the ambiguity between

the scatter matrix and the density generator, we either assume that Σ = Cov(x) or that there is a scale constraint

on Σ. This formula has been derived for the real Gaussian distribution in [58] and [59], then extended to the

circular complex Gaussian and non-circular Gaussian case in [60] and [61], respectively. This formula has

been extended to C-CES distributions in [62] and [63], and recently to NC-CES distributions [19]. In all these

scenarios, the density generator is assumed to be perfectly known. For RES distributed x, all the steps of the

proof of the SB formula for C-CES distributions given in [62] apply, and we get the following structured matrix

SB formula:

CRB−1(α) = a0
dµT

dαT
Σ−1 dµ

dαT

+

(
dvec(Σ)

dαT

)T (
a1(Σ−T ⊗Σ−1) + a2vec(Σ−1)vecT (Σ−1)

)
(
dvec(Σ)

dαT

)
, (115)

where a0 = ξr,1,m, a1 = 1
2ξr,2,m and a2 = 1

4 (ξr,2,m − 1) with

ξr,1,m
def
=

E[Qϕ2
r(Q)]

m
and ξr,2,m

def
=

E[Q2ϕ2
r(Q)]

m(m+ 2)
, (116)

where Q def
= Qr,m and ϕr(t)

def
= − 2

gr,m(t)
dgr,m(t)

dt .

Note that because (c2Σ, c2Q, cmgr,m(. c2), c2ϕr(. c
2)) gives the same RES distribution, the coefficient

ξr,2,m is free of scale ambiguity in contrast to ξr,1,m which depends on the scale factor. This is consistent with

eq. (115).

This SB formula allows us to directly deduce those of NC-CES distributed data obtained thanks to the

real to complex representation. This SB formula is similarly structured where µ, Σ, dµT

dαT
,
(
dvec(Σ)
dαT

)T
and

vecT (Σ−1) in (115) are replaced by µ̃, Σ̃, dµ̃
H

dαT
,
(
dvec(Σ̃)
dαT

)H
and vecH(Σ̃−1), respectively, where a0 = ξc,1,m,

a1 =
ξc,2,m

2 and a2 = 1
4 (ξc,2,m − 1) with

ξc,1,m
def
=

E[Qϕ2
c(Q)]

m
and ξc,2,m

def
=

E[Q2ϕ2
c(Q)]

m(m+ 1)
, (117)

where Q def
= Qc,m and ϕc(t)

def
= − 1

gc,m(t)
dgc,m(t)

dt . On the other hand, the SB formulas for C-CES distributed

data can be deduced directly by replacing Σ̃ by

(
Σ 0

0 Σ∗

)
, yielding the SB formulas proved in [62] and [63],
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which are also similarly structured with a0 = 2ξc,1,m, a1 = ξc,2,m and a2 = ξc,2,m − 1, where dµT

dαT
Σ−1 dµ

dαT
,(

dvec(Σ)
dαT

)T
and vecT (Σ−1) are replaced in by Re

(
dµH

dαT
Σ−1 dµ

dαT

)
,
(
dvec(Σ)
dαT

)H
and vecH(Σ−1), respectively.

Note that (a0, a1, a2) reduces to (1, 1/2, 0), (1, 1/2, 0) and (2, 1, 0) for real, complex noncircular and

complex circular Gaussian distributions, respectively. Note also that the decoupling between the parameters α1

of µ and the parameters α2 of Σ when µ and Σ have no parameters in common for Gaussian distributions,

extends to any elliptically symmetric distributions with

CRB(α1) =

(
a0

dµT

dα1
T

Σ−1 dµ

dα1
T

)−1

(118)

and

CRB(α2) =

((
dvec(Σ)

dα2
T

)T (
a1(Σ−T ⊗Σ−1) + a2vec(Σ−1)vecT (Σ−1)

)
(
dvec(Σ)

dα2
T

))−1

. (119)

The coefficients ξc,1,m and ξc,2,m are deduced from ξr,1,m and ξr,2,m by the general relations

ξc,1,m = ξr,1,2m and ξc,2,m = ξr,2,2m. (120)

For example, the coefficients ξc,1,m and ξc,2,m have been calculated for complex Student’s t and complex

generalized Gaussian distributions in [62] and [63]. They are given respectively by:

ξc,1,m =
ν/2

((ν/2)− 1)

(ν/2) +m

((ν/2) +m+ 1)
and ξc,2,m =

(ν/2) +m

(ν/2) +m+ 1
, (121)

ξc,1,m =
Γ(2 + m−1

s )Γ(m+1
s )

(Γ(1 + m
s ))2

and ξc,2,m =
m+ s

m+ 1
. (122)

Finally note that the SB formula for elliptically symmetric distributions has been extended when the data model

is misspecified by the parametric probabilistic model [64], and when the density generator is considered as an

infinite-dimensional nuisance parameter [65] or parameterized by a nuisance parameter [66].

VII. CONCLUSION

The aim of this chapter was to provide a short overview of the main properties of elliptically symmetric

distributions and it can be used as a background for all the other chapters in this book. There is no claim to

completeness in the material presented here. The reader interested in deeper discussions and investigations on

specific aspects may find the references list useful to this goal. As a last concluding remark, we would like

to highlight our choice to focus mainly on the RES distributions. As explained in the chapter, this class can

be considered as the most general one since it encompasses the C-CES and NC-CES distributions as special

cases. Some effort has been then put into showing explicitly the mapping between the RES class and all its

sub-class. We hope that this chapter may represent a reference for the reader helping him to not get lost while

going down his path through this book.
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