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Abstract. In this paper we consider a general class of stochastic differ-
ential equations driven by α-stable processes, α ∈ (1, 2), with continuous
coefficients functions with at most linear growth. An Euler-Maruyama
approximate solution is proved in the L2p space for any 1 ≤ 2p < α. We

obtain a rate of convergence of order n− p2

2 . Our proposed method is new
in this context and is based on a level truncation method by separating
the large and small jumps of the α stable process along the Lévy-Itô
decomposition. Along the paper we give some numerical simulations
of stochastic models that agree with our results, namely some stable
driven Ornstein-Uhlenbeck, Cox-Ingersoll-Ross and Lotka-Volterra type
processes.

AMS Subject Classification: 60G17, 60G52, 60H10, 60H20, 65C30,
65C20, 60E07.
Key words and phrases: Stochastic differential equation; Non-Lipschitz
condition, Approximation, Stable process.

1. Introduction

Models such as Stochastic Differential Equations (SDEs) are a natural choice
for modelling the time evolution of dynamic systems and have a wide range of
applications in many disciplines such as population dynamics, epidemiology,
finance and biology. Let (Ω,F ,Ft,P) be a complete filtered probability space
satisfying the usual conditions. Moreover, (Ω,F ,Ft,P) is rich enough to
contain other processes considered in this paper, which aims to study the
following stochastic differential equation (SDE) driven by α-stable processes,
α ∈ (0, 2) : {

dXt = f(Xt)dt+ ϕ(Xt−)dZt, t ∈ [0, T ]
X0 = x ∈ R, (1)

1
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where x0 is a starting point and T > 0 is a time horizon, under certain
conditions on the functions f and ϕ. In the theory of stochastic processes
and its applications, it is important to find existence conditions for solu-
tions of the SDE. There are different notions of existence and uniqueness.
A weak solution is a solution that satisfies the SDE (1). A strong solution
is a predictable process (Xt,Ft) that satisfies the SDE (1). By definition, a
weak solution that is predictable is a strong solution. Pathwise uniqueness
holds if any two solutions are indistinguishable. Some results are available
on the existence under various conditions of the coefficients of the above
SDE. The existence of weak solutions to the above SDE under linear growth
conditions are well-known results in stochastic calculus as well as for gen-
eral Lévy processes Z, see e.g. Rong (2006); Protter (1991). For example,
assuming that the drift and diffusion coefficients are continuous and have
at most linear growth, then there is weak existence in Lp for any p ∈ (0, α),
see Proposition 2 in Fournier (2013) for α ∈ (0, 2) and α ̸= 1. This weak
existence is also contained in Rong (2006).

For non-Lipschitz coefficients and considering α-Stable driven SDE, some
results have been studied before. In Bass et al. (2004); Bass (2004); Komatsu
(1982), when Z is symmetric with α ∈ (1, 2), it was shown that if f = 0
and ϕ is Hölder continuous of order β ∈ (0, α0) with α0 = α−1 ∧ 1, there is
a weak solution (see Theorem 1.1 in Bass et al. (2004)). If ϕ has a modulus
of continuity ρ satisfying

∫
0+

1
ρ(x)α = ∞, then there is a strong solution and

the solution is pathwise unique. This condition is the exact analogue of the
Yamada–Watanabe condition for SDE driven by a Brownian motion. If the
drift term f is Hölder continuous of order β > 2−α

2 and α ∈ [1, 2) with
β ∈ (0, 1) and g is Lipshitz continuous and bounded, then, the existence
and uniqueness of a strong solution is proved in Priola (2012), see also
Mikulevičius and Xu (2018), for non-degenerate symmetric stable processes
Z with values in the higher dimensional space Rd, d ≥ 1. The proof is based
on the associated integro-differential operators of Kolmogorov type.
In Pamen and Taguchi (2017), when ϕ is bounded and the drift function
on the form f = F (t, x) is a bounded β-Hölder continuous in space and
η-Hölder in time with η ∈ [1/2, 1] and β ∈ (0, 1), the pathwise uniqueness
was proved by applying Gronwall’s lemma and using the elliptic version of
the Kolmogorov equation and the regularity of its solution.
Recently, in Athreya et al. (2020), they established strong existence and
uniqueness whenever ϕ = 1 and the drift function f belongs to the Besov
Hölder space Cβ for β > 1

2 − α
2 with Z symmetric for α ∈ (1, 2).

Suppose that ϕ is non-decreasing and Hölder continuous with index 1 − 1
α

and f is the sum of a Lipschitz continuous function and a non-increasing
function. It is shown in Li and Mytnik (2011); Fu and Li (2010) that both
the strong existence and path uniqueness hold if α ∈ (1, 2) and Z has only
positive jumps. This latter result has been extended in Fournier (2013).
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The technique in Fournier (2013) is based on the Itô formula for jump pro-
cesses and some technical integrals (see Lemmas 7 and 9 in Fournier (2013))
together with an approximate sequence iteration method.

It is possible to appreciate the basics of how to simulate SDEs numerically
with only a background knowledge of the Euler-Maruyama scheme, which is
a well-known method for approximating any solution. In general, the conver-
gence of numerical methods is studied under the assumption that the coeffi-
cients of the SDE is globally Lipschitz continuous. However, this assumption
is not always satisfied for SDEs used in practice (e.g. mathematical finance,
optimal control problems and filtering), so the global Lipschitz-based idea is
not immediately applicable. This leads to the study of the Euler-Maruyama
approximation for SDEs with irregular coefficients. Some results are now
available on the approximate solutions of SDEs driven by a stable process as
well as on the speed of convergence of the approximation. The Itô-Tanaka
technique has traditionally been used to obtain convergence rates for Euler
schemes, which has important applications in stochastic financial theory.
In Pamen and Taguchi (2017), when ϕ = 1 and the drift function f = F (t, x)
is a bounded β-Hölder continuous in space with β ∈ (0, 1) and, η-Hölder in
time with η ∈ [1/2, 1], a strong approximate solution is proved and the rate
of convergence for the Euler-Maruyama approximation is given. More pre-
cisely, using the Itô-Tanaka trick method and assuming that there is a strong
solution with α + β > 2, the rate of strong convergence was derived in the
form n−1 when p ≥ 2

β and in the form n−pβ/2 for d-dimensional truncated

symmetric α-stable process when d ≥ 2 for α ∈ (1, 2) and 1 ≤ pβ < 2 or
p ∈ [1, 2].

Similarly, Mikulevičius and Xu (2018) find a strong approximate solution

and a rate of convergence of order n−pβ/α when p ∈ (0, α/β) and Z is a
symmetric stable process of index α ∈ [1, 2) whenever f is β-Hölder contin-
uous with β > 1− α

2 and ϕ is a bounded Lipshitz continuous function. See
also Wu and Hao (2023) for a weak convergence rate under similar condi-
tions.

In this paper, we consider the following SDE:

Xt = x0 +

∫ t

0
f(Xs)ds+

∫ t

0
ϕ(Xs−)dZs, t ∈ [0, T ], (2)

where Z is a α-stable process with α ∈ (1, 2), not necessarily symmetric,
under the following linear growth assumptions for p > 0 :

(C1)
|ϕ(x)|p ≤ Lϕ(1 + |x|p) Lϕ > 0 x ∈ R.

(C2)
|f(x)|p ≤ L(1 + |x|p) L > 0 x ∈ R.
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Particularly, we also consider the case where f and ϕ are continuous Lip-
chitz and Hölder functions:

(A1) The function ϕ is Hölder continuous with exponent β ∈ (0, α2 ) that is

|ϕ(y)− ϕ(z)| ≤ cϕ|y − z|β cϕ > 0 y, z ∈ R.

(A2) The function f : [0, T ] × R → R is a continuous L-Lipchitz function
that is :

|f(x)− f(y)| ≤ L|y − z| L > 0 y, z ∈ R.

We investigate the existence of a consistent Euler-Maruyama approximate
solution, defined as follows.

X̃n
t = x0 +

∫ t

0
f(X̃n

πn
s
)ds+

∫ t

0
ϕ(X̃n

πn
s
)dZs, (3)

where πn
t = max{tk, tk ≤ t} with the size step h = ∆n = n−δ for some

δ > 0; X̃n
t = Xn

tk
for all k = 0, ..., n− 1 and

{
Xn

tk+1
= Xn

tk
+ f(Xn

tk
)∆n + ϕ(Xn

tk
)(Ztk+1

− Ztk).

Xn
0 = x.

While this process is pleasant to handle from a theoretical point of view, it is
easy for simulation purposes at points tk as well as its linearly interpolated
version between points tk and tk+1 with tk+1 − tk = ∆n.

Compared to the above mentioned previous works, we have established a new
result on the weak approximate solution as well as the rate of convergence for
the SDE (2). Moreover, our proof methodology is new and not based on the
Itô-Tanaka trick method, but on the Lévy-Itô decomposition together with
a truncation method for stable integrals developed in Manou-Abi (2015);
Joulin and Manou-Abi (2015). Our result extends the aforementioned work
on approximate solution to the case of Lipschitz drift function and Hölder
continuous diffusion coefficients. This paper is organised as follows. In
Section 2, we discuss the primary analytical tools, introduce notation and
preliminary results on weak existence for SDE (2). In Section 3, we first
give some preliminaries moment bound results of a solution of the SDE (2).
After that we present our main theorems. Namely, if the functions ϕ and f
are continuous and satisfy linear growth conditions then for any 1 ≤ 2p < α,
then there exists a weak approximate solution of (2) in L2p space and the

rate of convergence is of order n− p2

2 . In section 4 we present the proofs of
the main results. The last section is devoted to numerical simulations of
various stochastic models that are consistent with our results.
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2. Preliminaries

In this part, we recall the definition of Lévy processes and introduce the
α-stable process as a member of the class of Lévy processes. We also intro-
duce some notations that will be useful throughout the paper. We follow
the presentation in Ken-Iti (1999); Applebaum (2009). We consider a prob-
ability space (Ω,F ,P) equipped with the filtration (Ft)t∈[0,T ] and satisfying
the usual conditions as above.

Definition 2.1. A real stochastic process (Zt)t∈[0,T ] defined on a filtered
probability space (Ω,F , (Ft)t∈[0,T ],P) is said to be a Lévy process if Z0 = 0
almost surely (a.s.) with the following properties:

1. Z is stochastically continuous i.e., for any ϵ > 0 and t, s ≥ 0,

lim
s→0

P (|Zt+s − Zt| > ϵ) = 0.

2. Z has stationary increments, i.e., for 0 ≤ s ≤ t, the distribution of
Zt − Zs does not depend on s, namely has the same distribution as
Zt−s.

3. Z has independent increments, i.e., for 0 ≤ s ≤ t, Zt − Zs is inde-
pendent of Fs.

4. The paths of Z are P-a.s. right-continuous in t ≥ 0 and has left
limits in t > 0 (cádlág).

Note that the last point above can be dropped, since one can prove that there
is always a cádlág modification of the stable process Z. Set ∆Zt = Zt−Zt−.
The jumps part of the stochastic process Z can be described by its Poisson
random measure (jump measure of Z on the interval [0, t]), defined as

µ(t, A) =
∑

0≤s≤t

IA(∆Zs), A ∈ B(R∗),

the number of jumps of Z on the interval [0, t] whose size lies in the set
A bounded below. For such A, the process µ(, A) is a Poisson process and
the Lévy measure ν is defined by ν(A) := E(µ(1, A)). In the following, we
denote the compensated random martingale measure by

µ̃(t, A) = µ(t, A)− tν(A).

A special class of Lévy processes that can contain infinitely many jumps is
the following class of α-stable processes. We now follow the presentation in
Cattiaux and S. Manou-Abi (2014); Manou-Abi (2015).

Definition 2.2. A real stochastic process (Zt)t∈[0,T ] defined on a filtered
probability space (Ω,F , (Ft)t∈[0,T ],P) is said to be an α-stable process with
characteristics (b, c+, c−), if it is a Lévy process with the following charac-
teristic function :

φZt(u) = exp t

(
iub+

∫ +∞

−∞
(eiuy − 1− iuyI|y|≤1)ν(dy)

)
, t ∈ [0, T ],
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where b stands for the drift parameter of Z and ν the Lévy measure defined
on R \ {0} by

ν(dx) :=
dx

|x|α+1

(
c+ 1{x>0} + c− 1{x<0}

)
.

The parameters c+, c− above are non-negative with furthermore c++c− > 0
and c+ = c− when α = 1. The process is said to be symmetric if c+ = c− :=
c. It i said to be strictly α-stable if b = 0. In the case α ∈ (1, 2), the drift
parameter is given by

b := −
∫
|y|>1

y ν(dy) = −(c+ − c−)

α− 1
when α ̸= 1.

An α-stable process is closely related to the notion of self-similar process.
The process Z is said to be strictly α-stable if we have the self-similarity
property

k−1/α (Z(kt))t∈[0,T ]
d
= (Z(t))t∈[0,T ],

where k > 0 and the equality
d
= is understood in the sense of finite dimen-

sional distributions. Note that α-stable processes are interesting due to the
self-similarity property and the fact that the Lévy measure and the Lévy-Itô
decomposition are almost completely explicit for the one dimensional case.
In order to control the jump size of Z and the momentum behaviour of
a stable stochastic integral, we introduce the following truncation method
developed in our previous paper Manou-Abi (2015) and also in Joulin and
Manou-Abi (2015). As an Lévy process, Z is a semimartingale with respect
to FZ

t := σ(Zs : s ∈ [0, t]), t ∈ [0, T ], provided it satisfies the usual hypoth-
esis, i.e. completeness and right-continuity. The Lévy-Itô decomposition is
given by

Zt = bR t+

∫ t

0

∫
|x|≤R

x (µ− σ)(ds, dx) +

∫ t

0

∫
|x|>R

xµ(ds, dx), t ∈ [0, T ],

where R is some arbitrary positive truncation level (classically chosen to be
1) and µ is a Poisson random measure on [0, T ]×R with intensity σ(dt, dx) =
dt⊗ ν(dx). Here bR is the drift parameter given by

bR := b+

∫
1<|x|≤R

x ν(dx).

Denote respectively by

ZR− =

∫ t

0

∫
|x|≤R

x (µ− σ)(ds, dx) and ZR+ =

∫ t

0

∫
|x|>R

xµ(ds, dx).

The first has a compactly supported Lévy measure and is a square-integrable
martingale with infinitely many jumps bounded by R on each compact time
interval, while the second is an integrable compound Poisson process with
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jumps larger than R. Let K be a (FZ
t )t∈[0,T ]-predictable process belonging

to L2(Ω× [0, T ]) that is ∫ T

0
E[K2

t ] dt < +∞.

Then the stable integral XT :=
∫ T
0 Ks dZs is well-defined as a stochastic

integral with respect to the Lévy-Itô decomposition of Z, that is X = AR +
XR− +XR+ where for t ∈ [0, T ]:

AR
t := bR

∫ t

0
Ks ds, XR−

t :=

∫ t

0
Ks dZ

R−
s and XR+

t :=

∫ t

0
Ks dZ

R+
s .

It is also known in Rosinski and Woyczynski (1986), that if Z is a symmetric
stable process and K is a FZ-predictable process belonging to Lα(Ω×[0, T ]),
i.e., ∫ T

0
|Kt|αdt < ∞ a.s.,

then the stable integral XT :=
∫ T
0 KsdZs is also well defined. The following

elementary and classical Gronwall inequality will be useful to make some
estimates in this paper.

Lemma 2.1. Let C1, C2 > 0 and H : R+ → R+ be a function such that for
all t ∈ [0, T ],

H(t) ≤ C1 + C2

∫ t

0
H(r)dr.

Then

H(t) ≤ C1e
C2t, t ∈ [0, T ].

A simpler proof can be done in the following way.

Proof. From the assumption (2.1), we deduce that

d

dt

(
e−K2t

∫ t

0
ϕ(r)dr

)
≤ K1e

ate−K2t.

Integrating this inequality yields to

e−K2t

∫ t

0
ϕ(r)dr ≤ K1e

at

K2
(1− e−K2t),

so that

ϕ(t) ≤ K1e
at +K2

∫ t

0
ϕ(r)dr ≤ K1e

ateK2t ≤ K1e
(a+K2)T , ∀ t ∈ [0, T ].

□

Let us recall a weak existence result from Fournier (2013), Proposition 2.
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Lemma 2.2 (Fournier (2013)). Let Z be a α-stable process with index α ∈
(0, 2) and α ̸= 1. Let f and ϕ be continuous functions with at most linear
growth (C1) and (C2). There is a weak solution for the SDE (2) such that
for any p ∈ (0, α), we have

E sup
t∈[0,T ]

|Xt|p < ∞. (4)

Typical examples of conditions (C1) and (C2) are Lipschitz and Hölder
continuous functions.

In the remainder of this paper we will use the following convention for con-
stants: C and C∗ denote a positive boundary constant whose value may
change from line to line. Constants denoted by Cβ,L, Cβ,L,T , Cβ,α, Cϕ,β,α,
Cϕ, Cβ,α,ϕ,b are all positive and their exact values are not important. The
dependency of constants on parameters is given in parentheses if necessary,
e.g. we will often use the following constants

C1(α) =
c+ + c−

α
, C2(α) =

c+ + c−
2− α

, C(α, b) = 8b2 + 8C1(α)C2(α),

C(β, L) = max
(
22βL, 22β|f(0)|2β

)
, C(ϕ) = max

(
2ϕ(0)2, 2c2ϕ

)
.

Sometimes 2β is replaced by p and cϕ by Lϕ.

3. Main Results

In this section we aim to present the main theorems of this paper. We as-
sume α > 1 and we first consider a given weak solution of the SDE (2).
Recall that Lp-boundedness property for any p ∈ (0, α) of the stochastic

integral process
∫ t
0 ϕ(Xs)dZs is also well kwown in the literature whenever

Z is a symmetric stable process or when ϕ is non-negative, see Hongwei
(2010), Lemma 2.4. or Mikulevičius and Xu (2018) whenever the integrand
process (ϕ(Xt))t ∈ Lα(Ω× [0, T ]). The Lp boundedness property for a weak
solution is well known, as in Lemma 2.2. However, we give a different proof
in L2p(Ω× [0, T ]) space with 1 ≤ p = 2β < α, which is a new methodology
that we describe in the following lines.

Lemma 3.1. Let Z be an α-stable process with index α ∈ (1, 2) and consider
a weak solution (Xt)t∈[0,T ] of the SDE (2) starting at point x0. Under the
assumptions (C1) and (C2), for any 1 ≤ 2p < α, there exists a positive
constant C depending on L, p, α, Lϕ, b, c+, c− and T such that

sup
t∈[0,T ]

E|Xt|2p ≤ C
(
|x0|2p + 1

)
. (5)

Lemma 3.2. Let Z be an α-stable process with index α ∈ (1, 2) and consider
a weak solution (Xt)t∈[0,T ] of the SDE (2) starting at point x0. Under the
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assumptions (A1) and (A2), for any 1 ≤ 2β < α, there exists a positive
constant C depending on L, β, α, cϕ, b, c+, c− and T such that

sup
t∈[0,T ]

E|Xt|2β ≤ C
(
|x0|2β + 1

)
. (6)

Remark 3.1. This result holds (according to the methodology of the proof)
if we replace the assumption (A2) by f being a sum of a Lipschitz function
and a negative function. If ϕ is bounded, the result holds again.

For the sake of simplicity and clarity, we give the proof of Lemma 3.1 as
follows.

Proof. Consider 1 ≤ 2β < α and α ∈ (1, 2). We have

E|Xt|2β ≤ 32β−1 |x0|2β + 32β−1E
∣∣∣∣∫ t

0
f(Xs)ds

∣∣∣∣2β
+ 32β−1E

∣∣∣∣∫ t

0
ϕ(Xs)dZs

∣∣∣∣2β
≤ 32β−1 |x|2β + 32β−1E

∣∣∣∣∫ t

0
f(X(s))ds

∣∣∣∣2β
+ 32β−1E

∣∣∣∣∫ t

0
ϕ(Xs)dZs

∣∣∣∣2β
= 32β−1

(
|x0|2β + J1(t, β) + J2(t, β)

)
,

where

J1(t, β) = E
∣∣∣∣∫ t

0
|f(Xs)|ds

∣∣∣∣2β and J2(t, β) = E
∣∣∣∣∫ t

0
ϕ(Xs)dZs

∣∣∣∣2β .
Note that from the Lipschitz condition (A2) we can derive the following
linear growth condition:

|f(x)|2β ≤ Cβ,L(1 + |x|2β). (7)

Using Hölder inequality we have:

J1(t, β) ≤ t

∫ t

0
E|f(Xs)|2βds ≤ Cβ,L,T

∫ t

0
(1 + E|Xs|2β)ds. (8)

Note that

J2(t, β) = E
∣∣∣∣∫ t

0
ϕ(Xs)dZs

∣∣∣∣2β = 2β

∫ +∞

0
x2β−1P

(∣∣∣∣∫ t

0
ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
dx.

Let us first establish a tail bound for the stochastic integral
∫ t
0 ϕ(Xs)dZs

appearing in J2(t, β) if ϕ satisfies the assumption (A1). We have
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P
(∣∣∣∣∫ t

0
ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ P

(∣∣∣∣∫ t

0
bRϕ(Xs)ds

∣∣∣∣ ≥ x

2

)
+ P

(∣∣∣∣∣
∫ t

0

∫
|y|≤R

y ϕ(Xs)µ̃(ds, dy)

∣∣∣∣∣ ≥ x

2

)

+ P

(∣∣∣∣∣
∫ t

0

∫
|y|≤R

y ϕ(Xs)µ(ds, dy)

∣∣∣∣∣ ̸= 0

)
:= R1(x) +R2(x) +R3(x).

By Chebychev’s inequality and Cauchy-Schwarz inequality, we have:

R1(x) ≤
4b2R
x2

E
∣∣∣∣∫ t

0
ϕ(Xs)ds

∣∣∣∣2 ≤ 4b2R
x2

t

∫ t

0
E(ϕ(Xs)

2ds. (9)

But

b2R ≤ 2b2 + 2ν{y ∈ R : 1 < |y| ≤ R}
∫
1<|y|≤R

y2ν(dy)

≤ 2b2 + 2ν{y ∈ R : |y| > 1}
∫
|y|≤R

y2ν(dy)

≤ 2b2 + 2C1(α)R
2

∫
|y|≤R

ν(dy)

≤ 2b2 + 2C1(α)C2(α)R
2−α,

so that

R1(x) ≤ t
(8b2
x2

+
8C1(α)C2(α)R

2−α

x2

)∫ t

0
Eϕ2(Xs)ds.

From the Hölder condition, we have the following linear growth condition:

|ϕ(x)|2 ≤ C(ϕ) (1 + |x|2β). (10)

Therefore,

R1(x) ≤ tC(ϕ)
(8b2
x2

+
8C1(α)C2(α)R

2−α

x2

)∫ t

0
(1 + E|Xs|2β

)
ds. (11)
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From Chebychev’s inequality and the isometry formula for Poisson stochastic
integrals and the Hölder condition, we have

R2(x) ≤
4

x2
E
(∫ t

0

∫
|y|≤R

y ϕ(Xs) µ̃(ds, dy)
)2

≤ 4

x2

∫
|y|≤R

y2ν(dy)

∫ t

0
Eϕ(Xs)

2ds

≤ 4C2(α)R
2−α

x2

∫ t

0
Eϕ(Xs)

2ds

and,

R2(x) ≤
4C2(α)R

2−α

x2
C(ϕ)

∫ t

0

(
1 + E|Xs|2β

)
. (12)

Let us now deal with R3(x) in the spirit of Joulin and Manou-Abi (2015).
Note that

Nϕ
t =

∫ t

0

∫
|y|>R

y ϕ(Xs)µ(ds, dy)

is a compound Poisson stochastic integral. Denote TR
1 the first jump time of

the Poisson process µ
(
{y ∈ R : |y| > R}×[0, t]

)
on the set {y ∈ R : |y| > R}.

Since TR
1 is exponentially distributed with parameter ν

(
{y ∈ R : |y| > R}

)
,

see e.g. Ken-Iti (1999), Theorem 21.3; we have

P(Nϕ
t ̸= 0) ≤ 1− P(TR

1 > t)

= 1− exp−tν
(
{y ∈ R : |y| > R}

)
and,

R3(x) ≤ tν
(
{y ∈ R : |y| > R}

)
≤ tC1(α)R

−α. (13)

Combining the three estimates above in (11), (12) and (13) we get

P
(∣∣∣∣∫ t

0
ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ tC(ϕ)

(8b2
x2

+
8C1(α)C2(α)R

2−α

x2

)∫ t

0
(1 + E|Xs|2β

)
ds

+
4C2(α)R

2−α

x2
C(ϕ)

∫ t

0

(
1 + E|Xs|2β

)
ds+ tC1(α)R

−α.

Set

R = x ≥ 1.

Thus for all x ≥ 1, we have

P
(∣∣∣∣∫ t

0
ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ tC1(α)x

−α + 4C2(α)x
−αC(ϕ)

∫ t

0

(
1 + E|Xs|2β

)
ds

+ x−αt C(ϕ)C(α, b)

∫ t

0

(
1 + E|Xs|2β

)
ds.
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We have

E
∣∣∣∣∫ t

0
ϕ(Xs)dZs

∣∣∣∣2β = 2β

∫ +∞

0
x2β−1P

(∣∣∣∣∫ t

0
ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
,

≤ 1 + 2β

∫ +∞

1
x2β−1P

(∣∣∣∣∫ t

0
ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
dx

≤ 1 +
tC1(α)

α− 2β
+

1

α− 2β
C(ϕ)

(
tC(α, b) + 4C2(α)

)∫ t

0

(
1 + E|Xs|2β

)
ds,

since ∫ +∞

1
x2β−1−αdx =

1

α− 2β
for2β < α.

Thus,

J2(t, β) ≤ 32β−1
(
Cβ,α + Cβ,α,ϕ,b

∫ t

0

(
1 + E|Xs|2β

)
ds
)
. (14)

From (8) and (14), we have

E|Xt|2β ≤ 32β−1
(
|x0|2β + Cβ,α,g + Cβ,α,g,ϕ,b,L

∫ t

0
(1 + E|Xs|2β)ds

)
and using Gronwall’s lemma we get the desired result. □

To obtain the proof of Lemma 3.1, it suffices to replace (7) by |f(x)|2p ≤
Cp,L(1 + |x|2p) and (10) by |ϕ(x)|2 ≤ C(ϕ)(1 + |x|2p) with p = 2β together
with the conditions (C1) and (C2).

Now, before announcing the main result, let us quote the following result.

Proposition 3.1. Let Z be a α-stable process with index α ∈ (0, 2) and
consider a weak solution of the SDE (2) starting at point x0. Under the
assumptions (A1) and (A2), for any 1 ≤ 2β < α and ∆n = n−δ with δ ≥
1
2 , there exists a positive constant C depending on L, β, α, cϕ, b, c+, c−andT
such that for n ≥ 1,

sup
|u−t|≤∆n

E |Xu −Xt|2β ≤ C
(
n−2β2

+n−(2β2+δ)+n−(2β2−2β+δ)+n−(2β2−2β+2δ)
)

(15)

Remark 3.2. This result holds (according to the methodology of the proof)
if we replace the assumption (A2) by f being a sum of a Lipschitz function
and a negative function. It is also valid if ϕ is bounded. The relation (16)
is new. In particular, for δ ≥ 1 we have

sup
|u−t|≤∆n

E |Xu −Xt|2β ≤ Cn−2β2
.

Proposition 3.2. Let Z be a α-stable process with index α ∈ (0, 2) and
consider a weak solution of the SDE (2) starting at point x0. Under the
assumptions (C1) and (C2), for any 1 ≤ 2p < α and ∆n = n−δ with δ ≥ 1

2 ,
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there exists a positive constant C depending on L, β, α, Lϕ, b, c+, c−andT
such that for n ≥ 1,

sup
|u−t|≤∆n

E |Xu −Xt|2p ≤ C
(
n− p2

2 + n−( p
2

2
+δ) + n−( p

2

2
−p+δ) + n−( p

2

2
−p+2δ)

)
.

(16)

Notice that here again for δ ≥ 1 we have

sup
|u−t|≤∆n

E |Xu −Xt|2β ≤ Cn− p2

2 .

For the sake of simplicity, we only give the proof of Proposition 3.1.

3.1. Error and rate of the approximation. We aim here to study the
consistency of the above mentioned continuous time version of the Euler-
Maruyama approximation of the SDE (2) given by

X̃n
t = x0 +

∫ t

0
f(X̃n

πn
s
)ds+

∫ t

0
ϕ(X̃n

πn
s
)dZs.

We are now going to establish the main results.

Theorem 3.3. Let Z be a α-stable process with index α ∈ (1, 2) and consider
a weak solution (Xt)t∈[0,T ] of the SDE (2) starting at point x0. Under the

assumptions (A1) and (A2), for any 1 ≤ 2β < α and ∆n = n−δ with
δ ≥ 1

2 , there exists a positive constant C depending on L, β, α, cϕ, b, c+, c−, T
such that

E sup
t∈[0,T ]

|X̃n
t −Xt|2β) ≤ C

(
n−2β2

+ n−2β2−δ + n−2β2+2β−δ + n−2β2+2β−2δ
)
.

(17)

Theorem 3.4. Let Z be a α-stable process with index α ∈ (1, 2) and consider
a weak solution (Xt)t∈[0,T ] of the SDE (2) starting at point x0. Under the

assumptions (C1) and (C2), for any 1 ≤ 2p < α and ∆n = n−δ with δ ≥ 1
2 ,

there exists a positive constant C depending on L, p, α, Lϕ, b, c+, c−, T such
that

E sup
t∈[0,T ]

|X̃n
t −Xt|2p) ≤ C

(
n− p2

2 + n− p2

2
−δ + n− p2

2
+p−δ + n

p2

2
+p−2δ

)
. (18)

This weak approximation is highly dependent on the method used, and
we actually need to calculate the rate of convergence in L2p space with
1 ≤ 2p < α. In particular, if δ ≥ 1 we have

E sup
t∈[0,T ]

|X̃n
t −Xt|2p) ≤ Cn− p2

2 . (19)

Note that, if the stable process is symmetric, the drift function is β-Hölder
with β > 1 − α

2 and ϕ is a bounded Lipschitz function, the authors in
Mikulevičius and Xu (2018) find a similar speed of convergence of the form
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n−pβ/α with δ = 1 and α ∈ [1, 2) for dimension d ≥ 1 and any p < α. See
also similar results in Pamen and Taguchi (2017) for the dimension d ≥ 2.

Thus, Theorems 3.3 and 3.4 extends the work of Mikulevičius and Xu (2018);
Wu and Hao (2023); Pamen and Taguchi (2017) in the case of Lipschitz drift
function and Hölder continuous diffusion coefficient. We are in dimension 1,
and are not restricted to symmetric stable processes. Finally, the method-
ology of proof is new and not based on Itô-Tanaka trick method.

Note also that Proposition 3.1 or Proposition 3.2 ensures that, the approxi-
mate paths of a weak solution for the SDE (2) are stochastically continuous
under the above conditions in Theorem 3.3. Hence according to (Peszat and
Zabczyk (2007), Prop. 3.21), there is a predictable modification of the SDE
(2).

4. Proofs of the Main Results

4.1. Proof of Proposition 3.1.

Proof. Consider t, u ∈ [0, T ] such that u− t ≤ 1
nδ for some δ ≥ 1

2 . We have

Xu −Xt =

∫ u

0
f(Xs)ds−

∫ t

0
f(Xs)ds

+

∫ u

0
ϕ(Xs)dZs −

∫ t

0
ϕ(Xs)dZs.

Thus,

E|Xu −Xt|2β ≤ 22βE
∣∣∣∣∫ u

t
f(Xs)ds

∣∣∣∣2β
+ 22βE

∣∣∣∣∫ u

t
ϕ(Xs)dZs

∣∣∣∣2β
:= I1(t, β) + I2(t, β)

Using the Hölder inequality and the assumption (A2), we have the following
estimate

I1(t, β) ≤ 22β n−δ(2β−1)

∫ u

t
E|f(Xs)|2βds

≤ Cβ,L n−δ(2β−1)

∫ u

t
(1 + E|Xs|2β)ds

≤ Cβ,Ln
−2βδ,

since 1 + E|Xs|2β is finite, by Lemma 3.2.

Now let us consider the estimation of I2(t, β). Imitating the previous argu-
ment, we have
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P
(∣∣∣∣∫ u

t
ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ P

(∣∣∣∣∫ u

t
bRϕ(Xs)ds

∣∣∣∣ ≥ x

2

)
+ P

(∣∣∣∣∣
∫ u

t

∫
|y|≤R

yϕ(Xs)µ̃(ds, dy)

∣∣∣∣∣ ≥ x

2

)

+ P

(∣∣∣∣∣
∫ u

t

∫
|y|≤R

y ϕ(Xs)µ(ds, dy)

∣∣∣∣∣ ̸= 0

)
:= R1(x, n) +R2(x, n) +R3(x, n).

Using the Chebychev and Cauchy-Schwarz inequalities, we have

R1(x, n) ≤
4b2R
x2

E
∣∣∣∣∫ u

t
ϕ(Xs)ds

∣∣∣∣2 ≤ 4b2R
x2

n−δ

∫ u

t
E(ϕ(Xs)

2ds. (20)

R1(x, n) ≤ n−δC(ϕ)
(8b2
x2

+
8C1(α)C2(α)R

2−α

x2

)∫ u

t
(1 + E|Xs|2β

)
ds (21)

≤ n−2δC(ϕ)
(8b2
x2

+
8C1(α)C2(α)R

2−α

x2

)
, (22)

since 1 + E|Xs|2β is finite. Next, we use Chebychev’s inequality and the
isometry formula for Poisson stochastic integrals and Hölder condition to
get

R2(x, n) ≤
4

x2
E

∣∣∣∣∣
∫ u

t

∫
|y|≤R

y ϕ(Xs) µ̃(ds, dy)

∣∣∣∣∣
2

≤ 4

x2

∫
|y|≤R

y2ν(dy)

∫ u

t
Eϕ(Xs)

2ds

≤ 4C2(α)R
2−α

x2

∫ u

t
Eϕ(Xs)

2ds

≤ 4C2(α)R
2−α

x2
C(ϕ)

∫ u

t

(
1 + E|Xs|2β

)
ds

≤ n−δ C(ϕ)
4C2(α)R

2−α

x2
.

Let us now consider the compound Poisson stochastic integral appearing in
R3(x, n). Note that

Nϕ,R
t,u =

∫ u

t

∫
|y|>R

yϕ(Xs)µ(ds, dy)

have the same law as

Nϕ,R
u−t =

∫ u−t

0

∫
|y|>R

y ϕ(Xs)µ(ds, dy),
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so that as above, we have

P(Nϕ,R
u−t > 0) ≤ (u− t)C1(α)R

−α ≤ n−δC1(α)R
−α.

By combining the three estimates, we obtain

P
(∣∣∣∣∫ u

t
ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ n−δC1(α)R

−α + n−δ C(ϕ)
4C2(α)R

2−α

x2

+ n−2δC(ϕ)
(8b2
x2

+
8C1(α)C2(α)R

2−α

x2

)
.

If we choose the truncation level

R = xnβ ≥ 1,

and rearrange the terms, we get for all x ≥ n−β :

P
(∣∣∣∣∫ u

t
ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ C1(α)x

−αn−βα−δ + C(ϕ)4C2(α)x
−αn−αβ+2β−δ

+ C(ϕ)C(α, b)x−αn−αβ+2β−2δ.

From the fact that,

E
∣∣∣∣∫ u

t
ϕ(Xs)dZs

∣∣∣∣2β = 2β

∫ +∞

0
x2β−1P

(∣∣∣∣∫ u

t
ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
dx,

≤ n−2β2
+ 2β

∫ +∞

n−β

x2β−1P
(∣∣∣∣∫ u

t
ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
dx.

and since 
n−αβ−δ

∫ +∞
n−β x2β−1−αdx = n−2β2−δ

α−2β

n−αβ+2β−δ
∫ +∞
n−β x2β−1−αdx = n−2β2+2β−δ

α−2β

n−αβ+2β−2δ
∫ +∞
n−β x2β−1−αdx = n−2β2+2β−2δ

α−2β ,

we have

E
∣∣∣∣∫ u

t
ϕ(Xs)dZs

∣∣∣∣2β ≤ C
(
n−2β2

+ n−2β2−δ + n−2β2+2β−δ + n−2β2+2β−2δ
)
.

Finally,

sup
t∈[0,T ];|u−t|≤∆n

E |Xu −Xt|2β ≤ C
(
n−2δβ+n−2β2

+n−2β2−δ+n−2β2+2β−δ+n−2β2+2β−2δ
)
,

and since 2βδ > 0, 2β2 > 0, 2β2+δ > 0 2β2−2β+δ > 0 and 2β2−2β+2δ > 0
we can conclude and see that this bound tends to 0 for all δ ≥ 1/2. □
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4.2. Proof of Theorem 3.3.

Proof. Set

Vt = sup
0≤s≤t

|X̃n
s −Xs|.

To establish the convergence of X̃n to X, let’s write the explicit expression
for Y n

t = X̃k
t −Xt.

X̃n
t −Xt =

∫ t

0

[
f(X̃n

πn
s
)− f(Xs)

]
ds+

∫ t

0

[
ϕ(X̃n

πn
s
)− ϕ(Xs)

]
dZs,

and

X̃n
t −Xt =

∫ t

0

[
f(X̃n

πn
s
)− f(Xs)

]
ds+

∫ t

0

[
ϕ(X̃n

πn
s
)− ϕ(Xπn

s
)
]
dZs+

∫ t

0

[
ϕ(Xπn

s
)− ϕ(Xs)

]
dZs.

We have

E|Y n
t |2β ≤ (3t)2β−1

∫ t

0
E
∣∣∣f(X̃n

πn
s
)− f(X(s))

∣∣∣2β ds+ 32β−1E
∣∣∣∣∫ t

0

(
ϕ(X̃n

πn
s
)− ϕ(Xπn

s
)
)
dZs

∣∣∣∣2β
+ 32β−1E

∣∣∣∣∫ t

0

[
ϕ(Xπn

s
)− ϕ(Xs)

]
dZs

∣∣∣∣2β := P1(t, β) + 32β−1 P2(t, β) + 32β−1 P3(t, β).

But

E|f(X̃n
πn
s
)− f(Xs)|2β ≤ 22β−1E|f(X̃n

πn
s
)− f(Xπn

s
)|2β

+ 22β−1|f(Xπn
s
)− f(Xs)|2β

≤ 22β−1E|f(X̃n
πn
s
)− f(Xπn

s
)|2β

+ 22β−1E|f(Xπn
s
)− f(Xs)|2β,

so that

P1(t, β) ≤ (6t)2β−1E
(∫ t

0
|f(X̃n

πn
s
)− f(Xπn

s
)|2βds

)
+ (6t)2β−1E

(∫ t

0
|f(Xπn

s
)− f(Xs)|2βds

)
≤ Cβ,L,T

(
E
(∫ t

0
|X̃n

πn
s
−Xπn

s
|2βds

)
+ E

(∫ t

0
|Xπn

s
−Xs|2βds

))
≤ Cβ,L,T

∫ t

0
EV 2β

s ds+ Cβ,L,T

∫ t

0
E|Xπn

s
−Xs|2βds

≤ Cβ,L,T

∫ t

0
EV 2β

s ds+ C
(
n−2β2

+ n−2β2−δ + n−β2+2β−δ + n−β2+2β−2δ
)
,

where in the last inequality, we apply Proposition 3.1 since s − πn
s ≤ n−δ

with δ ≥ 1
2 . But one could also directly apply the remark of Proposition 3.1.
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Secondly, we have

P2(t, β) = E
∣∣∣∣∫ t

0

(
ϕ(X̃n

πn
s
)− ϕ(Xπn

s
)
)
dZs

∣∣∣∣2β
= 2β

∫ +∞

0
x2β−1P

( ∣∣∣∣∫ t

0

(
ϕ(X̃n

πn
s
)− ϕ(Xπn

s
)
)
dZs

∣∣∣∣ ≥ x
)
dx.

However, based on previous estimates, we have

P
( ∣∣∣∣∫ t

0
ϕ(X̃n

πn
s
)− ϕ(Xπn

s
)dZs

∣∣∣∣ ≥ x
)
≤ R∗

1(x, n) +R∗
2(x, n) +R∗

3(x, n),

where

R∗
1(x, n) ≤

4b2R
x2

sup
k=0,..,n−1

E
∣∣∣∣∫ t

0
I[tk,tk+1[(s)ϕ(X̃

n
πn
s
)− ϕ(Xπn

s
)ds

∣∣∣∣2β

R∗
1(x, n) ≤

(8b2
x2

+
8C1(α)C2(α)R

2−α

x2

)
c2ϕn

−2δEV 2β
πn
s
,

R∗
2(x, n),≤

4C2(α)R
2−α

x2
sup

k=0,..,n−1
E
(∫ t

0
I[tk,tk+1[(s)|ϕ(X̃

n
πn
s
)− ϕ(Xπn

s
)|2ds

)
≤ 4C2(α)R

2−α

x2
c2ϕn

−δEV 2β
πn
s

and,

R∗
3(x, n) ≤ n−δC1(α)R

−α.

Note that it is not difficult to show by induction on k; using the proof
arguments of Lemma 3.2 that

sup
n≥1

sup
t∈[tk,tk+1]

E|X̃n
t |2β < ∞,

so that since E|Xt|2β < ∞, we have

E|X̃n
πn
s
−Xπn

s
|2β ≤ 22βE|X̃n

t |2β + 22βE|Xt|2β < ∞.

Now, choosing the truncation level R = xnβ ≥ 1, we have for all x ≥ n−β:

P
(∣∣∣∣∫ t

0
ϕ(Xπn

s
)− ϕ(Xπn

s
)dZs

∣∣∣∣ ≥ x

)
≤ C1(α)x

−αn−βα−δ + c2ϕ4C2(α)x
−αnβ2−αβ+2β−δ

+ c2ϕC(α, b)x−αnβ2−αβ+2β−2δ,

so that
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P2(t, β) = E
∣∣∣∣∫ t

0

[
ϕ(Xπn

s
)− ϕ(Xπn

s
)
]
dZs

∣∣∣∣2β
= 2β

∫ +∞

0
x2β−1P

(∣∣∣∣∫ t

0
ϕ(Xπn

s
)− ϕ(Xπn

s
)dZs

∣∣∣∣ ≥ x

)
≤ C

(
n−2β2

+ n−2β2−δ + n−β2+2β−δ + n−β2+2β−2δ
)
.

Now let us look at P3(t, β). We have

P
(∣∣∣∣∫ t

0
ϕ(Xπn

s
)− ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ R∗∗

1 (x, n) +R∗∗
2 (x, n) +R∗∗

3 (x, n),

where

R∗∗
1 (x, n) ≤

4b2R
x2

sup
k=0,..,n−1

E
∣∣∣∣∫ t

0
I[tk,tk+1[(s)ϕ(Xπn

s
)− ϕ(Xs)ds

∣∣∣∣β

R∗∗
1 (x, n) ≤

(8b2
x2

+
8C1(α)C2(α)R

2−α

x2

)
c2ϕn

−2δ sup
|u−t|≤∆n

E|Xu −Xt|2β,

R∗∗
2 (x, n),≤ 4C2(ν)R

2−α

x2
sup

k=0,..,n−1

∫ t

0
I[tk,tk+1[(s)E|ϕ(Xπn

s
)− ϕ(Xs)|2ds

≤ 4C2(α)R
2−α

x2
c2ϕn

−δ sup
|u−t|≤∆n

E|Xu −Xt|2β,

and

R∗∗
3 (x, n) ≤ n−δC1(α)R

−α.

Again, choosing the truncation level R = xnβ ≥ 1, we have for all x ≥ n−β:

P
(∣∣∣∣∫ t

0
ϕ(Xπn

s
)− ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ C1(α)x

−αn−βα−δ + c2ϕ4C2(α)x
−αn−αβ+2β−δ

+ c2ϕC(α, b)x−αn−αβ+2β−2δ,

so that

P3(t, β) = E
∣∣∣∣∫ t

0

[
ϕ(Xπn

s
)− ϕ(Xs)

]
dZs

∣∣∣∣2β
= 2β

∫ +∞

0
x2β−1P

(∣∣∣∣∫ t

0
ϕ(Xπn

s
)− ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ C

(
n−2β2

+ n−2β2−δ + n−2β2+2β−δ + n−2β2+2β−2δ
)
.
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Finally, there exist positive constants C (which depend on all the model
parameters) such that

EV 2β
t ≤ Cβ,L,T

∫ t

0
V 2β
s ds+ C

(
n−2β2

+ n−2β2−δ + n−2β2+2β−δ + n−2β2+2β−2δ
)
,

and we use Gronwall’s lemma to get the desired result. □

5. Examples

In this section, we will illustrate the usefulness of the above approximate
solution results of the SDE (2) that we established in the previous section.
Let us first recall the random walk approximation method for the simulation
of α-stable processes, due to the self-similarity property and the property of
stationary independent increments. Of course, other methods are available,
such as the series approximation of the Lévy process, see Janicki et al.
(1997) for more details. The following proposition, based on the algorithm
of Chambers et al. (1976) for α-stable distributions, allows to simulate α-
stable processes.

Proposition 5.1 (Discretised trajectory for a strictly α-stable process). Let
Z = (Zt)t∈[0,T ] be a strictly-α stable process.

Step 1 Simulate n independent uniformly distributed random variables Φ on
[−π/2, π/2] and n independent identically distributed random vari-
ables W as exponential with parameter 1.

Step 2 Compute ∆Zi for i = 1, ...n as follows.
(1) If α ̸= 1

∆Zi = σ

(
T

n

)1/α sin(α(Φ− ϕ0))

cos(Φ)1/α

(
cos(Φ− α(Φ− ϕ0))

W

) 1−α
α

.

(2) If α = 1

∆Zi = σ

(
T

n

)1/α 2

π

((π
2
+ βΦ

)
tan(Φ)− β log

(
1
2πW cos(Φ)

1
2π + βΦ

))
where

ϕ0 = −βπ

2

1− |1− α|
α

.

Step 3 The discretised trajectory of Z is given by

Z(ti) =

i∑
k=1

∆Zk.

From a practical point of view, we consider the linearly interpolated version
between times ti and ti+1 for graphical representations. Figure 1 shows
typical example paths for some strict and symmetric α processes. When
α is closed to 2 and β is closed to 0, the sample paths resemble those of
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Brownian motion. For α = 1 and β = 0, the sample paths correspond
to those of the Cauchy process. We can see the existence of jumps in the
simulation, for example when α is not close to 2.

(a) (b)

(c) (d)

Figure 1. Paths of a standard strictly 1.7 stable process
with different skewness (a), a 0.7 stable process with different
scale and skewness (b), the symmetric and standard α stable
process with different stability index (c) and the case of the
standard 1 stable process (d)..

We now consider the following stable driven SDE models.

Example 5.1. (Stable driven OU process) Consider the following Ornstein-
Uhlenbeck (OU) process driven by a stable process (Zt)t≥0 with parameter θ
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and ρ > 0 is defined by

dXt = −θXtdt+ ρdZt, X0 = x0 ∈ R. (23)

and has the integral representation

Xt(ω) = e−θt
(
x0 + ρ

∫ t

0
eθsdZs(ω)

)
, for t ∈ [0, T ].

Since f(x) = θx and ϕ(x) = ρ satisfy the Lipschitz and boundedness con-
ditions, there is clearly an approximation of the stable driven OU process
with step size n−δ for δ ≥ 1. We give in Figure 2 (a) a path approxi-
mation solution for θ = 1.2, α = 1.7, ρ = 1 with n = 1000 sample size
and δ = 1. Another classic example is given by the following stable driven
Cox-Ingersoll-Ross type models.

Example 5.2. (Stable driven Cox–Ingersoll–Ross type process)
A stable driven Cox-Ingersoll-Ross type process can be defined as follows

dXt = (λ− θXt)dt+ ρ|Xt|βdZt, X0 ≥ 0,

where β ∈ [12 , 1) λ, ρ, θ are real constants and Z is, for example, a symmetric
stable process.

According to Fournier (2013), there is a weak existence solution. When
β = α−1 and Z has only positive jumps, it is called SCIR model in Bayrak-
tar and Clément (2023); Yang (2017). Note that since f(x) = λ − θx is
a Lipschitz function, and ϕ is positive and Hölder ϕ(x) = |x|β continuous
function, then there exists a weak approximate solution with step size n−1.
In particular, one can choose β = α− 1 and α ∈ [1.5, 2) to obtain in Figure
2 (b) an approximate path solution for λ = 0.2, θ = 1.2, α = 1.7, ρ = 1 and
β = α−1 with n = 1000 sample size. In Figure 2 (c) we give an approximate
path solution for λ = 0.2, θ = 1.2, α = 1.7, ρ = 1 and β = 1 − α−1 with
n = 1000.

We also introduce the following stable driven Lotka-Volterra type model.

Example 5.3. (Stable driven Lotka–Volterra type process)
A stable driven Lotka-Volterra type process can be defined as follows

dXt = Xt(λ− θXt)dt+ ρ|Xt|βdZt, X0 ≥ 0,

where β ∈ [12 ,
α
2 ), λ, ρ, θ are real constants and Z is, for example, a sym-

metric stable process.

Note that f(x) = x(λ − θx) = λx − θx2 is the sum of a Lipschitz function
and a negative function if θ > 0. Since ϕ(x) = |x|β is Hölder continuous,
there is a weak approximate solution.
When β = 1, this model is proposed in Zhang et al. (2017) for positive stable
process Z.
We give in Figure 2 (d) an approximate path solution for λ = 0.2, θ = 1.2
α = 1.7, β = 1/2, ρ = 1 and n = 1000.
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(a) (b)

(c) (d)

Figure 2. An approximate solution path of a standard sym-
metric stable driven OU process with sample size n = 1000,
ρ = 1, θ = 1.2, α = 1.7, (a); of an standard symmetric stable
driven CIR type process with sample size n = 1000, ρ = 1,
θ = 1.2, α = 1.7, λ = 0.2 and β = α−1 (b); a standard
symmetric stable driven CIR type process with sample size
n = 1000, ρ = 1, θ = 1.2, α = 1.7, λ = 0.2 and β = 1− α−1

(c) and the case of a standard symmetric stable driven Lotka-
Volterra type process with λ = 0.2, θ = 1.2, α = 1.7, ρ = 1,
β = 1/2 and n = 1000 (d).
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Mikulevičius, R. and F. Xu (2018). On the rate of convergence of strong
euler approximation for sdes driven by levy processes. Stochastics 90 (4),
569–604.

Pamen, O. M. and D. Taguchi (2017). Strong rate of convergence for the
euler–maruyama approximation of sdes with hölder continuous drift coef-
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