
HAL Id: hal-04217300
https://hal.science/hal-04217300v1

Submitted on 25 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

External dependencies in software development
Aless Hosry, Nicolas Anquetil

To cite this version:
Aless Hosry, Nicolas Anquetil. External dependencies in software development. Quality of Information
and Communications Technology, 16th International Conference, QUATIC 2023, Sep 2023, Aveiro
(Portugal), Portugal. pp.215-232. �hal-04217300�

https://hal.science/hal-04217300v1
https://hal.archives-ouvertes.fr

External dependencies in software development

Aless Hosry1 and Nicolas Anquetil1

Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
{aless.hosry, nicolas.anquetil}@inria.fr

Abstract. Successful software requires constant modifications. To guar-
antee the continuous proper functioning of the applications, developers
need to understand them well, particularly by having an accurate map of
the dependencies between the parts they are modifying. However, some
of these dependencies are not easily identified. For example, in an An-
droid application, there are dependencies between the Java source code
and XML parts, some of which are materialized by a generated “R” Java
class. We call such dependencies external because they are introduced
by some agent external to the source code. On top of the categorization
of dependencies defined in the literature, we define restrictions on the
External Dependencies that allow us to verify the source code and iden-
tify possible flaws. We created a common approach relying on reusable
patterns to search for containers and entities that are part of such de-
pendencies and implemented it in a prototype that we validate on two
different projects from GitHub and developed using different frameworks.

Keywords— External dependency, Cross language, Multi-language, Multi-tier

1 Introduction

Repeated modifications are necessary for successful software. This cycle of modifica-
tions is known as software evolution. When performed by developers or tools (e.g.,
refactoring tools) without enough knowledge of the applications, maintenance will lead
to decreased software quality. The knowledge required involves identifying all incoming
and outgoing dependencies of a software artifact to be modified. We define depen-
dency as the need for one artifact to rely on another artifact in order to fully operate
as expected. Developers are more likely to miss External Dependencies than explicit
dependencies and introduce bugs into software [19].

Yu and Rajlich [20] call hidden dependencies, data dependencies between two mod-
ules that are not readily apparent in the source code. As such, these dependencies are
considered design faults. We are more interested in dependencies introduced by ex-
ternal tools or agents like Android. GWT1, J2EE2, ODBC3, etc. Contrary to Yu et
al. definition, such dependencies are inevitable and therefore not design faults. We
call them External Dependencies: a dependency between two artifacts that is created
through an external agent. Often the two dependent artifacts will be in two different

1 Google Web Toolkit gwtproject.org
2 Java 2 Platform, Enterprise Edition oracle.com/java/technologies/appmodel.html
3 Open Database Connectivity wikipedia.org/wiki/Open_Database_Connectivity

gwtproject.org
oracle.com/java/technologies/appmodel.html
wikipedia.org/wiki/Open_Database_Connectivity

source files, but “external” refers to the fact that the dependency is introduced by an
external agent, not to the fact that the artifacts are external. For example, a GUI
framework like JavaFX will offer widgets like a Button and callbacks on these widgets
(setOnAction(EventHandler)). The dependency between a button and its handler is
not clear in the source code if one does not know how JavaFX works. It is handled
externally, even if both artifacts are defined in the same file.

Examples of such “external agents” are frameworks working with a variety of pro-
gramming languages suited for different objectives such as building user interfaces,
handling logic, and querying databases. Other frameworks allow different projects to
collaborate, for example in client/server (multi-tier) applications.

We found that there is no clear, unique definition in the literature of what a hidden
dependency is. That’s why we introduce the notion of External Dependency . Also, most
of the available tools only consider specific types of External Dependencies in specific
contexts. The majority focuses on identifying the dependencies, ignoring other per-
spectives like detecting errors due to missing dependencies or excessive dependencies.

As a result, we will go over the following points that outline our strategy in this
paper to detect all possible types of External Dependencies, built on top of the earlier
work of Hecht et al. [6]:

1. We list in this paper all the types of External Dependencies we found in the previous
works [20] [6], in addition to the exceptions;

2. We list the commonalities we found that lead to a single approach for External
Dependency detection;

3. We explain the restrictions for those commonalities following each type and how
they lead to the detection of errors;

4. We validate our approach with a tool that works using common search patterns by
experimenting it for a first implementation of two applications developed in two
different frameworks.

The paper is structured as follows: In section 2 we list all the previous works in the
literature. Section 3 lists different categories of External Dependencies, then lists the
cardinalities found for each one. Our tool Adonis is presented in section 4, followed by
two experiments and results 5. Finally, we end up with a conclusion 6.

2 Related work

In the literature, many solutions exist for analyzing different types of External Depen-
dencies. We first present the different publications found before proposing a classifica-
tion scheme for them.

2.1 Existing tools

Yu and Rajlich [20] are discussing “hidden dependencies”, but they use a definition
(classes having a data dependency that is not readily apparent in the source code)
different from what we are discussing in this paper.

DeJEE developed by Shatnawi et al. [16], is able to generate automated analysis for
J2EE solutions in order to identify a dependency call graph of a given J2EE application
using the KDM metamodel; They use static analysis to build a KDM model of the
software and match it with XML artifacts through rules with lexical matching.

2

BabelRef is a tool developed by Nguyen et al. [12]. It detects automatically the
dependencies between generated client artifacts (HTML and JavaScript) and generated
server artifacts (PHP). It relies on dynamic analysis with a single tree-based structure
called the D-model using object matching.

EdgeMiner is a tool developed by Yinzhi et al. [2] to automatically detect callbacks
for Android framework applications, whether they are created in Java source code.
The analysis is performed statically on the source code and returns a list of callbacks
that were identified using object matching, for example, when callbacks are introduced
by an implemented Java interface. The authors also provided a different method of
implementing callbacks using XML resources in Android applications, although their
strategy does not address their detection.

Hecht et al. [6] developed another approach that detects dynamically the depen-
dencies established in J2EE applications using codified rules. This is the only work
we found that aims for a generic approach, considering different types of dependencies
(callbacks, multi-language, multi-tiers). Still, it is limited to the J2EE framework.

Polychniatis et al. [15] proposed a static method for detecting cross-language links
based on matching lexically common tokens between two possibly dependent modules.
The detection algorithm is then followed by applying specific filters, such as filtering
frequent tokens and omitting one-character tokens.

Grichi et al. [4] made a study on 10 Java Native Interface (JNI) open-source mul-
tilanguage systems to identify dependencies between Java and C++ using the Static
Multilanguage Dependency Analyzer (S-MLDA) to detect static cross-language links
and the Historical Multilanguage Dependency Analyzer (H-MLDA) based on software
co-changes to identify links that could not be detected statically.

GenDeMoG, which is a tool developed by Pfeiffer and Wąsowski [13], allows spec-
ifying intercomponent dependency patterns statically for artifacts in heterogeneous
systems. The tool relies on parsing languages, querying source code objects each time,
and retrieving the possible dependencies between different artifacts.

Mayer and Schroeder [8] created a generic approach to understanding, analyzing,
and refactoring cross-language code by directly specifying and exploiting statically
semantic links in multi-language programs. Their tool, XLL, was developed using QVT-
Relations (QVT-R), where a set of rules for cross-language links per language is defined
as a relation inside a transformation block, after parsing the source code, and introduces
for the first time the idea of cross-language link correctness.

Dsketch is a tool created by Cossette and Walker [3] and used by developers to
specify patterns and match blocks of code in any programming language using lexical
matching. After identifying the artifacts, Dsketch starts looking statically for possible
links between the languages of these artifacts, following a set of steps predefined by
the author.

Soto-Valero et al. [18] suggested a new automatic approach to identify third-party
Java dependencies statically in Maven projects, remove unneeded classes, repackage
used classes into a different dependency, and regenerate the XML configuration file
to refer to the new dependencies. The objective of their approach is to create a min-
imum project binary that only contains code required for the project and eliminates
“bloated dependencies”. As such, they introduce the notion of dependency correctness
(or incorrectness in the case of bloated dependencies).

Kempt et al. [7] introduced an approach that could be applicable to enhance the
refactoring of cross-language links between Java and Groovy. Their approach is com-
pletely static and relies on searching over source code objects, as Groovy and Java can
easily interact with each other. In order to accelerate the searching engine, the authors

3

propose filtering the classes on which, for example, the method call is executed, cre-
ating a hierarchy scope, and starting a second search following the method inside the
limiting hierarchical scope.

2.2 Categorization of the tools

We classify the presented work in different categories (summarized in Table 14):

Dependency type: Many of the papers are considering dependencies existing in
cross-language applications, like between Java source code and an XML config-
uration file, multi-tier like between a client application and a server one, callbacks
from external libraries, or generated files like the R class in Android or the files
generated by J2EE, or HTML and Javascript generated by PHP;

Analysis: We saw that both static and dynamic analyses could be used by the tools;
Matching strategy: There are two different strategies used: Object matching works

on a model of the application and looks for specific objects in the model, lexical
matching works directly on the source text (Java, XML, . . .);

Engine: Finally, some approaches are based on user defined rules to identify depen-
dencies, while others automatically discover them.

Table 1: Existing approaches(dependency types)

Name Dependency
Type Analysis Matching

strategy Engine

Yu and Rajlich [20] Data dependencies Static Object Rule

EdgeMiner [2] Callbacks Static Object Automatic
Dsketch [3] Cross-language Static Object Rule

Grichi et al. [4] Cross-language Static Lexical Rule
Hecht et al. [6] alla Dynamic Object Rule
Kempf et al. [7] Cross-language Static Object Rule

XLL [8] Cross-language Static Object Rule
BabelRef [12] M-tiersb, Gen.c Dynamic Object Rule

GenDeMoG [13] Cross-language Static Object Rule
Polychniatis et al. [15] Cross-language Static Lexical Automatic

DeJEE [16] Cross-language Static/Dyn. Lexical Automatic
Soto-Valero et al. [18] Cross-language Static Object Automatic

a Multi-tiers, generated files, callbacks, cross-language
b Multi-tiers
c Generated files

We can see that only one paper considers multiple dependency types (Hecht et
al. [6]: cross-language, multi-tiers, callbacks, and generated files). Also, two papers,
Pfeiffer and Wąsowski [13], and Soto-Valero et al. [18], consider dependency correctness

4 For completion, we include Yu et al. in the table although, as already said, they
consider a different type of dependency

4

by identifying when a dependency should not exist. Additionally, we found that some
approaches are generic [3, 8, 13, 15], while others work only for specific languages and
frameworks [2, 4, 6, 7, 12,16,18,20].

3 Structuring the domain

Having reviewed the literature on dependencies introduced by agents external to the
source code, we will now discuss more in-depth the different categories of these Ex-
ternal Dependencies that were introduced in the preceding section. We also discuss
dependencies correctness and how an External Dependency detection tool can help,
not only in understanding the software, but also in pointing out possible flaws.

3.1 Categorization

Different kinds of External Dependencies exist in software where artifacts are written
in different languages or tiers need to interact:

Cross-language dependencies are those between artifacts written in different lan-
guages. For example, in the GWT framework where XML can be used to define
the UI and Java is used to handle the behavior. The dependency between Java
and CXML appears in the Java code with annotations such as @UiField and
@UiHandler. If any change affects the XML artifact, the developer must apply in
parallel the same change on the dependent Java artifacts, otherwise the depen-
dency is broken and the application might fail at runtime. This seems to be the
kind of External Dependencies most studied (see Table 1) Such dependencies may
be difficult for the developers to detect as they imply a good understanding of the
framework used [10]. For example, Android also expresses the GUI in an XML file
and the behavior in Java code, but the dependencies are not materialized in the
same way. Examples are not limited to GUI, other Cross-language dependencies
can be found when an SQL query (in a String) references the tables and columns
of an external database.

Multi-tiers dependencies appear in applications with a distributed architecture.
For example, they can access data on one or more database servers, the business
logic runs on an application server, the presentation logic is deployed on a web
server, and the user interface runs on a web browser [11]. Thus, in a call established
between a client and server application using Java RMI, the client program must
be aware of the structure of interfaces that extend java.rmi.Remote in order to
invoke its methods and make a successful call to the server tier. Again, such calls
between tiers depend on the communication framework used, yet changes to one
tier could require in parallel updates to the second.

Callback dependencies are often used by libraries to allow the user to get back
control from library’s elements. For example, in the JavaFX graphical library, a
Button widget can give back control to the application upon end-user interaction
through the setOnAction(EventHandler) callback. Kempf et al. [7] mention it for
the Android framework. Again, each framework has a different set of callbacks that
must be known to adequately identify the dependencies.

File generation dependencies appear when a framework or tool generates addi-
tional files, predefined in configuration files and parsed on deployment time, able
to generate additional components linked with the existing ones of the project [6].

5

Such dependencies are hidden until the project is deployed or executed, and dur-
ing the analysis phase, a developer or an analysis tool may not be aware of their
existence. These dependencies may be accompanied by other kinds, for example,
Android generates a R class that allows to link the Java code to XML artifacts
(Cross-Language dependencies). In the context of J2EE, Hecht et al. use dynamic
analysis to detect these File generation dependencies.

Documentation dependencies exist when the documentation refers to the source
code. For example, the JavaDoc has special annotations to refer to classes, methods
or their parameters. Some refactorings are able to detect and modify the comments
when an artifact is renamed. These dependencies might be considered less critical
because they don’t affect the behavior of the application. Yet they are important
for the readability and understandability of the source code. In this case, the
“external agent” introducing the External Dependencies might be considered to be
the human reader.

As noticed above, these categories are not mutually exclusive and actually fre-
quently co-existent. We saw the example of Generated file dependencies and Cross-
language dependencies, but a Multi-tier dependency will often come with a Callback
dependency to allow one tier to answer to events in another tier.

3.2 Dependency correctness

A dependency exists between two artifacts (or entities) that we will call reference and
Resource. Following Pfeiffer and Wąsowski definitions: “a [Resource entity]5 is a frag-
ment of code that introduces an identifiable object, a concept, etc.”, and “a [Reference
entity] is a location in code that relates to a [Resource entity]”. The definitions need
to be more generic as we are not dealing solely with source code (XML files, documen-
tation), but we will mostly restrict ourselves to External Dependencies which involve
some source code, although we sometimes also consider dependencies between CSS
specifications and HTML documents, which are typically not considered source code.

Most of the work cited in Section 2 focuses on identifying the External Dependencies
to help fully understand the application and preserve the quality of the modified source
code. We saw that Soto-Valero et al. [18] went one step further by considering the cor-
rectness of dependencies. Also, Pfeiffer and Wąsowski [14] state that the dependencies
are always many-to-one between Reference entities and Resource entities.

The issue of correctness is important as it allows for checking (and possibly preserv-
ing) the quality of the application. The idea of cardinality (many-to-one) is an obvious
candidate to express possible restrictions on the External Dependencies. However, al-
though the many-to-one is the most frequent, we found the statement of Pfeiffer and
Wąsowski to be incorrect in some cases; not all External Dependency are many-to-one.

We consider the cardinality of External Dependencies independently from the Ref-
erence side and the Resource side.

Resource side: The Resource entity might be mandatory or optional.
Mandatory: This is the most common case, the Resource entity referenced must

exist or there will be an error at compilation or execution time.

5 they call them “key”

6

Optional: Less common examples can be found in HTML tags (e.g., a specific
div) considered as Resource entities. A CSS file can reference (“depend on”)
a non existent HTML tag, a JavaScript function could similarly look for the
optional existence of a given node in the DOM of an HTML page.

Reference side: A Reference entity can be mandatory or optional, single or multiple:
Multiple: This is the most common case, a Resource entity can be referenced by

multiple Reference entities.
Single: In specific cases such as ORM6, there can be only one object referring to

any element defined in a database.
Optional: Most of the time, Reference entities are optional. For example, one

may not use a possible callback offered by a library.
Mandatory: There are cases where a Reference entity is mandatory. Its absence

will often not produce a compilation or execution error, but it still denotes a
flaw or a lack of understanding of the framework used. In the worst cases, this
lack of understanding is circumvented by the developers with some needlessly
complex and non-standard constructions in the source code.

The cardinality for any External Dependency is fixed by the framework considered.
Stating the cardinality of an External Dependency allows a tool to not only identify

the dependencies (to help analyze the application), but also to verify them (to help
discover flaws). We will see in our examples (Section 5) that we did find such flaws.

We propose two main categories of flaws/errors:

Excessive dependencies: They characterize a Resource entity that was created but
never referred to [8]. In multi-tier applications, we had the case where many services
were declared on the server side but never used on the client side. They were not
possible extensions to be used by other client applications, but old code that ceased
to be used (“dead services”). Other possible cases are when the developer made a
mistake and the Reference entity points to a wrong (similar) Resource entity.
Soto-Valero et al. [18] call them “bloated dependencies” when removing unused
Java classes from imported jar files.

Missing dependencies: They characterize Reference entities that are referring to
Resource entities that do not exist. Such dependencies are uncommon since most
applications cannot run properly if resources are not available. Such dependencies
have a higher chance of existing in the case of HTML and CSS, or comments. In this
case, they would result in a wrong/unappealing rendering of a web application, and
misleading comments. Note that wrong web page rendering can lead to an unusable
web application in some cases.

4 External Dependencies Detection

This section explains how we implement a generic External Dependency detector. We
first decompose the problem into two sub-problems, which allows us to develop a small
library of reusable patterns. We then give the general architecture of our solution.

6 Object Relational Mapping wikipedia.org/wiki/Object\T1\textendashrelational_
mapping

7

wikipedia.org/wiki/Object\T1\textendash relational_mapping
wikipedia.org/wiki/Object\T1\textendash relational_mapping

4.1 Requirements

Going back to the categorization of work proposed in Section 2, we want a generic
solution that allows us to identify dependencies with the following properties:

Dependency types: No limitation, we are interested in External Dependencies com-
ing from multi-tier programming, cross-language programming, the generation of
files during the installation process, and libraries making use of callbacks.

Matching strategy: The object matching strategy (on a model of the application)
allows to identify more complex structures than lexical matching, for example
searching for “a method in a class implementing a given interface and carrying a
given annotation”. This is why many publications have used it. However, building a
model of an application may be a complex task, for example for less commonly used
programming languages for which there is no generic parser and symbol resolver
available. In these cases, lexical matching is a simpler solution, fast and flexible to
implement [5].
We will allow both solutions, taking advantage of whatever tools are already avail-
able for a given language.

Engine: Some publications propose automatic solutions that are able to discover de-
pendencies without the user specifying where to look for them. All of these are
specific to one given framework except Polychniatis et al. [15] which may produce
many false positives.
We will prefer a rule-based engine where we specify for each framework where to
look for dependencies. This is the preferred solution in the domain (see Table 1).

Analysis: As for any software analysis approach, one can use static or dynamic anal-
ysis. The static approach is usually favored. It is easier to apply across various
programming languages (and other languages too) and across application contexts.
We will use this solution too.
File generation dependencies have been covered dynamically by Hecht et al. [6].
That could be a limitation of our approach for this dependency type.

4.2 Decomposing the problem

To simplify the implementation of a generic solution, we decompose the dependency
identification problem into two parts: First, we look for Containers, software artifacts
that may contain a Reference entity or a Resource entity. Containers are usually large
artifacts, such as an entire file. Second, within a potentially interesting container, we
look for Entities that will be either Reference entities or a Resource entities. For ex-
ample, a (Reference) container in the GWT framework could be any Java class that
contains the annotation @uiField or @uiHandler. These annotations are used in the
GWT framework to establish the link between Java and XML.

This decomposition can help specifying the rules when using lexical matching.
We limit a container to be written in any single language, like a Java container, an

XML container, etc. This simplifies the work of searching for entities in a container.
Note that this may lead to a non-obvious situation where an SQL string inside a Java
file or a comment inside any source code is considered a different container because the
language is not the same. It may not be very important for lexical matching rules, but
it is key for object matching rules that are based on models: They would require an
SQL or a comment model to search in.

In the literature, many approaches search for some kind of “container” [4,7–9,13,17]
by declaring specific search patterns or by discovering them with some heuristics. Thus,

8

Kempt et al. [7] propose first filtering containers that may contain such dependencies
to accelerate the research.

There are two kinds of containers: Reference containers and Resource containers.
In the GWT example above, the Java class containing the annotation is a Reference
container and the Resource container will be an entire XML file describing the GUI.

Within these containers, we apply matching patterns to find the entities involved
in External Dependency . Again, for the GWT example, inside the Reference container,
we will be looking for specific attributes of methods carrying the GWT annotations.

4.3 Reusable patterns

Decomposing the problem into containers and entities allows us to have reusable pat-
terns. For example, searching for an XML element according to one of its attribute
names can be done whether this is an XML configuration file, or an XML layout file.
It would therefore be applicable to External Dependencies detection in J2EE or GWT.

For a given language, the patterns can be used for container or entity detection.
Each pattern can be expressed declaratively given the object type and its proper-
ties in form of key-value pairs. Consider the below pattern description for finding
annotations in Java model: (i) the type of the object that we’re looking inside is a
FamixJavaModel (ii) in order to extract the annotations we use allAnnotationTypes
property (iii) the pattern accepts annotation name parameter associated to value prop-
erty of FamixJavaAnnotationType to search for annotations we are interested in (ie.
’UiField’) (iv) the pattern returns the container name where the previously specified
attribute is found, using FamixJavaAttribute parentType property, also expressed
declaratively in the same pattern by using Temporary variables (ie. ’@ClassObject’)

This is especially important for object matching patterns, where we need to build
a model of the source code. Working with this decomposition and reusable patterns
allow to more easily add new frameworks.

4.4 Adonis

Our solution is implemented in a tool called Adonis (https://github.com/alesshosry/
Adonis). First, Adonis takes as input two elements: the code to analyze and the frame-
work identification (eg. GWT or RMI). The framework must be known by the tool:
(i) programming language importer if we want to use object matching; (ii) detection
rules for Reference containers, Resource containers, Reference entities, and Resource
entities. This follows from the definition of External Dependencies, where one needs
to know the usage rules of a framework to be able to identify the dependencies it in-
troduces. Detection rules for a given framework can be based on reusable patterns for
the considered programming language. That is to say, a pattern to detect a given Java
class can be used by rules for the GWT or RMI framework (and any framework based
on the Java programming language).

Second, Adonis offers two “engines”: lexical and object based matching, depending
on the rules describing the framework to analyze. The selection of an engine depends
on the availability of meta-models and importers to generate source code models.

Third, Adonis applies the rules of the framework to identify Reference and Resource
containers/entities. It maps Reference entities to their Resource entities, leading to the
generation of External Dependencies that were implicit in the framework. By consid-
ering the restrictions defined in 3.2, it can also identify possible flaws.

9

https://github.com/alesshosry/Adonis
https://github.com/alesshosry/Adonis

5 Validation

We validate our approach on two projects taken from GitHub. The objective is to
evaluate whether (i) the approach can identify External Dependencies, (ii) it works for
different types of dependencies, (iii) we can reuse patterns across frameworks, and (iv)
it can detect flaws (missing or excessive dependencies).

5.1 Validation setup

We are interested in how our approach can be adapted to different frameworks, if
possible with different kinds of dependency types (cross-language, multi-tier, etc.). For
practicality reasons, we chose two frameworks involving the same languages: Java and
XML. Thanks to the Moose platform [1], we already have a Java importer and meta-
model on which we can easily express object matching patterns. Building an XML
model is easy since there are many libraries to parse XML.

Cross-language experiment For the cross-language example we will focus on
GWT, a framework to develop Web applications using a combination of Java and XML.
In GWT Java artifacts (class attributes or methods) are “linked” to widgets described
in XML files through the annotations UiField and UiHandler. For example, Listing 1.1
shows how an attribute on line 3 is referring to a Window defined in Listing 1.2 as an
XML element (lines 1 to 5). Similarly, the Java method on line 5 is linked to the
Button widget on lines 2 to 4 of the XML file. GWT requires that the Java and XML
files be located in the same folder and have the same name (without their respective
extensions: .java and .xml).

Listing 1.1: GWT Java
1 public class ApplicationSettingsDialog implements Editor<ApplicationSettings> {
2 @UiField
3 protected Window window;
4 @UiHandler("saveButton")
5 public void onLoginClicked(SelectEvent event) {
6 window.hide();
7 }
8 }

Listing 1.2: GWT XML
1 <gxt:Window ui:field="window" pixelSize="300, 110" modal="true" headingText

="Global Settings" focusWidget="{saveButton}">
2 <gxt:button>
3 <button:TextButton ui:field="saveButton" text="Save" />
4 </gxt:button>
5 </gxt:Window>

The cardinality of these External Dependencies is many-to-one, as several Java
associations can refer to the same XML attribute. The XML attributes (Resource
entities) are mandatory, the Java ones (Reference entities) are optional, ie. Java part
is not required to refer to all XML widgets.

10

We manually counted the number of Reference containers (ie. some java classes),
Resource containers (ie. .xml files); Reference entities in the Java code; Resource en-
tities defined in the XML files; and External Dependencies found (ie. the number of
Reference entities with a matching Resource entity).

Multi-tier experiment For the multi-tier example, we will focus on the RMI7

framework that is also based on Java. RMI allows to build distributed applications
where a client part can call server methods running in a different JVM.

A Java interface is needed (TheRemoteInterface in the example below). It extends
java.rmi.Remote and declares methods that can throw java.rmi.RemoteException.

On the server side, a class (TheServerClass) implements this interface and defines
the service methods (line 1 in Listing 1.3). An instance of this class is registered in the
RMI registry (lines 3 and 4 in Listing 1.3).

Listing 1.3: RMI server code
1 public class TheServerClass implements TheRemoteInterface { ... }
2 ...
3 Registry registry = LocateRegistry.createRegistry(<port number>);
4 registry.bind("rmi://localhost/TheServerClass", new TheServerClass());

On the client side, an instance of this interface is obtained from the RMI registry
(Listing 1.4) and calls to its methods will be forwarded to the server application.

Listing 1.4: RMI client code
1 Registry registry = LocateRegistry.getRegistry(<number>);
2 TheServerInterface instance = (TheServerInterface) registry.lookup("rmi://

localhost/TheServerClass");

Again, we manually counted the number of Reference containers (ie. some java
interfaces), Resource containers (ie. java classes); Reference entities in the Java classes;
Resource entities defined in the java interfaces; and External Dependencies found (ie.
the number of Reference entities with a matching Resource entity).

5.2 Use cases

For the cross-language experiment, we chose the Traccar project8 that uses the GWT
framework. It was created in 2012, has 100 commits, and in total 34 Java classes, and
13 XML files. We counted the containers and entities manually and found in total 10
Reference containers out of the 34 Java classes and 10 Resource containers out of the
13 XML files. Some of the Resource entities (in XML) are not referred to in Java,
and multiple Reference entities (in Java) may refer to the same Resource entity. The
number of Resources, Referred Resources and External Dependencies are presented
in Table 2. Each row in the table is for a pair of matching .java and .xml files (ie.
Reference/Resource containers).

For the multi-tier experiment, we chose the UniScore solution9. It was created in
2020 and has a track record of more than 100 commits. Uniscore-Server is the server
7 Remote Method Invocation
8 https://github.com/traccar/traccar-web/tree/legacy
9 https://github.com/redhawk96/UniScore

11

https://github.com/traccar/traccar-web/tree/legacy
https://github.com/redhawk96/UniScore

Table 2: GWT (cross-language) experiment

Containers Resources Referred
Resources

External
dependencies

ApplicationSettingsDialog 5 4 4
ApplicationView 12 4 4
ArchiveView 14 11 11
DeviceDialog 6 5 5
DeviceView 16 12 17
LoginDialog 6 5 6
StateView 5 4 4
UserDialog 7 6 6
UsersDialog 10 6 8
UserSettingsDialog 5 4 4

part sub-project of the UniScore solution. It is composed of two interfaces and 41
classes. Uniscore-Client is the client part sub-project of the UniScore solution. It has one
interface and 50 classes. We manually counted the number of Resource containers that
is, interfaces extending java.rmi.Remote. There is only one such interface in the project
that declares 54 methods which are the Resource entities. In parallel the Reference
containers are classes that use an instance of the Resource container. We found 14
such classes out of the 50 classes in the client part. For each Reference container, we
also manually counted the number of entities, that is to say methods invoking Resource
entities. The number of Resources, Referred Resources and External Dependencies are
presented in Table 3. Each row in the table represents a Reference container.

5.3 Rules and Patterns

We developed patterns for Java and XML languages used by the two frameworks of our
experiments. We defined two XML patterns and 12 Java patterns in all. Our strategy
consists of filtering containers and finding entities inside each one.

For the cross-language experiment (GWT framework), we used one rule to find
Resource containers (XML files): It looks for all XML files having a name matching a
Java file. For the Resource entities, we use one rule: It looks for all XML nodes having
a UIField or Field attribute. This rule uses twice the same XML pattern that looks
for XML nodes having a given attribute.

We used one rule to find Reference containers (Java classes): It looks for all Java
classes using a @UiHandler or @UiField annotation. This rule uses twice the same Java
pattern that looks for annotation instances having a given name. For the Reference
entities, we use one rule: It looks for the argument value of all @UiHandler or @UiField
annotations in the container. Again, this rule uses twice the same Java pattern to look
for annotation instances.

For the multi-tier experiment (RMI framework), we used one rule to find Resource
containers (Java interfaces): It looks for all Java interfaces extending the java.rmi.Remote
interface. This rule uses a Java pattern that looks for all implementations of a given
Java interface. For the Resource entities, we use one rule: It looks for all Java public

12

Table 3: RMI (multi-tier) experiment

Containers Resources Referred
Resources

External
dependencies

SubmissionContentPanel 54 1 1
DashboardContentPanel 54 7 7
ExamContentPanel 54 8 9
LogoutNavigationPanel 54 1 1
LoginContentPanel 54 4 8
UniScoreClient 54 2 2
RemoveQuestionNotifier 54 2 2
DisplayQuestionsContentPanel 54 2 2
CreateQuestionContentPanel 54 2 2
DisplayQuestionContentPanel 54 2 2
StudentContentPanel 54 4 4
ModuleContentPanel 54 1 1
QuestionnaireContentPanel 54 4 4
SubmissionMailer 54 3 3

methods that declare throwing java.rmi.RemoteException. This rule uses two Java
patterns, one looking for public methods and the other looking for methods declaring
to throw a given exception.

We used one rule to find Reference containers (Java classes): It looks for all Java
classes that use instances of at least one of the Resource containers. This rule uses
one Java pattern to look for instances of a given interface and this pattern is called
repeatedly for each of the Resource containers found. For the Reference entities, we
use one rule: It looks for invocations of any of the Resource entities found. This rule
uses a Java pattern to look for invocations of a given method.

5.4 Results

We ran Adonis for both experiments to detect the number of containers, entities and
External Dependencies and compare them with what we found by manual count.

For the GWT experiment, Adonis was able to correctly detect the 10 containers
(rows of Table 2). It also correctly detected all Resources and References.

The analysis of “Resources” and “Referred Resources” columns shows that multiple
Resource entities are defined in XML but never referred to in Java. For example, for
the DeviceView containers, only 12 out of 16 Resource entities were referred to. This
is allowed in the GWT framework and is not considered a flaw.

Moreover, the comparison between “Referred Resources” and “External Dependen-
cies” columns shows that the number of External Dependencies can be larger than the
number of referred Resource entities, indicating that some Resource entities are referred
by several Reference entities. For example, for the UsersDialog containers, there are 8
External Dependencies for only 6 Reference entities. Two references to removeButton
and addButton can be found in the source code. Again, this is allowed in the GWT
framework and is not considered a flaw.

13

For the RMI experiment, Adonis was able to correctly detect the 14 Reference
containers (rows of Table 3). It also correctly detected all Resources and References
entities.

The analysis of “Resources” and “Referred Resources” columns shows that multiple
Resource entities are defined in the server but never referred to in the client. For exam-
ple, in DashboardContentPanel container, we can see that only 1 out of 54 Resource
entities is referred to.

In total, we found that only 26 Resource entities out of 54 were referred, which
results the existence of 28 excessive dependencies. Moreover, the comparison between
“Referred Resources” and “External dependencies” shows that the number of referred
Resource entities can be less than the number of External Dependencies. For example,
for the DashboardContentPanel class, we can see that none of the Resource entities
was referred more than once, which is not the case for ExamContentPanel class, where
we found addLogActivity was referred twice. This explains why we found 9 External
Dependencies instead of 8.

6 Conclusion

Various frameworks are used to create various types of software. These frameworks
rely on a set of rules specific to each one to establish dependencies. We conclude the
existence of multiple types of External Dependencies such as multi-tiers, callbacks,
and cross-language links in polyglot programming. We also state that even if each
framework connects its languages or tiers in a unique way, a common approach emerges.
This approach is based on finding the correct containers that lead to the identification of
specific entities defined according to the framework’s rules. Additionally, this approach
defines restrictions that lead to error detection, making it important to know how
to proceed with the re-engineering work. To design a detector that can achieve the
usage goals successfully, we established a set of requirements and based on them, we
developed our tool Adonis with the flexibility of defining or using existing patterns to
limit the number of containers, detect entities, and link them following each framework
rules that we experimented with two different projects.

References

1. Anquetil, N., Etien, A., Houekpetodji, M.H., Verhaeghe, B., Ducasse, S., Toullec,
C., Djareddir, F., Sudich, J., Derras, M.: Modular moose: A new generation of soft-
ware reengineering platform. In: International Conference on Software and Systems
Reuse (ICSR’20). No. 12541 in LNCS (Dec 2020). https://doi.org/10.1007/978-3-
030-64694-3_8

2. Cao, Y., Fratantonio, Y., Bianchi, A., Egele, M., Kruegel, C., Vigna, G., Chen, Y.:
Edgeminer: Automatically detecting implicit control flow transitions through the
android framework. In: NDSS (2015)

3. Cossette, B., Walker, R.J.: Dsketch: Lightweight, adaptable dependency analysis.
In: Proceedings of the eighteenth ACM SIGSOFT international symposium on
Foundations of software engineering. pp. 297–306 (2010)

4. Grichi, M., Abidi, M., Jaafar, F., Eghan, E.E., Adams, B.: On the impact of in-
terlanguage dependencies in multilanguage systems empirical case study on java
native interface applications (jni). IEEE Transactions on Reliability 70(1), 428–440
(2020)

14

https://doi.org/10.1007/978-3-030-64694-3_8
https://doi.org/10.1007/978-3-030-64694-3_8
https://doi.org/10.1007/978-3-030-64694-3_8
https://doi.org/10.1007/978-3-030-64694-3_8

5. Griswold, W.G., Atkinson, D.C., McCurdy, C.: Fast, flexible syntactic pattern
matching and processing. In: WPC’96. 4th Workshop on Program Comprehension.
pp. 144–153. IEEE (1996)

6. Hecht, G., Mili, H., El-Boussaidi, G., Boubaker, A., Abdellatif, M., Guéhéneuc,
Y.G., Shatnawi, A., Privat, J., Moha, N.: Codifying hidden dependencies in legacy
j2ee applications. In: 2018 25th Asia-Pacific Software Engineering Conference
(APSEC). pp. 305–314. IEEE (2018)

7. Kempf, M., Kleeb, R., Klenk, M., Sommerlad, P.: Cross language refactoring for
eclipse plug-ins. In: Proceedings of the 2nd Workshop on Refactoring Tools. pp. 1–4
(2008)

8. Mayer, P., Schroeder, A.: Cross-language code analysis and refactoring. In: 2012
IEEE 12th International Working Conference on Source Code Analysis and Ma-
nipulation. pp. 94–103. IEEE (2012)

9. Mayer, P., Schroeder, A.: Automated multi-language artifact binding and rename
refactoring between java and dsls used by java frameworks. In: ECOOP 2014–
Object-Oriented Programming: 28th European Conference, Uppsala, Sweden, July
28–August 1, 2014. Proceedings 28. pp. 437–462. Springer (2014)

10. Mushtaq, Z., Rasool, G., Shehzad, B.: Multilingual source code analysis: A sys-
tematic literature review. IEEE Access 5, 11307–11336 (2017)

11. Neubauer, M., Thiemann, P.: From sequential programs to multi-tier applications
by program transformation. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. pp. 221–232 (2005)

12. Nguyen, H.V., Nguyen, H.A., Nguyen, T.T., Nguyen, T.N.: Babelref: detection and
renaming tool for cross-language program entities in dynamic web applications.
In: 2012 34th International Conference on Software Engineering (ICSE). pp. 1391–
1394. IEEE (2012)

13. Pfeiffer, R.H., Wąsowski, A.: Taming the confusion of languages. In: European
Conference on Modelling Foundations and Applications. pp. 312–328. Springer
(2011)

14. Pfeiffer, R.H., Wąsowski, A.: Texmo: A multi-language development environment.
In: European Conference on Modelling Foundations and Applications. pp. 178–193.
Springer (2012)

15. Polychniatis, T., Hage, J., Jansen, S., Bouwers, E., Visser, J.: Detecting cross-
language dependencies generically. In: 2013 17th European Conference on Software
Maintenance and Reengineering. pp. 349–352. IEEE (2013)

16. Shatnawi, A., Mili, H., Abdellatif, M., Guéhéneuc, Y.G., Moha, N., Hecht, G.,
Boussaidi, G.E., Privat, J.: Static code analysis of multilanguage software systems.
arXiv preprint arXiv:1906.00815 (2019)

17. Shen, B., Zhang, W., Yu, A., Wei, Z., Liang, G., Zhao, H., Jin, Z.: Cross-language
code coupling detection: A preliminary study on android applications. In: 2021
IEEE International Conference on Software Maintenance and Evolution (ICSME).
pp. 378–388. IEEE (2021)

18. Soto-Valero, C., Harrand, N., Monperrus, M., Baudry, B.: A comprehensive study
of bloated dependencies in the maven ecosystem. Empirical Software Engineering
26(3), 45 (2021)

19. Vanciu, R., Rajlich, V.: Hidden dependencies in software systems. In: 2010 IEEE
International Conference on Software Maintenance. pp. 1–10. IEEE (2010)

20. Yu, Z., Rajlich, V.: Hidden dependencies in program comprehension and change
propagation. In: Proceedings 9th International Workshop on Program Comprehen-
sion. IWPC 2001. pp. 293–299. IEEE (2001)

15

	External dependencies in software development

