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Model-based upper-limb gravity compensation strategies for active
dynamic arm supports

Maxime Manzano1, Sylvain Guégan2, Ronan Le Breton2, Louise Devigne3 and Marie Babel1

Abstract— Neuromuscular disorders (NMDs) may induce
difficulties to perform daily life activities in autonomy. For
people with NMDs affecting the upper-limb mobility, dynamic
arm supports (DASs) turn out to be relevant assistive devices. In
particular, active DASs benefit from an external power source
to support severely impaired people. However, commercially
available active devices are controlled with push buttons, which
adds cognitive load and discomfort. To alleviate this issue,
we propose a new force-based assistive control framework.
In this preliminary work, we focus on the computation of
a feedforward force to compensate upper-limb gravity. Four
strategies based on a biomechanical model of the upper limb,
tuned using anthropometric measurements, are proposed and
evaluated. The first one is based on the potential energy of
the upper-limb, the second one makes a compromise between
the shoulder and elbow torques, the third one minimizes the
sum of the squared user joint torques and the last one uses a
probabilistic approach to minimize the expected torque norm
in the presence of model uncertainties. These strategies have
been evaluated quantitatively through an experiment including
nine participants with an active DAS prototype. The activity
of six muscles was measured and used to compute the mean
effort index (MEI) which represents the global effort required
to maintain the pose. A statistical analysis shows that the four
strategies significantly lower the MEI (p-value < 0.001).

Keywords: Dynamic arm support, Assistive robotics, Assis-
tive control, Force control, Neuromuscular disorders, Upper-
limb gravity compensation.

I. INTRODUCTION

Neuromuscular disorders (NMDs) include troubles in the
nerves, the muscles or the communication between both.
These troubles may come from different diseases such as
multiple sclerosis or spinal cord injury. When the upper-
limb is affected, the autonomy is reduced and performing
independently Activities of Daily Living (ADLs) such as
washing or eating, and more generally reaching and grasping
objects, can be challenging. In such situations, Assistive
Devices (ADs) provide a solution to keep performing ADLs
with autonomy.

Many ADs are already available to compensate for mobil-
ity impairments induced by upper-limb weakness. On the
one hand, there exists task-specific devices such as meal
assistance robots [1]. Some of them are designed to support
users with tremor while others are designed for people with
upper-limb muscle weaknesses. On the other hand, robotic
manipulators such as the Jaco robotic arm from Kinova
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Fig. 1: The active DAS prototype used to implement the four
proposed strategies to compensate for the upper-limb weight.

enable people with low mobility to keep their autonomy in a
larger set of ADLs as it allows not only to eat by oneself but
also to remotely manipulate objects [2]. However, the price of
such a device limits its number of users. Moreover, keeping
using the upper-limb may delay the loss of mobility for
people with muscular dystrophy [3], which robotic arms do
not permit. Between robotic arms and meal assistance robots,
a promising family of ADs are dynamic arm supports (DAS),
also called mobile arm supports. This technology supports
the upper-limb of people, enabling them to perform many
ADLs while keeping mobilizing their muscles. According to
[4], the DASs can be classified in three main categories:
non-actuated, passively actuated (or passive) and actively
actuated (or active) devices. Non-actuated devices are made
of passive joints that only block some motions to support
the user’s upper-limb. They are mainly used to relieve the
arm while performing table-top activities. Passive DASs are
able to store and give back mechanical energy thanks to
components such as a spring or a counterweight. Lastly,
active DASs have an external power input and generally
support the forearm with a vertical force. A recent clinical
study shows that passive DASs are effective for moderately
impaired people, while severely impaired people only benefit
from active DASs [5]. Moreover, if exoskeletons may be
included in the active DASs [6], most of them are bulky
because of many actuated joints and some of them require
to be carried by the user which is hardly possible for people
with NMDs. According to [5], the control system of active



DASs are not natural enough, which limits their effectiveness
and acceptability among users. Indeed, they use push buttons
to detect the user intent, which induces a high cognitive
load and prevents users from using both of their upper-limbs.
Moreover, the active DASs do not assist downward motions
as they only support the upper-limb against gravity, which
makes some activities even harder to perform such as pushing
on a door handle. In a more general way, even though some
studies already proved that DASs increase the abilities of
people with NMDs, their efficiency in an everyday context
is still discussed [7].

In this context, innovative control strategies are needed
to ease the use of active DASs. These strategies may rely
on sensors measuring physiological signals or on the user’s
residual motor abilities to efficiently detect user intent. [8]
references a large panel of intention detection strategies
dedicated to robotic upper-limb orthoses. For instance, an
elbow orthosis was developed by [9] to implement a position-
based control method: user intent is detected either from
EMG signals or from voluntarily developed force measured
on the DAS.

This paper proposes an innovative force-based control
framework for active DASs that provide a vertical force to
the forearm. In Section II, we present the general framework,
a model of the user’s upper-limb as well as four gravity
compensation strategies based on this model. Then, the Sec-
tion III presents the experiment that we performed with nine
participants without NMDs to evaluate the four proposed
strategies. The results are discussed in Section IV and we
draw first conclusions as well as guidelines for future works
in Section V.

II. MODEL-BASED CONTROL STRATEGIES

A. General force-based control framework

This paper proposes a force-based control framework for
active DASs that provides a vertical force to the user’s
forearm. In this framework, the control is based on the force
F ∗ which is the desired force to apply to the forearm. F ∗ is
computed from two contribution as

F ∗ = F ∗
g + F ∗

i , (1)

where F ∗
i is the intent force and F ∗

g is the gravity compensa-
tion force. F ∗

i comes directly from the interpretation of user
intent which is measured by sensors. This intent may be to
move upward or downward, or to develop a force. F ∗

g is a
feedforward term that compensates for the gravity acting on
the user’s upper-limb.

This framework is designed to reduce the cognitive load
of the user by removing the need for a manual controller to
operate the DAS. Furthermore, if the user intent is properly
detected, the active DAS is able to help him/her to develop
a force, even if this force is downward. In this case, the
total assistive force F ∗ will be reduced to benefit from the
user’s arm weight. This feature is not implemented in current
DASs.

As a first step to implement the proposed force-based
control framework, this paper only focuses on the F ∗

g com-
ponent. We propose four strategies to compute the gravity
compensation force F ∗

g based on a biomechanical model of
the upper-limb.

B. Upper-limb and DAS mechanical model

The upper-limb is modeled as a planar serial robot with
two rigid bodies (the upper-arm and the forearm), articulated
at the shoulder and elbow (Fig. 2). The lengths and masses
are noted lua and mua for the upper-arm and lfa and mfa

for the forearm. We assume the Center of Mass (CoM) of
these two bodies lies on their main axis. The distance from
shoulder to the upper-arm CoM is xGua

and the one from the
elbow to the forearm CoM is xGfa

. The shoulder and elbow
flexion angles are qs and qe and the user’s joint torques are τs
and τe. The armrest is considered as the end-effector of this
model (point P of Cartesian coordinates (x, y)). It is located
on the forearm with respect to the elbow with parameters lP
longitudinally and hP perpendicularly. The assistive force F
is applied vertically to the user’s forearm at this point P .
This force is computed from the motor torque τm, the motor
angle αm and the DAS lever length lm as

F =
τm

lm cosαm
. (2)

The motor position along the x0 axis is noted xm.

Upper-limb model

Dynamic arm support

Fig. 2: Upper-limb and DAS static model. Bold text indicates
vector quantities.

This model makes several simplifications. It considers
rigid bodies and perfect joints with only one degree of
freedom (DoF). It neglects the muscles and tendons which
may induce friction. The shoulder is modeled as a ball-socket
joint, neglecting some motions we are able to perform with
our shoulder complex and trunk movements. Lastly, only
planar motions are considered.

The Body Segment Inertial Parameters (BSIPs) of the
upper-limb and forearm (i.e., xGua , xGfa

, mua and mfa)
are required to compute elbow and shoulder torques that are



at the origin of the gravity compensation strategies. Further-
more, the uncertainty of those parameters may be needed
for some robust strategies. Six references from the literature
were used to estimate those parameters [10]–[15]. They all
use regression models to estimate the CoM positions and
human body segment masses. The simplest ones compute
the segment masses as a fraction of the human body mass
and the CoMs as a fraction of the segment lengths [10]–[13].
The most recent works estimate those parameters with more
anthropometric data such as the Body Mass Index (BMI),
age and sex of the user [14], [15].

In this paper, the BSIPs are computed as the mean of the
estimates given by [10]–[15]. The uncertainties are consid-
ered as the difference between the maximum and minimum
values of these estimates. The anthropometric measurements
required to estimate the BSIPs of the subjects are the sex,
age, weight, BMI, the lengths of the upper-arm, forearm
and hand as well as the circumferences of the upper-arm,
forearm, elbow, waist and hip.

C. Strategies to compute the assistive force

F ∗
g is computed to reduce both shoulder and elbow

torques. τs and τe are estimated thanks to the proposed
simplified model (Fig. 2) by applying the Newton’s second
law first to the forearm and then to the upper-arm. This gives
the elbow and shoulder torque equations


τe = −F (lP cos(qs + qe)− hP sin(qs + qe))

+mfa g xGfa
cos(qs + qe),

τs = τe + (mua xGua +mfa lua)g cos(qs)

− F lua cos(qs).

(3)

with g the gravitational acceleration and F the support force.
To support both the shoulder and elbow torques, a first

idea could be to zero τs since it is the highest one for many
poses. However this strategy is not acceptable since there
is a singularity when the point P is aligned vertically with
the shoulder. Thus, we propose four strategies to compute
the feedforward gravity compensation force F ∗

g based on the
mechanical model presented before. They all use the current
pose (qs, qe) and the user’s BSIPs as inputs.

1) Potential Energy Based (PEB) strategy: This first
strategy is based on the design technique of some passive
and hybrid DASs [16] which are design to have a constant
potential energy. For this strategy, we compute the gravity
compensation force as a conservative force, derived from a
potential energy called UDAS :

FPEB = −grad(UDAS), (4)

with FPEB the 2D gravity compensation force. Bold texts
indicate vector quantities in the sagittal plane (Fig. 2).
Alongside, we compute the upper-limb potential energy UUL

due to gravity as follow:

UUL = mfag
(
lua sin(qs) + xGfa

sin(qs + qe)
)

+muagxGua sin(qs).
(5)

Then, we assume the total potential energy is equal to a
constant U0 such that

UUL + UDAS = U0. (6)

Since U0 is constant, by differentiating Eq. (6) we get

−grad(UDAS) = grad(UUL) ⇔ FPEB =

(∂UDAS

∂x
∂UDAS

∂y

)
(7)

The Jacobian of the upper-limb is used to differentiate UDAS :

FPEB = J−T

(
∂UDAS

∂qs
∂UDAS

∂qe

)
with J =

(
∂x
∂qs

∂x
∂qe

∂y
∂qs

∂y
∂qe

)
. (8)

The DASs studied in this paper can only generate a vertical
force so this strategy is implemented by keeping only the
term along y0 to compute F ∗

g

F ∗
g = FPEB · y0. (9)

The Jacobian matrix is computed by differentiating the Direct
Geometric Model (DGM) of the upper-limb{

x = lua cos qs + lP cos qse − hP sin qse,

y = lua sin qs + lP sin qse + hP cos qse,
(10)

with qse = qs + qe.
2) Motor Ability Based (MAB) strategy: According to Eq.

(3), the operating point in the (τe, τs) frame follows a straight
line when changing the assistive force value F (Fig. 3).

Compromise area

Zero elbow torque

Zero shoulder torque

placement choice

placement 
possibilities by varying 

Fig. 3: Illustration of the Motor Ability Based (MAB)
strategy for an arm pose where the point (τe, τs) without
assistance (F = 0) lies in the first quadrant.

This strategy computes F ∗
g in two possible ways, depend-

ing on the upper-limb pose:
a) for some poses, there are no compromise to do: in-

creasing F reduces both joint torques τe and τs (red
and yellow regions in Fig. 3). The gravity compensa-
tion force F ∗

g is here computed to zero one or the other
torque while staying in the same quadrant;

b) other poses require a compromise between τe and τs:
increasing F reduces one torque but increases the other
one (blue region in Fig. 3). The gravity compensation
force F ∗

g is here computed to match the user’s motor
abilities in term of maximum joint torques, assumed
to be τmax

e and τmax
s . In other words, F ∗

g is computed
to ensure that τe/τs = τmax

e /τmax
s .



3) Minimal Torque Norm (MTN) strategy: For this strat-
egy, a quantity representing the global effort to maintain the
upper-limb pose is required. As a first approach, we may
want to minimize τ2e + τ2s . However, each user has different
motor abilities, so a coefficient α is introduced to put more
or less load on the minimization of the shoulder torque
compared to the elbow one. Thus, the gravity compensation
force F ∗

g is computed to minimize the ”torque norm” T

F ∗
g = argmin

F
T = argmin

F
(τ2e + ατ2s ), (11)

with τe and τs expressed according to Eq. (3).
4) Monte Carlo Based (MCB) strategy: All of the pre-

vious strategies rely on a model of the upper-limb that
we suppose to know perfectly. In practice, the BSIPs and
current pose of the upper-limb as well as the assistive force
applied to the forearm are not perfectly known. To take
these uncertainties into account, a strategy based on a Monte
Carlo simulation was created. The parameters required to
compute the torques were supposed to be independent ran-
dom variables uniformly distributed in an interval centered
on their nominal value. The size of the intervals is equal
to the parameters uncertainty. For a given upper-limb pose,
10000 set of parameters were randomly picked. Then, for
each parameter set, the torque norm T is computed with
different assistive force values with Eq. (11). For each value
of F , the Probability Mass Function (PMF) of T is computed
and F ∗

g is chosen to minimize the PMF expectation.

III. EXPERIMENT AND RESULTS

The effectiveness of the four gravity compensation strate-
gies to release the upper-limb was evaluated through an
experiment with nine participants without NMDs (Fig. 4).
See Table I for main characteristics of the participants.
To evaluate the effectiveness of the strategies, the activity
of six muscles involved in upper-limb movements (Biceps
Brachii, Triceps Brachii, Deltoideus Anterior, Deltoideus
Medius, Deltoideus Posterior and Trapezius Descendens)
was monitored and post-processed to compute the mean
effort index (MEI), inspired from [17] (see subsection III-
C for more details). The gravity compensation force F ∗

g was
provided by a DAS prototype presented in subsection III-A
while the participants performed static poses. An additional
trial was performed without the DAS as control. More details

(a) A participant with the DAS.
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Fig. 4: Experimental setup.

N Gender, M/F Age (y) Height (m) Weight (kg)
9 5/4 31 (22-45) 1.73 (1.65-1.85) 64 (53-74)

TABLE I: Participants main characteristics. Numerical data
are presented as mean (min-max). M: male, F: female.

on the experimental protocol are given in subsection III-
B. The statistical method and the results are presented in
subsections III-D and III-E respectively. This study was
approved by the Operational Committee for the Evaluation
of Legal and Ethical Risks (OCELER) of the Inria institute.

A. Experimental setup

Participants are first equipped with six wireless EMG
sensors (Delsys, Trigno) placed according to the SENIAM
project recommendations. They are seated on a chair
equipped with the DAS prototype (Fig. 4). This chair is
adjusted in front of the panel with six target points used for
repetitiveness of the static pose tasks between participants.

The DAS prototype follows the same architecture as the
Edero DAS from Armon (Fig. 5). A BLDC motor (My-
Actuator, RMD X6-S2) and a force sensor made of strain
gauges (Micro-Measurements, MMF307441) were used to
implement a closed-loop force control. The strain gauges
are glued on the aluminum alloy tube that links the armrest
and the motor. The motor is attached to a mechanism with
three articulated limbs thanks to 3D printed parts. The force
sensor was calibrated by fitting a bending beam model for
the aluminum alloy tube. An average filter with 40 samples
was added to improve the quality of the force measurement
signal. The closed-loop control and the data acquisition are
ensured by a control board (dSpace, DS1104) with a 400
Hz sampling rate. A PI controller with a dead-zone at its
input as well as an anti-windup is used to ensure that the
desired gravity compensation force F ∗

g is applied within a
±2N error range. After identifying the BLDC motor, the
gain were tuned to guarantee stability and a 1s time response
for step inputs. User upper-limb pose was estimated by
measuring the configuration of the 3-limbs mechanism with
potentiometers (parameter xm in Fig. 2) and with the motor
angle measurement αm. It was assumed that α = 1 for the
MTN and MCB strategies (Eq. (11)), and τmax

e+ /τmax
s+ = 0.7

for the MAB strategy (according to maximum torque values
used in the design of exoskeletons [18]).

MATLAB Simulink
+ dSpace ControlDesk

dSpace DS1104
controller board

Programs

Data

MMF30744 Strain Gauges (Micro-Measurements) 
+ conditioning circuit

potentiometers (x3)

16 bit ADC (-10V to 10V)

RS422 
Serial 

Interface

Torque 
command

Angle 
measurement RMD X6-S2 (MyActuator)

BLDC Motor (all embeded)
18 Nm nominal torque

Aluminium alloy tube

Arm
rest

Motor

Mechanical structure

Torque

Bending
torque

Analog
Voltages

Power supply (

Fig. 5: DAS prototype hardware architecture



B. Experimental protocol

First, the participants received an information sheet with
detailed information about the experiment and a description
of the protocol. They were asked to sign a consent form
to approve their agreement in the participation. Then, the
required anthropometric data for the gravity compensation
strategies (listed at the end of subsection II-B) are measured
on the participants. They are then equipped with the EMG
sensors (skin was shaved if required and washed with med-
ical alcohol) and installed on the chair in front of the panel
with the six target points, as in Fig. 4. The participants were
firstly asked to perform the six static poses without the DAS
to record the reference muscle activity signals. Next, they
performed these static poses four times again to evaluate
the four gravity compensation strategies. The strategy and
the pose orders were randomized. The participants kept the
static poses during seven seconds.

C. EMG signal processing and MEI computation

For each static pose, the average muscle activities were
computed as the root mean square (RMS) value of the raw
EMG signals in a five seconds window. For each measure-
ment, it was checked that the assistive force F stays in the
±2N range around the desired F ∗

g force to discard outliers.
For each pose p and muscle m, the mean value of the RMS
recorded without DAS across the six poses (RMS0,m) was
used for normalization (as suggested in [19]):

RMS0,m =
1

6

6∑
p=1

RMS0,p,m. (12)

The normalized RMS values (nRMSp,m) are then computed
from RMS0,m as

nRMSp,m =
RMSp,m

RMS0,m

. (13)

As a score to assess the global effort to maintain the upper-
limb in pose p, the MEI inspired from [17] was computed
as the mean value of the nRMS across the six muscles:

MEIp =
1

6

6∑
m=1

nRMSp,m (14)

Differently from [17], no weighting was applied to compute
the MEI. Indeed, a too high F ∗

g force will increase the activ-
ity of muscles less physiologically involved in weight support
(such as the Triceps Brachii), which may be attenuated by
the weighting process.

D. Statistical method

The analysis of the MEI data was performed with R
software (version 4.2.2, R Core Team). Three factors are
influencing the MEI (the dependent variable): the pose, the
gravity compensation strategy and the participant. Since the
pose and strategy are considered as fixed effect whereas the
participant as a random effect, the data was fitted to a linear
mixed model using the ”lme4” package with the formula

MEI∼Pose + Strategy + (1|Participant). (15)
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Fig. 6: MEI results across the four strategies and control trial
without assistance (C). The results are grouped by strategy
with boxplots. Significant differences are indicated.

To check the hypothesis of this model, a Shapiro–Wilk test
was run on residuals which reveals they could be assumed
to be normally distributed (p > 0.2). A Wald Chi-Squared
test was then run to check global significance of the pose
and the strategy on the MEI. Post-hoc analysis was then
performed with Tukey tests to check significant differences
between the poses and the strategies. p-values were adjusted
with a single-step method. The statistical significance level
was set to p < 0.05. Higher significance levels are indicated
by ’**’ and ’***’ for p < 0.01 and p < 0.001 respectively.

E. Results

According to the Wald Chi-Squared test results, both
pose and strategy have a significant influence on the MEI
(p < 0.001). According to Tukey’s test, all strategies reduce
significantly the MEI (p < 0.001) compared to the control
trial without assistance (C) as shown in Fig. 6. However, they
do not have the same effectiveness. Indeed, MAB has a mean
MEI of +0.1 (95% confidence interval of ±0.08, p < 0.01)
compared to MTN, and +0.16 (95% confidence interval of
±0.09, p < 0.001) compared to PEB. MCB has a lower
median value than MAB (−0.15) but a greater interquartile
compared to MTN (+0.05) and PEB (+0.12) strategies. No
significant difference is observed between MCB, MTN and
PEB, but PEB presents the lowest median value (0.46) and
smallest interquartile range (0.19). Comparing the influence
of the poses on the MEI, all of them are pairwise significantly
different (p < 0.01) except from poses 3, 5 and 6 which are
the three poses at the same height on the panel (Fig. 4).
The median value of the MEI grouped by pose increases
with the height of the target point, from 0.42 with pose 1
until 0.94 with pose 4. Lastly, looking at pose-wise impact
of the strategies, pose 1 seems not affected by the different
strategies while all the other poses present lower median
values but also higher interquartile ranges with all strategies
compared to the control trial with no assistance.



IV. DISCUSSION

The results show that the four gravity compensation
strategies are efficient to release the upper-limb of people
with no NMDs. The MAB strategy has the worst results
in terms of mean MEI and inter-subject variability (Fig. 6).
At the opposite, the PEB strategy shows the lowest mean
MEI and inter-subject variability. The presence of outliers
on poses 4 and 5 in the PEB strategy might come from
participants which upper-limb was almost outstretched (i.e.,
near a singularity in the upper-limb model) which causes
the desired F ∗

g force to diverge since it is computed from
the inverse Jacobian of the upper-limb, according to Eq.
(8). This undesired behavior at the border of the upper-
limb workspace will be corrected in future works. The
four strategies are effective both for outstretched arm tasks
(pose 3 to 6) requiring substantial effort, and for task with
low muscle demand (pose 1) where the system does not
overcompensate the arm weight. Moreover, the 2D model is
efficient to support the arm in 3D since poses 3, 5 and 6 show
no significant differences between them. However, all of the
four strategies tend to increase the inter-subject variability.
Since the strategies are based on a simplified model of the
upper-limb, it may be hazardous to completely rely on it to
generate the assistive force. The level of assistance might
be adapted to every user, either by a global factor on the
F ∗
g force or by tuning the α coefficient for MTN and MCB

strategies for instance. This may lead to better results for
each participant and thus a lower inter-subject variability.

V. CONCLUSION

This paper presented a preliminary study which aimed
to design a new framework to control active dynamic arm
supports. We proposed four different gravity compensation
strategies to support the upper-limb of people with neuro-
muscular disorders. These strategies are based on an upper-
limb model and aim to reduce both elbow and shoulder
torques with a single vertical force applied on the forearm
by the arm support. The strategies were evaluated through
an experiment with nine participants equipped with an active
dynamic arm support prototype, in which the activity of
six muscles was measured while performing static poses.
The results show that the four strategies are efficient to
support the upper-limb. The potential-energy-based (PEB)
strategy shows the best results in terms of general arm release
and inter-subject variability. In future works, the proposed
gravity compensation strategies will be improved to be more
suited to every users. The user intent will also be taken into
account to implement the proposed force-based framework
with gravity compensation. This framework will be then
compared to position-based strategies and tested with people
with neuromuscular disorders.
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