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Abstract. We consider in this paper, a general class of stochastic
differential equations driven by α-stable processes with Lipschitz drift
coefficients and non-Lipschitz diffusion coefficients. A strong Euler-
Maruyama approximate solution is proved whenever the diffusion co-
efficient is Hölder continuous with exponent β ∈ [ 1

2
, α
2
) and α ∈ (1, 2).

We obtain a strong rate of convergence of order n−β2

. Our proposed
method is new in this context and based on a truncation method by
separating the big and small jumps of the α-stable process in the Lévy-
Itô decomposition. Along the paper we give some numerical simulation
of stochastic models that match our results namely some stable driven
Ornstein-Uhlenbeck and Cox–Ingersoll–Ross processes.
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1. Introduction

Models such as Stochastic Differential Equations (SDEs) are natural choice
to model the time evolution of dynamic systems and have a variety of ap-
plications in many disciplines such as population dynamics, epidemiology,
finance and biology. Let (Ω,F ,Ft,P) be a complete filtered probability space
satisfying the usual conditions. Moreover, (Ω,F ,Ft,P) is sufficiently rich to
contain other processes considered in this paper that aims to study the fol-
lowing stochastic differential equation (SDE) driven by α-stable processes,
α ∈ (1, 2) : {

dXt = F (t,Xt)dt+G(t,Xt−)dZt, t ∈ [0, T ]
X0 = x ∈ R, (1)
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2 APPROXIMATE SOLUTION FOR STABLE-DRIVEN SDE

where x0 is a starting point and T > 0 a time horizon, under some con-
ditions on functions F and G. In the theory of stochastic processes and
its applications, it is important to find existence conditions for solutions of
SDE. There are several notions of existence and uniqueness. A weak solu-
tion is a solution that satisfy the SDE (1). A strong solution is a predictable
process (Xt,FZ

t ) that satisfy the SDE (1). By it’s definition, a weak solution
which is predictable is a strong solution. The pathwise uniqueness holds if
two any solutions are indistinguishable. Some results are available on the
existence under various conditions on the coefficients of the above SDE. The
existence and uniqueness of solutions to the above SDE under Lipschitz or
linear growth conditions are well know results in stochastic calculus as well
as for general Lévy processes Z, see e.g. Rong (2006); Fu and Li (2010);
Protter (1991). For example, assuming that the drift and diffusion coeffi-
cients are continuous and have at most linear growth; then there is weak
existence in Lp for any p ∈ (0, α) of SDE (1), see Proposition 2 in Fournier
(2013) for α ∈ (0, 2) and α ̸= 1. This weak existence is contained in Rong
(2006).

For non-Lipschitz coefficients and considering α-Stable driven SDE, some re-
sults have been studied before. In Bass et al. (2004); Komatsu (1982), when
α ∈ (1, 2) and Z is symmetric with α ∈ (1, 2), it was shown that if F = 0
and G(t, x) = G(x) has modulus of continuity ρ satisfying

∫
0+

1
ρ(x)α = ∞,

there is a strong solution and the solution is pathwise unique. In particular,
if the diffusion term G(t, x) = G(x) is Hölder continuous of order α−1 then,
the strong existence and pathwise uniqueness holds. This condition is the
exact analogue of the Yamada–Watanabe condition for SDE driven by a
Brownian motion. When the drift term F (t, x) = F (x) is Hölder continuous
of order β > 2 − α with β ∈ (0, 1) and G(t, x) = G(x) is Lipshitz continu-
ous and bounded then, the existence and uniqueness of a strong solution is
proved in Mikulevičius and Xu (2018). In Wu and Hao (2023), if the drift
term is a continuous β-Hölder function of order β ≤ 1 − α

2 with α ∈ (1, 2)
then, the existence and uniqueness of a strong solution is proved, thanks to
the deep connection between the Kolmogorov equations and SDE. Also in
Priola (2012), the existence and uniqueness of strong solutions is shown as
well as pathwise uniqueness for SDE driven by non-degenerate symmetric
stable processes Z with values in the higher dimensional space Rd, whenever
the diffusion term G(t, x) = G(x) is bounded and the drift term is β-Hölder
continuous under the condition β > 1 − α

2 and α ∈ [1, 2). The proof is
based on the associated integro-differential operators of Kolmogorov type.
In Pamen and Taguchi (2017), when G(t, x) = G(x) is bounded and the drift
function F (t, x) is bounded β-Hölder continuous in space and η-Hölder in
time with η ∈ [1/2, 1] and β ∈ (0, 1), the pathwise uniqueness was proved by
applying Gronwall’s lemma and using the elliptic version of the Kolmogorov
equation and regularity of its solution. Recently, in Athreya et al. (2020),
they established strong existence and uniqueness whenever G = 1 and the
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drift function F (t, x) = F (x) belongs to the Besov Hölder space Cβ for
β > 1

2 − α
2 and Z symmetric with α ∈ (1, 2). For time-dependent Sobolev

drifts F (t, x), the pathwise uniqueness in Rd is proved in Zhang (2013).

Assume that G(t, x) = G(x) is non-decreasing and Hölder continuous with
index 1− 1

α and F (t, x) = F (x) is the sum of a Lipschitz-continuous function
and a non-increasing function. It is shown in Li and Mytnik (2011); Fu and
Li (2010) that the strong existence holds if α ∈ (1, 2) and Z has only positive
jumps, as well as pathwise uniqueness. This latter result was extended in
Fournier (2013) as follows. For stable process with not necessarily positive
jumps, but under some conditions on the positive and negative jump ac-
tivity; the weak existence and pathwise uniqueness is established assuming
for example that, the drift function F (t, x) = F (x) is a sum of Lipschitz-
continuous function and a non-increasing function; the diffusion coefficient
G(t, x) = G(x) is a sum of a Lipchitz-continuous function and Hölder contin-
uous with index lying in [1−α−1, α−1] for the case α ∈ (1, 2). For stable pro-
cess Z with only positive jumps, they also show that strong existence holds
when the diffusion coefficient is a sum of a Lipchitz-continuous and Hölder
function with index 1 − 1

α which is similar to Li and Mytnik (2011). For
symmetric stable process Z, strong existence holds also in Fournier (2013)
whenever the diffusion term is Hölder continuous with index β = 1

α , as in
Komatsu (1982) or Bass et al. (2004). The technique in Fournier (2013)
is based on Ito formula for jump processes and some technical integrals
computing (see Lemma 7 and 9 in Fournier (2013)) and an approximating
sequence iteration method.

It is possible to appreciate the basics of how to simulate SDEs numerically
with just a background knowledge of Euler-Maruyama’ scheme which is a
well-known method to approximate any solution. Some results are now
available concerning the approximate solutions of SDEs driven by stable
process as well as the speed of convergence of the approximation. The Itô-
Tanaka technique has traditionally been used to obtain convergence rates
for Euler schemes which has important applications in stochastic financial
theory. In Pamen and Taguchi (2017), when G = 1 and the drift func-
tion F (t, x) is a bounded β-Hölder continuous in space with β ∈ (0, 1)
and, η-Hölder in time with η ∈ [1/2, 1], a strong approximate solution is
proved and they provide the rate of convergence for the Euler-Maruyama
approximation. More precisely, using the the Itô-Tanaka trick method and
assuming that a strong solution exists with α + β > 2, the rate of strong
convergence was derived in the form n−1 if p ≥ 2

β and on the form n−pβ/2

for d-dimensional truncated symmetric α-stable process when d ≥ 2 for
α ∈ (1, 2) and 1 ≤ pβ < 2 or p ∈ [1, 2]. In the same way, Mikulevičius and
Xu (2018) provide a strong approximate solution and a rate of convergence

of order n−pβ/α when p ∈ (0, α) and Z is a symmetric stable process of index
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α ∈ (1, 2) whenever F (t, x) = F (x) is β-Hölder continuous with β > 1 − α
2

and G being bounded Lipshitz continuous function. See also Wu and Hao
(2023) for similar conditions.

In this paper, we consider the following SDE:

Xt = x0 +

∫ t

0
F (s,Xs)ds+

∫ t

0
g(s)ϕ(Xs−)dZs, t ∈ [0, T ], (2)

where Z is an α-stable process with α ∈ (1, 2) not necessarily symmetric
and g is a bounded function on [0, T ] under the following assumptions :

(A1) The function ϕ is Hölder continuous with exponent β ∈ (0, α2 ) that is

|ϕ(y)− ϕ(z)| ≤ cϕ|y − z|β cϕ > 0 y, z ∈ R.
(A2) F : [0, T ]× R → R is a continuous L-Lipchitz function that is :

|F (t, y)− F (t, z)| ≤ L|y − z| L > 0 y, z ∈ R.
We investigate the existence of consistency strong Euler-Maruyama approx-
imate solution defined as

X̃n
t = x0 +

∫ t

0
F (πn

s , X̃
n
πn
s
)]ds+

∫ t

0
g(πn

s )ϕ(X̃
n
πn
s
)dZs, (3)

where

πn
t =

k

n
if t ∈

[k
n
,
(k + 1)

n

[
, k = 0, . . . , n− 1.

While this process is pleasant to handle from a theoretical point of view, it
is not easy for simulation purpose except at points tk = k

n . From a practical
point of view, we therefore prefer its linearly interpolated version between
instants tk and tk+1.

We assume in this paper that T = 1. Compared to the above mentionned
previous works, we established a new result on strong approximate solution
as well as the rate of convergence rate for the new SDE (2). Moreover our
methodology of proof is new and not based on Itô-Tanaka trick method
but, based on Lévy-Itô decomposition together with a truncation method
for stable integrals developed in Manou-Abi (2015). We have not found a
direct proof like our technique. Our result extend the previous mentioned
work on strong approximate solution to the case of Lipschitz drift function
and Hölder continuous diffusion coefficients. This paper is organized as
follows. In section 2, primary analytic tools are discussed, notation and
preliminaries are introduced. In section 3, we first give some preliminaries
moments bound results of any solution of the SDE (2). After that, we
present our main theorem, which extends the result of Mikulevičius and Xu
(2018); Pamen and Taguchi (2017); Wu and Hao (2023) for Lipchitz drift
function F , Hölder condition diffusion function ϕ ̸= 1 or ϕ bounded if Z is an
α-stable process with index α ∈ (1, 2). Namely if ϕ is β-Hölder continuous
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with index β ∈ [12 ,
α
2 ), there exists a strong consistent approximate solution

of (2) and the rate of convergence is of order n−β2
. In Section 4, we consider

stochastic models as well as numerical simulation of their solutions, that
match our results. The last section is dedicated to the proofs of the main
results.

2. Preliminaries

In this part, we recall the definition of Lévy process and introduce the α-
stable process as a member of the class of Lévy process. We also introduce
some notations that will be usefull along the paper. We follow the presenta-
tion in Ken-Iti (1999); Applebaum (2009). We consider a probability space
(Ω,F ,P) equipped with the filtration (Ft)t∈[0,T ] and satisfying the usual
conditions as above.

Definition 2.1. A real stochastic process (Zt)t∈[0,T ] defined on a filtered
probability space (Ω,F , (Ft)t∈[0,T ],P) is said to be a Lévy process if Z0 = 0
almost surely (a.s.) with the following properties:

1. Z is stochastically continuous i.e., for any ϵ > 0 and t, s ≥ 0,

lim
s→0

P (|Zt+s − Zt| > ϵ) = 0.

2. Z has stationary increments, i.e., for 0 ≤ s ≤ t, the distribution of
Zt − Zs does not depend on s, namely has the same distribution as
Zt−s.

3. Z has independent increments, i.e., for 0 ≤ s ≤ t, Zt − Zs is inde-
pendent of Fs.

4. The paths of Z are P-a.s. right-continuous in t ≥ 0 and has left
limits in t > 0 (cádlág).

Note that the last item above can be dropped, as one can prove that there
always exists a cádlág moditication of the stable process Z. In this way,
the Brownian motion is an example of Lévy process without jumps. Set
∆Zt = Zt−Zt−. The jumps part of the stochastic process Z can be described
by its Poisson random measure (jump measure of Z on interval [0, t]) defined
as

µ(t, A) =
∑

0≤s≤t

IA(∆Zs), A ∈ B(R∗),

the number of jumps of Z on the interval [0, t] whose size lies in the set A
bounded below. For such A, the process µ(, A) is a Poisson process and the
Lévy measure ν is defined by ν(A) := E(µ(1, A)). In the sequel, we denote
the compensated random martingale measure by

µ̃(t, A) = µ(t, A)− tν(A).

A particular class of Lévy processes that can contain infinitely many jumps
(unbounded jumps) is the following class of α-stable process. Now, we follow
the presentation in Cattiaux and S. Manou-Abi (2014); Manou-Abi (2015).
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Definition 2.2. A real stochastic process (Z(t))t∈[0,T ] defined on a filtered
probability space (Ω,F , (Ft)t∈[0,T ],P) is said to be an α-stable process with
characteristics (b, c+, c−), if it is a Lévy process with the following charac-
teristic function :

φZt(u) = exp t

(
iub+

∫ +∞

−∞
(eiuy − 1− iuyI|y|≤1)ν(dy)

)
, t ∈ [0, T ],

where b stands for the drift parameter of Z and ν the Lévy measure defined
on R \ {0} by

ν(dx) :=
dx

|x|α+1

(
c+ 1{x>0} + c− 1{x<0}

)
.

The parameters c+, c− above are non-negative with furthermore c++c− > 0
and c+ = c− when α = 1. The process is said to be symmetric if c+ = c− :=
c. It i said to be strictly α-stable if b = 0. In the case α ∈ (1, 2), the drift
parameter is given by

b := −
∫
|y|>1

y ν(dy) = −(c+ − c−)

α− 1
when α ̸= 1.

An α-stable process is closely related to the notion of self-similar process.
The process Z is said to be strictly α-stable if we have the self-similarity
property

k−1/α (Z(kt))t∈[0,T ]
d
= (Z(t))t∈[0,T ],

where k > 0 and the equality
d
= is understood in the sense of finite dimen-

sional distributions. Note that α-stable processes are interesting due to the
self-similarity property and the fact that the Lévy measure and the Lévy-Itô
decomposition are almost totally explicit for the one dimensional case. In
order to control the jump size of Z and the moment behavior of a stable
stochastic integral, let us introduce the follwing truncation method devel-
oped in our past paper Manou-Abi (2015) and also in Joulin (2007). As a
Lévy process, Z is a semimartingale with respect to FZ

t := σ(Zs : s ∈ [0, t]),
t ∈ [0, T ] assuming it satisfies the usual hypothesis, that is completeness and
right-continuity. The Lévy-Itô decomposition is given by

Zt = bR t+

∫ t

0

∫
|x|≤R

x (µ− σ)(ds, dx) +

∫ t

0

∫
|x|>R

xµ(ds, dx), t ∈ [0, T ],

where R is some arbitrary positive truncation level (classically chosen to be
1) and µ is a Poisson random measure on [0, T ]×R with intensity σ(dt, dx) =
dt⊗ ν(dx). Here bR is the drift parameter given by

bR := b+

∫
1<|x|≤R

x ν(dx).

Denote respectively by

ZR− =

∫ t

0

∫
|x|≤R

x (µ− σ)(ds, dx) and ZR+ =

∫ t

0

∫
|x|>R

xµ(ds, dx).
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The first one has a compactly supported Lévy measure and is a square-
integrable martingale with infinitely many jumps bounded by R on each
compact time interval, whereas the second one is an integrable compound
Poisson process with jumps larger thanR. LetK be a (FZ

t )t∈[0,T ]-predictable

process belonging to L2(Ω× [0, T ]) that is∫ T

0
E[K2

t ] dt < +∞.

Then the stable integral XT :=
∫ T
0 Ks dZs is well-defined as a stochastic

integral with respect to the Lévy-Itô decomposition of Z, that is X = AR +
XR− +XR+ where for t ∈ [0, T ]:

AR
t := bR

∫ t

0
Ks ds, XR−

t :=

∫ t

0
Ks dZ

R−
s and XR+

t :=

∫ t

0
Ks dZ

R+
s .

The second aforementioned process is a square-integrable martingale whereas
the two other integrals are constructed in the Lebesgue-Stieltjes sense.
It is also well known in Rosinski and Woyczynski (1986), that if Z is a
symmetric stable process and K a FZ-predictable process belonging to
Lα(Ω× [0, T ], i.e., ∫ T

0
|Kt|α]dt < ∞ a.s.

then the stable integral XT :=
∫ T
0 KsdZs is also well defined. The follow-

ing elementary and classical Gronwall inequality will be usefull in order to
establish some estimates in this paper.

Lemma 2.1. Let C1, C2 > 0 and H : R+ → R+ be a function such that for
all t ∈ [0, T ],

H(t) ≤ C1 + C2

∫ t

0
H(r)dr.

Then
H(t) ≤ C1e

C2t, t ∈ [0, T ].

A simpler proof can be handle in the following way.

Proof. From the assumption (2.1), we deduce that

d

dt

(
e−K2t

∫ t

0
ϕ(r)dr

)
≤ K1e

ate−K2t.

Integrating this inequality yields to

e−K2t

∫ t

0
ϕ(r)dr ≤ K1e

at

K2
(1− e−K2t),

so that

ϕ(t) ≤ K1e
at +K2

∫ t

0
ϕ(r)dr ≤ K1e

ateK2t ≤ K1e
(a+K2)T , ∀ t ∈ [0, T ].

□
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In the sequel, we shall be concerned with the following convention on con-
stants. Throughout the paper, C and C∗ denotes a positive boundary con-
stant whose value may change from line to line. Constants denoted by Cβ,L,
Cβ,L,T , Cβ,α,g, Cϕ,β,α, Cϕ, Cβ,α,g,ϕ,b are all positive and their precise values
are not important. The dependence of constants on parameters if needed
will be mentioned inside brackets, for example, we will frequently make use
of the following constants :

η(g) :=
(

sup
t∈[0,1]

|g(t)|2
)1/2

, C1(α) =
c+ + c−

α
, C2(α) =

c+ + c−
2− α

,

C(β, L) = max
(
2p−1L, 2p−1 sup

t∈[0,1]
|F (t, 0)|2β

)
, C(ϕ) = max

(
2ϕ(0)2, 2c2ϕ

)
C(α, b) = 8b2+8C1(α)C2(α), κ(α, b, ϕ) = C(α, b)||ϕ||2∞+4||ϕ||2∞C2(α)+C1(α).

3. Main Results

In this section, we aims to state the main theorems of this paper. Firstly, we
give some preliminaries results about the p-th moment and the stochastic
continuity of any given solution Xt of the SDE (2). Secondly, we prove the
consistency of the strong approximate solution (3) as well as the underlined
rate of convergence.

3.1. Boundeness and stochastic continuity of any solution. We start
by giving an Lp-boundedness property of the stochastic integral process∫ t
0 g(s)ϕ(Xs)dZs.

Lemma 3.1. Let Z be an α-stable process with index α ∈ (1, 2) and (Xt)t∈[0,1]
any solution of the SDE (2) starting at point x0. If ϕ is bounded then for
all p < α, we have :

sup
t∈[0,1]

E
∣∣∣∣∫ t

0
g(s)ϕ(Xs)dZs

∣∣∣∣p ≤ η(g)p
(
1 +

p

α− p
κ(α, b, ϕ)

)
. (4)

Next, we give the following boundedness property of any solution of the
SDE (2) available for continuous bounded function ϕ or function ϕ satisfying
assumption (A1).

Lemma 3.2. Let Z be an α-stable process with index α ∈ (0, 2) and (Xt)t∈[0,T ]

any solution of the SDE (2) starting at point x0. Under assumptions (A1)
and (A2), if β ∈ [12 ,

α
2 ), there exists a positive constant C depending on

L, β, α, g, cϕ, b, c+, c− such that

sup
t∈[0,1]

E|Xt|2β ≤ C
(
|x0|2β + 1

)
. (5)

Remark 3.1. This result is applicable if we replace assumption (A2) by
F is a sum of a Lipschitz function and a negative function, according to the
methodology of the proof. As concerned the moment estimation in Lemma
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3.2; note that under linear growth conditions, it was stated in Fournier
(2013), Proposition 2. But we give here a different proof, which is a new
methodology we shall describe in the following lines.

For the sake of simplicity, we only give the proof of Lemma 3.2.

Proof. We have for all β ≥ 1
2 ,

E|Xt|2β ≤ 32β−1 |x0|2β + 32β−1E
∣∣∣∣∫ t

0
F (s,Xs)ds

∣∣∣∣2β
+ 32β−1E

∣∣∣∣∫ t

0
g(s)ϕ(Xs)dZs

∣∣∣∣2β
≤ 32β−1 |x|2β + 32β−1E

(∫ t

0
|F (s,X(s))|ds

)2β
+ 32β−1E

∣∣∣∣∫ t

0
g(s)ϕ(Xs)dZs

∣∣∣∣2β
= 32β−1

(
|x0|2β + J1(t, β) + J2(t, β)

)
,

where

J1(t, β) = E
(∫ t

0
|F (s,Xs)|ds

)2β
and J2(t, β) = E

∣∣∣∣∫ t

0
g(s)ϕ(Xs)dZs

∣∣∣∣2β .
Note that from the globally Lipschitz condition (A2), we can deduce the
following linear growth condition:

|F (t, x)|2β ≤ Cβ,L(1 + |x|2β). (6)

Using Hölder inequality we have:

J1(t, β) ≤ t

∫ t

0
E|F (s,Xs)|2βds ≤ Cβ,L,T

∫ t

0
(1 + E|Xs|2β)ds. (7)

Note that

J2(t, β) = E
∣∣∣∣∫ t

0
g(s)ϕ(Xs)dZs

∣∣∣∣2β = 2β

∫ +∞

0
x2β−1P

(∣∣∣∣∫ t

0
g(s)ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
dx.

Now let us first established a tail bound for the stochastic integral
∫ t
0 g(s)ϕ(Xs)dZs

appearing in J2(t, β) when ϕ satisfy assumption (A1). We have
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P
(∣∣∣∣∫ t

0
g(s)ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ P

(∫ t

0
|bRg(s)ϕ(Xs)|ds ≥

x

2

)
+ P

(∫ t

0

∫
|y|≤R

|y g(s)ϕ(Xs)|µ̃(ds, dy) ≥
x

2

)

+ P

(∫ t

0

∫
|y|≤R

|y g(s)ϕ(Xs)|µ(ds, dy) > 0

)
:= R1(x) +R2(x) +R3(x).

By Chebychev’s inequality and Cauchy-Schwarz inequality, we have:

R1(x) ≤
4b2R
x2

E
(∫ t

0
|g(s)| |ϕ(Xs)|ds

)2

≤ η2(g)
4b2R
x2

t

∫ t

0
E(ϕ(Xs)

2ds. (8)

But

b2R ≤ 2b2 + 2ν{y ∈ R : 1 < |y| ≤ R}
∫
1<|y|≤R

y2ν(dy)

≤ 2b2 + 2ν{y ∈ R : |y| > 1}
∫
|y|≤R

y2ν(dy)

≤ 2b2 + 2C1(α)R
2

∫
|y|≤R

ν(dy)

≤ 2b2 + 2C1(α)C2(α)R
2−α,

so that

R1(x) ≤ t η2(g)
(8b2
x2

+
8C1(α)C2(α)R

2−α

x2

)∫ t

0
Eϕ2(Xs)ds.

From Hölder condition, we have the following linear growth condition:

|ϕ(x)|2 ≤ C(ϕ) (1 + |x|2β). (9)

Therefore,

R1(x) ≤ tC η2(g)
(8b2
x2

+
8C1(α)C2(α)R

2−α

x2

)∫ t

0
(1 + E|Xs|2β

)
ds. (10)

From Chebychev’s inequality and isometry formula for Poisson stochastic
integrals and Hölder condition, we have
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R2(x) ≤
4

x2
E
(∫ t

0

∫
|y|≤R

|y g(s)ϕ(Xs)| µ̃(ds, dy)
)2

≤ 4

x2

∫
|y|≤R

y2ν(dy)

∫ t

0
g2(s)Eϕ(Xs)

2ds

≤ 4C2(α)R
2−α

x2
η2(g)

∫ t

0
Eϕ(Xs)

2ds

and,

R2(x) ≤
4C2(α)R

2−α

x2
η2(g)C(ϕ)

∫ t

0

(
1 + E|Xs|2β

)
. (11)

Now, let us deal with R3(x). Note that

Nt =

∫ t

0

∫
|y|>R

y g(s)ϕ(Xs)µ(ds, dy)

is a compound Poisson stochastic integral. The first jump time TR
1 of the

Poisson process µ
(
{y ∈ R : |y| > R} × [0, t]

)
on the set {y ∈ R : |y| > R}

is exponentially distributed with parameter ν
(
{y ∈ R : |y| > R}

)
, see e.g.

Ken-Iti (1999), Theorem 21.3. We have

P(Nt > 0) = 1− P
(
Nt = 0

)
≤ 1− P(TR

1 > t)

= 1− exp−tν
(
{y ∈ R : |y| > R}

)
and,

R3(x) ≤ tν
(
{y ∈ R : |y| > R}

)
≤ tC1(α)R

−α. (12)

By combining the above three estimates in (10), (11) and (12), we obtain

P
(∣∣∣∣∫ t

0
g(s)ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ tC η2(g)

(8b2
x2

+
8C1(α)C2(α)R

2−α

x2

)∫ t

0
(1 + E|Xs|2β

)
ds

+
4C2(α)R

2−α

x2
η2(g)C

∫ t

0

(
1 + E|Xs|2β

)
ds+ tC1(α)R

−α.

Set

R =
x

η(g)
≥ 1.

Thus for all x ≥ η(g), we have

P
(∣∣∣∣∫ t

0
g(s)ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ tC1(α)x

−αη(g)α + 4C2(α)x
−αη(g)αC(ϕ)

∫ t

0

(
1 + E|Xs|2β

)
ds

+ x−αη(g)αt C(ϕ)C(α, b)

∫ t

0

(
1 + E|Xs|2β

)
ds.
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Since

η(g)α
∫ +∞

η(g)
x2β−1−αdx =

η(g)2β

α− 2β
,

we have

E
(∫ t

0
|g(s)ϕ(Xs)|dZs

)2β
= 2β

∫ +∞

0
x2β−1P

(∫ t

0
|g(s)ϕ(Xs)|dZs ≥ x

)
dx,

≤ η(g)2β + 2β

∫ +∞

η(g)
x2β−1P

(∫ t

0
|g(s)ϕ(Xs)|dZs ≥ x

)
dx

≤ η(g)2β + tC1(α)
η(g)2β

α− 2β

+
η(g)2β

α− 2β
C(ϕ)

(
tC(α, b) + 4C2(α)

)∫ t

0

(
1 + E|Xs|2β

)
ds,

so that

J2(t, β) ≤ 32β−1
(
Cβ,α,g + Cβ,α,g,ϕ,b

∫ t

0

(
1 + E|Xs|2β

)
ds
)
. (13)

From (7) and (13), we have

E|Xt|2β ≤ 32β−1
(
|x0|2β + Cβ,α,g + Cβ,α,g,ϕ,b,L

∫ t

0
(1 + E|Xs|2β)ds

)
and, using the Gronwall’s lemma, we obtain the desired result. □

We can deduce Lemma 3.1 using the same methodology. Now, let us estab-
lish the following result.

Theorem 3.3. Let Z be an α-stable process with index α ∈ (0, 2) and
(Xt)t∈[0,1] any solution of the SDE (2) starting at point x0. Under assump-

tions (A1) and (A2), if β ∈ [12 ,
α
2 ), there exists a positive constant C∗

depending on L, β, α, g, cϕ, b, c+, and c− such that

sup
t∈[0,1]

E |Xt+h −Xt|2β ≤ C
(
h2β + h2β

2+1 + h2β
2−2β+1 + h2β

2−2β+2
)

(14)

This result ensures that, the paths of any solution for the SDE (2) are
stochastically continuous when h is small enough and under the conditions
of Theorem 3.3. Hence according to (Peszat and Zabczyk (2007), Prop.
3.21), X has a predictable modification.

Remark 3.2. The above result remains true if we remove assumption (A1)
and assuming that ϕ is a continuous bounded function. The relation (14) is
new. For h → 0, and ∀β ∈ (12 , α/2) with α ∈ (1, 2), we have

sup
t∈[0,1]

E |Xt+h −Xt|2β ≤ Chβ
2
,

since 2β2 − 2β + 1, 2β2 − 2β + 2, 2β2 + 1 and 2β are all greater than β2.
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3.2. Error and rate of the approximation. We aims here to study the
consistency of the above mentionned continuous time version of the Euler-
Maruyama approximation of SDE (2) given by

X̃n
t = x0 +

∫ t

0
F (πn

s , X̃
n
πn
s
)]ds+

∫ t

0
g(πn

s )ϕ(X̃
n
πn
s
)dZs.

We estabilished the following result.

Theorem 3.4. Let Z be an α-stable process with index α ∈ (1, 2) and
(Xt)t∈[0,T ] any solution of the SDE (2) starting at point x0. Under assump-

tions (A1) and (A2), if β ∈ [12 ,
α
2 ), there exists a positive constant C∗

depending on L, β, α, g, cϕ, b, c+, c− such that

sup
t∈[0,T ]

E|X̃n
t −Xt|2β) ≤ C∗n

−β2
. (15)

Remark 3.3. Note that, this result is again applicable if we remove as-
sumption (A1) and assuming that ϕ is a continuous bounded function. It
extend the work of Mikulevičius and Xu (2018); Wu and Hao (2023) in the
case of Lipschitz drift function and Hölder continuous diffusion coefficient.
Moreover, we are not limited to symmetric stable process and positive stable
processes.

Comment 3.1. Let Z be an α-stable process with index α ∈ (1, 2). Under
assumptions (A1) and (A2), if g is a constant, there exists a weak solution
of SDE (2) since from (6) and (9), function F and phi are continuous and
have at most linear growth. The proof of this weak existence can also be
summarized by using Aldous’ criterion (Jacod and Shiryaev (2013)) and by

imitating Fournier (2013) since the sequence (X̃n
t )n≥1 defined in (3) is tight

in the Skorokhod space space and by continuity we have(
X̃n

t ,

∫ t

0
F (πn

s , X̃
n
πn
s
)]ds,

∫ t

0
g(πn

s )ϕ(X̃
n
πn
s
)dZs

)
converges in law to(

Xt,

∫ t

0
F (s,Xs)ds,

∫ t

0
g(s)ϕ(Xs)dZs

)
.

Passing to the limit in equation (3), we deduce that there exists a weak
solution of SDE (2). Now, from Theorem 3.3, one can state that this weak
solution of the SDE (2) has a predictable version. This ensure the existence
of a strong solution of the SDE (2) and extend by the way, the work of
Fournier (2013). This extend also the work of Bass et al. (2004) for not
necessarily symmetric stable process where strong existence is proved for
β = 1

α . More precisely, we cover the case β = 1
α with α ∈ (1,

√
2] and for

not necessarily symmetric stable process. Our mains Theorems extends also
the work of Li and Mytnik (2011) for not necessarily positive stable process
with α ∈ (1,

√
2].



14 APPROXIMATE SOLUTION FOR STABLE-DRIVEN SDE

4. Examples

In this section, we illustrate usefulness of the strong approximate solution
results of the SDE (2) we have established in the preceding section.

Let us first recall the random walk approximation method for α-stable pro-
cess simulation, due to the self-similarity property and the property of sta-
tionnary independent increments. Of course others methods are available
like the series approximation of Lévy process, see Janicki et al. (1997) for
more details. The following proposition based on the algorithm of Chambers
et al. (1976) for α-stable distributions, allow to simulate α-stable processes.

Proposition 4.1 (Discretized trajectory for a strictly α-stable process). Let
Z = (Zt)t∈[0,T ] be a strictly-α stable process.

Step 1 Simulate n independent, uniformly distributed random variables Φ
on [−π/2, π/2] and n independent and identically distributed random
variable W as an exponentially with parameter 1.

Step 2 Compute ∆Zi for i = 1, ...n as follows.
(1) If α ̸= 1

∆Zi = σ

(
T

n

)1/α sin(α(Φ− ϕ0))

cos(Φ)1/α

(
cos(Φ− α(Φ− ϕ0))

W

) 1−α
α

.

(2) If α = 1

∆Zi = σ

(
T

n

)1/α 2

π

((π
2
+ βΦ

)
tan(Φ)− β log

(
1
2πW cos(Φ)

1
2π + βΦ

))
where

ϕ0 = −βπ

2

1− |1− α|
α

.

Step 3 The discretized trajectory of Z is given by

Z(ti) =

i∑
k=1

∆Zk.

From a practical point of view, we consider the linear interpolated version
between instants ti and ti+1 for graphical representations. Figure 1 show
typical sample paths for some strictly and symmetric α-processes. When
α is closed to 2 and β to 0 the sample paths resemble to that of Brownian
motions. For α = 1 and β = 0, the sample paths corresponds to the that
of Cauchy process. We can see the existence of jumps in the simulation, for
instance when α is not close to 2.

Now, we consider the following SDE models.
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(a) (b)

(c) (d)

Figure 1. Paths of a standard strictly 1.7-stable process
with different skewness (a), 0.7-stable process with different
scale and skewness (b), the symmetric and standard α-stable
process with different index of stability (c) and the case of
standard 1-stable process (d).

Example 4.1. (Stable driven OU process) Consider the following Ornstein-
Uhlenbeck (OU) process driven by a stable process (Zt)t≥0 with parameter θ
and ρ > 0 is defined by

dXt = θXtdt+ ρdZt, X0 = x0 ∈ R. (16)

and has the integral representation

Xt(ω) = e−at
(
x0 + ρ

∫ t

0
easdZs(ω)

)
, for t ∈ [0, T ]. (17)
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Clearly since F (t, x) = θx, g(t) = 1 and ϕ(x) = ρ satisfy the Lipschitz and
boundedness condition, there exists a strong approximate solution. We give
in Figure 2 (a) a path approximate solution for θ = 1.2, α = 1.7, β = 0,
ρ = 1 with n = 1000 sample size. Another classical example is given by the
following Stable driven Cox–Ingersoll–Ross (CIR) models. Such models are
popular in stochastic modelling for description of interest rates in finance
and population dynamics.

Example 4.2. (Stable driven Cox–Ingersoll–Ross process, Yang (2017))
A Stable driven Cox–Ingersoll–Ross process can be defined as follows

dXt = (λ− θXt)dt+ ρ|Xt|qdZt, X0 ≥ 0,

where q ∈ [0, 1) λ, ρ, θ are real constants.

When q = α−1 it is the so called SCIR model given in Bayraktar and Clément
(2023) and there is a weak existence solution when Z is a positive stable
process. When q = 1− α−1, the existence of a strong approximate result is
contained in Mikulevičius and Xu (2018) for positive stable process Z and
for q ∈ (1−α−1, α−1), a weak existence solution holds in Fournier (2013) for
α ∈ (1, 2). Note that, F (t, x) = λ− θx is a Lipschitz function, g(t) = ρ and
if the Hölder ϕ(x) = |x|q satisfy q ∈ [12 ,

α
2 ), then we can say that, there exists

a strong approximate solution. In particular one can choose q = α − 1 and
α ∈ [1.5, 2) to obtain in Figure 2 (b) a strong approximate path solution for
λ = 0.2, θ = 1.2 α = 1.7, β = 0, ρ = 1 and q = α− 1 with n = 1000 sample
size. We give in Figure 2 (c) an approximate path solution for λ = 0.2,
θ = 1.2 α = 1.7, β = 0, ρ = 1 and q = 1− α−1 with n = 1000 sample size.
We introduce the following Lotka and Volterra models, famous in population
dynamics (in the case where the solution is positive):

Example 4.3. (Stable driven Lotka–Volterra process)
A Stable driven Lotka–Volterra process can be defined as follows

dXt = Xt(λ− θXt)dt+ ρ|Xt|qdZt, X0 ≥ 0,

where q ∈ [12 ,
α
2 ) a, ρ, θ are real constants.

When q = 1, it is proposed in Zhang et al. (2017) when Z is a positive
stable process. Note that, F (t, x) = x(λ − θx) = λx − θx2 is the sum of a
Lipschitz function and a negative function if θ > 0. We consider g(t) = ρ
and ϕ(x) = |x|q Hölder continuous with q = 1/2. In particular there exists a
strong approximate solution. We give in Figure 2 (d) an approximate path
solution for λ = 0.2, θ = 1.2 α = 1.7, β = 0, ρ = 1 and q = 1/2 with
n = 1000 sample size.



APPROXIMATE SOLUTION FOR STABLE-DRIVEN SDE 17

(a) (b)

(c) (d)

Figure 2. An approximate path of the solution of a stan-
dard strictly stable driven OU process with sample size
n = 1000, ρ = 1, θ = 1.2, α = 1.7 and β = 0 (a); of a
standard strictly stable driven CIR process with sample size
n = 1000, ρ = 1, θ = 1.2, α = 1.7, β = 0, λ = 0.2 and
q = α−1 (b); of a standard strictly stable driven CIR process
with sample size n = 1000, ρ = 1, θ = 1.2, α = 1.7, β = 0,
λ = 0.2 and q = 1 − α−1 (c) and the case of a standard
strictly stable driven Lotka–Volterra process with λ = 0.2,
θ = 1.2 α = 1.7, β = 0, ρ = 1, q = 1/2 and n = 1000 (d).

5. Proofs of the main Theorems

5.1. Proof of Theorem 3.3.
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Proof. We have

Xt+h −Xt =

∫ t+h

0
F (s,Xs)ds−

∫ t

0
F (s,Xs)ds

+

∫ t+h

0
g(s)ϕ(Xs)dZs −

∫ t

0
g(s)ϕ(Xs)dZs.

Thus,

E|Xt+h −Xt|2β ≤ 22βE
∣∣∣∣∫ t+h

t
F (s,Xs)ds

∣∣∣∣2β
+ 22βE

∣∣∣∣∫ t+h

t
g(s)ϕ(Xs)dZs

∣∣∣∣2β
:= I1(t, β) + I2(t, β)

Using Hölder inequality and assumption (A2), we have the following esti-
mate

I2(t, β) ≤ 22β−1 h2β−1

∫ t+h

t
E|F (s,Xs)|2βds

≤ 2p h2β−1C

∫ t+h

t
(1 + E|Xs|2β)ds

≤ Cβh
2β,

since 1 + E|Xs|2β is finite, according to Lemma 3.2.

Now, let us deal with the estimation of I2(t, β). Imitating the previous
argument we have

P
(∣∣∣∣∫ t+h

t
g(s)ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ P

(∫ t+h

t
|bRg(s)ϕ(Xs)|ds ≥

x

2

)
+ P

(∫ t+

t

∫
|y|≤R

|y g(s)ϕ(Xs)|µ̃(ds, dy) ≥
x

2

)

+ P

(∫ t+h

t

∫
|y|≤R

|y g(s)ϕ(Xs)|µ(ds, dy) > 0

)
:= R1(x, h) +R2(x, h) +R3(x, h).

By Chebychev’s inequality and Cauchy-Schwarz inequality, we have :

R1(x, h) ≤
4b2R
x2

E
(∫ t+h

t
|g(s)| |ϕ(Xs)|ds

)2

≤ η2(g)
4b2R
x2

h

∫ t+h

t
E(ϕ(Xs)

2ds.

(18)
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R1(x, h) ≤ hC η2(g)
(8b2
x2

+
8C1(α)C2(α)R

2−α

x2

)∫ t+h

t
(1 + E|Xs|2β

)
ds

(19)

≤ h2C η2(g)
(8b2
x2

+
8C1(α)C2(α)R

2−α

x2

)
, (20)

since 1 + E|Xs|2β is bounded. Next, we use Chebychev’s inequality and
isometry formula for Poisson stochastic integrals and Hölder condition to
have

R2(x, h) ≤
4

x2
E
(∫ t+h

t

∫
|y|≤R

|y g(s)ϕ(Xs)| µ̃(ds, dy)
)2

≤ 4

x2

∫
|y|≤R

y2ν(dy)

∫ t+h

t
g2(s)Eϕ(Xs)

2ds

≤ 4C2(α)R
2−α

x2
η2(g)

∫ t+h

t
Eϕ(Xs)

2ds

≤ 4C2(α)R
2−α

x2
η2(g)C

∫ t+h

t

(
1 + E|Xs|2β

)
ds

≤ hC
4C2(α)R

2−α

x2
η2(g).

Now, let us deal with the compound Poisson stochastic integral appearing
in R3(x, h). Note that

Nt,h =

∫ t+h

t

∫
|y|>R

y g(s)ϕ(Xs)µ(ds, dy)

have the same law as

Nh =

∫ h

0

∫
|y|>R

y g(s)ϕ(Xs)µ(ds, dy),

so that we have

P(Nh > 0) ≤ hC1(α)R
−α.

By combining the three estimates, we obtain

P
(∣∣∣∣∫ t+h

t
g(s)ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ hC1(α)R

−α + hC
4C2(α)R

2−α

x2
η2(g)

+ h2C η2(g)
(8b2
x2

+
8C1(α)C2(α)R

2−α

x2

)
.
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Therefore choosing the truncation level

R =
x

hβη(g)
≥ 1

and rearranging the terms, we obtain for all x ≥ hβη(g) :

P
(∣∣∣∣∫ t+h

t
g(s)ϕ(Xs)dZs

∣∣∣∣ ≥ x

)
≤ C1(α)h

αβ+1x−αη(g)α + 4C hβ(α−2)+1ηα(g)C2(α)x
−α

+ 8b2Ch2+αβ−2βx−αη(g)α + x−αη(g)αCh2+αβ−2β8C1(α)C2(α).

Hence

E
(∫ t+h

t
|g(s)ϕ(Xs)|dZs

)2β
= 2β

∫ +∞

0
x2β−1P

(∫ t+h

t
|g(s)ϕ(Xs)|dZs ≥ x

)
dx,

≤ η(g)2βh2β
2

+ 2β

∫ +∞

hβη(g)
x2β−1P

(∫ t+h

t
|g(s)ϕ(Xs)|dZs ≥ x

)
dx.

Therefore

E
(∫ t+h

t
|g(s)ϕ(Xs)|dZs

)2β
≤ η(g)2βh2β

2

+
2βη(g)2β

α− 2β

(
C1(α)h

2β2+1+4C h2β
2−2β+1C2(α)+8b2Ch2β

2−2β+2+8C1(α)C2(α)h
2β2−2β+2

)
,

because

η(g)α
∫ +∞

hβη(g)
x2β−1−αdx =

η(g)2β

α− 2β
hβ(2β−α).

Finally, we have

sup
t∈[0,T ]

E
(
|Xt+h −Xt|2β

)
≤ C

(
h2β + h2β

2+1 + h2β
2−2β+1 + h2β

2−2β+2
)
.

But

2β2−2β+1 ≥ β2, 2β2−2β+2 ≥ β2, 2β2+1 ≥ β2, 2β ≥ β2 ∀β ∈ (
1

2
, α/2) α ∈ (1, 2),

so that

sup
t∈[0,T ]

E
(
|Xt+h −Xt|2β

)
≤ Chβ

2
when h → 0.

□
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5.2. Proof of Theorem 3.4.

Proof. Note that

sup
t∈[0,T ]

E|X̃n
t −Xt|2β ≤ sup

k=0,...,n−1
sup

t∈[tk,tk+1]
E|X̃k

t −Xt|2β.

To establish the convergence of X̃n to X, let’s write the explicit expression
for Zt = X̃n

t −Xt.

X̃n
t −Xt =

∫ t

0

[
F (πn

s , X̃
n
πn
s
)− F (s,Xs)

]
ds+

∫ t

0

[
g(πn

s )ϕ(X̃
n
πn
s
)− g(s)ϕ(Xs)

]
dZs.

We have

E|Zt|2β ≤ (2t)2β−1

∫ t

0
E
∣∣∣F (πn

s , X̃
n
πn
s
)− F (s,X(s))

∣∣∣2β ds
+ 22β−1E

∣∣∣∣∫ t

0

(
g(πn

s )ϕ(X̃
n
ϕn
s
)− g(s)ϕ(Xs)

)
dZs

∣∣∣∣2β .
:= P1(t, β) + 22β−1 P2(t, β)

But

E|F (πn
s , X̃

n
πn
s
)− F (s,Xs)|2β ≤ 32β−1E|F (πn

s , X̃
n
πn
s
)− F (πn

s , Xπn
s
)|2β

+ 32β−1E|F (πn
s , Xπn

s
)− F (s,Xπn

s
)|2β

+ 32β−1|F (s,Xπn
s
)− F (s,Xs)|2β

≤ 32β−1E|F (πn
s , X̃

n
πn
s
)− F (πn

s , Xπn
s
)|2β

+ 32β−1E|F (s,Xπn
s
)− F (s,Xs)|2β

and,

P1(t, β) ≤ (6t)2β−1E
(∫ t

0
|F (πn

s , X̃
n
πn
s
)− F (πn

s , Xπn
s
)|2βds

)
+ (6t)2β−1E

(∫ t

0
|F (s,Xπn

s
)− F (s,Xs)|2βds

)
≤ Cβ,L,T

(
E
(∫ t

0
|X̃n

πn
s
−Xπn

s
|2βds

)
+ E

(∫ t

0
|Xπn

s
−Xs|2βds

))
≤ Cβ,L,T

∫ t

0
E(Z2β

s )ds+ Cβ,L,T

∫ t

0
E|Xπn

s
−Xs|2βds

≤ Cβ,L,T

∫ t

0
E|Zs|2βds+ C n−β2

,
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where in the last inequality, we apply Theorem 3.3 for h = n−1 together
with Remark 3.2. In the same way, we have

|g(ϕn
s )ϕ(X̃

n
πn
s
)− g(s)ϕ(Xs)| ≤ |g(πn

s )ϕ(X̃
n
πn
s
)− g(πn

s )ϕ(Xπn
s
)|

+ |g(πn
s )ϕ(X̃

n
πn
s
)− g(s)ϕ(Xπn

s
)|+ |g(s)ϕ(Xπn

s
)− g(s)ϕ(Xs)|

≤ |g(πn
s )ϕ(X̃

n
πn
s
)− g(πn

s )ϕ(Xπn
s
)|+ |g(s)ϕ(Xπn

s
)− g(s)ϕ(Xs)|,

so that

P
(∫ t

0
|g(πn

s )ϕ(X̃
n
πn
s
)− g(s)ϕ(Xs)|dZs ≥ x

)
≤ P

(∫ t

0
|g(πn

s )ϕ(X̃
n
πn
s
)− g(ϕn

s )ϕ(Xπn
s
)|dZs ≥ x/2

)
+ P

(∫ t

0
|g(s)ϕ(Xπn

s
)− g(s)ϕ(Xs)|dZs ≥ x/2

)
.

Thus,

P2(t, β) = E
(∫ t

0
|g(πn

s )ϕ(X̃
n
πn
s
)− g(s)ϕ(Xs)|dZs

)2β
= 2β

∫ +∞

0
x2β−1P

(∫ t

0
|g(πn

s )ϕ(X̃
n
πn
s
)− g(s)ϕ(Xs)|dZs ≥ x

)
dx,

≤ 2β

∫ +∞

0
x2β−1P

(∫ t

0
|g(πn

s )ϕ(X̃
n
πn
s
)− g(πn

s )ϕ(Xπn
s
)|dZs ≥ x/2

)
dx,

+ 2β

∫ +∞

0
x2β−1P

(∫ t

0
|g(s)ϕ(Xπn

s
)− g(s)ϕ(Xs)|dZs ≥ x/2

)
dx

≤ 2β

∫ +∞

0
x2β−1P

(∫ t

0
|g(πn

s )ϕ(X̃
n
πn
s
)− g(πn

s )ϕ(Xπn
s
)|dZs ≥ x

)
dx

+ 2β

∫ +∞

0
x2β−1P

(∫ t

0
|g(s)ϕ(Xπn

s
)− g(s)ϕ(Xs)|dZs ≥ x

)
dx

:= P2,1(t, β) + P2,2(t, β).

Firstly, we have

P
(∫ t

0
|g(πn

s )ϕ(X̃
n
πn
s
)− g(πn

s )ϕ(Xπn
s
)|dZs ≥ x

)
≤ R∗

1(x) +R∗
2(x) +R∗

3(x),

where

R∗
1(x, h) ≤

(8b2tη2(g)
x2

+ t
8C1(α)C2(α)R

2−α

x2
η2(g)

)
c2ϕ

∫ t

0
E|Zs|2βds,

R∗
2(x, h) ≤

4C2(ν)R
2−α

x2
η2(g)c2ϕ

∫ t

0
E|Zs|2βds

and,

R∗
3(x, h) ≤ tC1(α)R

−α.
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Therefore choosing again the same truncation level

R =
x

hβη(g)
≥ 1

and rearranging the terms, we obtain for all x ≥ hβη(g) :

P
(∫ t

0
|g(πn

s )ϕ(X̃
n
πn
s
)− g(πn

s )ϕ(Xπn
s
)|dZs ≥ x

)
≤ C1(α)h

αβ+1x−αη(g)α

+ 4c2ϕ h
β(α−2)+1ηα(g)C2(α)x

−α

∫ t

0
E|Zs|2βds

+ 8b2c2ϕh
2+αβ−2βx−αη(g)α

∫ t

0
E|Zs|2βds

+ x−αη(g)αc2ϕh
2+αβ−2β8C1(α)C2(α)

∫ t

0
E|Zs|2βds.

We have

P2,1(t, β) = 2β

∫ +∞

0
x2β−1P

(∫ t

0
|g(πn

s )ϕ(X̃
n
πn
s
)− g(πn

s )ϕ(Xπn
s
)|dZs ≥ x

)
dx

≤ η(g)2βh2β
2
+ 2β

βη(g)2β

α− 2β
C1(α)h

2β2+1

+
(
4c2ϕ h

2β2−2β+1C2(α) + 8b2c2ϕh
2β2−2β+2 + 8C1(α)C2(α)h

2β2−2β+2c2ϕ

)∫ t

0
E|Zs|2βds,

because

η(g)α
∫ +∞

hβη(g)
x2β−1−αdx =

η(g)2β

α− 2β
hβ(2β−α).

Secondly, we have

P
(∫ t

0
|g(s)ϕ(Xπn

s
)− g(s)ϕ(Xs)|dZs ≥ x

)
≤ R∗∗

1 (x, h)+R∗∗
2 (x, h)+R∗∗

3 (x, h),

where

R∗∗
1 (x, h) ≤

(8b2tη2(g)
x2

+ t
8C1(α)C2(α)R

2−α

x2
η2(g)

)
c2ϕ

∫ t

0
E|Xπn

s
−Xs|2βds,

R∗∗
2 (x, h) ≤ 4C2(ν)R

2−α

x2
η2(g)c2ϕ

∫ t

0
E|Xϕn

s
−Xs|2βds ≤

4C2(ν)R
2−α

x2
η2(g)c2ϕtChβ

2

and,
R∗∗

3 (x, h) ≤ tC1(α)R
−α.

Since |πn
s − s| ≤ h for t ∈ [tk, tk+1), we apply Theorem 3.3 together with

Remark 3.2, to obtain

R∗∗
1 (x, h) ≤

(8b2tη2(g)
x2

+ t
8C1(α)C2(α)R

2−α

x2
η2(g)

)
c2ϕtChβ

2
.
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Set

R = xh−βη(g)−1 ≥ 1, x ≥ hβη(g).

Therefore choosing again the same truncation level

R =
x

hβη(g)
≥ 1

and rearranging the terms, we obtain for all x ≥ hβη(g) :

P
(∫ t

0
|g(s)ϕ(Xϕn

s
)− g(s)ϕ(Xs)|dZs ≥ x

)
≤ C1(α)h

αβ+1x−αη(g)α

+ 4c2ϕ h
β(α−2)+1ηα(g)C2(α)x

−αthβ
2

+ 8b2c2ϕh
2+αβ−2βx−αη(g)αthβ

2

+ x−αη(g)αc2ϕh
2+αβ−2β8C1(α)C2(α)th

β2
.

We have

P2,2(t, β) =

∫ +∞

0
x2β−1P

(∫ t

0
|g(πn

s )ϕ(X̃
n
πn
s
)− g(πn

s )ϕ(Xπn
s
)|dZs ≥ x

)
dx

≤ η(g)2βh2β
2
+

2βη(g)2β

α− 2β
C1(α)h

2β2+1

+
(
4c2ϕ h

2β2−2β+1C2(α) + 8b2c2ϕh
2β2−2β+2 + 8C1(α)C2(α)h

2β2−2β+2c2ϕ

)
hβ

2
.

Finally, there exists positive constant C (that depend on all the the model
parameters) and, Cβ,L such that:

E(|Zt|2β) ≤ (Cβ,L + C)

∫ t

0
E(|Zs|2β)ds+ Chβ

2

and, we use the Gronwall Lemma’s, to obtain the desired result. □
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(LMA), Poitiers, France. The author thank the Director of LMA for pro-
viding nice working environment.

Declaration statement

The author have seen and agree with the contents of the manuscript. The
author certify that the submission is an original work and is not under review
at any other publication. No potential conflict of interest was reported by
the author.



APPROXIMATE SOLUTION FOR STABLE-DRIVEN SDE 25

Data availability statements

Data sharing not applicable to this article as no datasets were generated or
analysed during the current study. The R codes for the simulation study
are available from the author on reasonable request.

References
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Mikulevičius, R. and F. Xu (2018). On the rate of convergence of strong
euler approximation for sdes driven by levy processes. Stochastics 90 (4),
569–604.

Pamen, O. M. and D. Taguchi (2017). Strong rate of convergence for the
euler–maruyama approximation of sdes with hölder continuous drift coef-
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