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Abstract
This work is a pedagogical survey about the hierarchical equations of motion and their
implementation with the tensor-train format. These equations are a great standard in
non-perturbative non-Markovian open quantum systems. They are exact for harmonic
baths in the limit of relevant truncation of the hierarchy. We recall the link with the
perturbative second order time convolution equations also known as the Bloch-Redfield
equations. Some theoretical tools characterizing non-Markovian dynamics such as the non-
Markovianity measures or the dynamical map are also briefly discussed in the context of
HEOM simulations. The main points of the tensor-train expansion are illustrated in an
example with a qubit interacting with a bath described by a Lorentzian spectral density.
Finally, we give three illustrative applications in which the system-bath coupling oper-
ator is similar to that of the analytical treatment. The first example revisits a model
in which population-to-coherence transfer via the bath creates a long-lasting coherence
between two states. The second one is devoted to the computation of stationary absorp-
tion and emission spectra. We illustrate the link between the spectral density and the
Stokes shift in situations with and without nonadiabatic interaction. Finally, we simu-
late an excitation transfer when the spectral density is discretized by undamped modes to
illustrate a situation in which the TT formulation is more efficient than the standard one.

Keywords: Open quantum sytems, Non-Markovian Quantum Dynamics, HEOM, Tensor-Train,
Coherence, Linear spectroscopy
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1 Introduction
Simulating quantum dynamics of complex
systems with a large number of degrees of
freedom (DoF) remains a computational chal-
lenge. However, measured observables often
depend on a limited number of DoFs. Thus,
the full system can be described as an ac-
tive subsystem embedded in an environment,
which makes fluctuate the energy levels of
the subsystem. The latter is often described
quantum mechanically while the extended en-
vironment is treated by a wide range of possi-
bilities based on semi-classical or quantum or
statistical approaches adequately chosen with
respect to the choice of system-environment
partitioning. When the number of DoFs in-
creases, standard methods become compu-
tationnally untractable, which is known as
the "curse of dimensionality". In this con-
text, the low-rank tensor decomposition has
aroused a constantly growing interest. When
the surrounding is modelled by an ensem-
ble of discrete modes, Multi Configuration
Time-Dependent Hartree (MCTDH) and the
multi-layer version (ML-MCTDH) [1–4] are
based on tensor network algorithms, mainly
the Tucker and hierarchical Tucker tensors
[5, 6]. Similarly, the expression of the time-
dependent multi-mode wave functions in Ma-
trix Product State (MPS) also called Tensor
Train (TT) [7–10] expansion has revealed its
efficiency in many applications [11–20].

In the usual approach of open quan-
tum systems based on statistical mechanics
with a surrounding at thermal equilibrium,
the environment is described less explicitly
and the active system is treated by a re-
duced density matrix by tracing over the bath
degrees of freedom. Path integrals derived
from the Feynman–Vernon influence func-
tional [21] and the hierarchical equations of
motion (HEOM) [22–24] are a priori exact
methods for harmonic baths and are closely
related [25, 26]. HEOM may also be derived
from the Nakajima–Zwanzig [27, 28] partition
of the Liouville equation by using the cu-
mulant expansion of the reduced propagator
and properties of the Gaussian distribution
of the bath linked to the harmonic approxi-
mation [29]. Both Path Integral and HEOM
formalisms have also been recently treated by

the tensor formalism in the Tensor Network
Path Integral [30] and in the MPS [31–34]
or Tucker and hierarchical Tucker tensor for-
mat for HEOM [35]. HEOM has been applied
to describe many physico-chemical processes
(see the recent review by Y. Tanimura [24]),
for instance, excitation transfer in photosyn-
thetical complexes [29, 36–40] or in other
devices [41], non-adiabatic interactions and
electron transfer [42–44], dynamics via coni-
cal intersections [45–50], proton tranfer [51],
laser optimal control [50, 52], non-equilibrium
fluxes [53–55], and non-linear spectroscopies
[24, 56–58].

It is worth noting that accounting for tem-
perature is handled in a similar way in the
HEOM system of equations with discrete un-
damped modes [59] and in a recent MPS
implementation with wave functions [60] in
the context of T-TEDOPA formalism [61] .
In the latter, the wave function approach uses
discrete vibrational bath transformed into a
chain and introduces finite temperature by
sampling two baths representing absorption
and emission respectively, with the latter be-
ing described by a bath of oscillators with neg-
ative frequencies. Emission into the vacuum
of these negative modes mimics the absorp-
tion of environmental quanta that would be
present in a physical (mixed-state) thermal
bath, allowing a pure wavefunction descrip-
tion to capture the physics of a mixed-state
initial condition without the need for ther-
mal sampling [60, 61]. On the other hand,
the particular implementation of HEOM with
undamped discrete modes also samples baths
with positive and negative frequencies [59].
By comparing these methods, we also empha-
size that even if the reduced density matrix in
open quantum systems is obtained by tracing
over the bath modes, this does not mean that
the information about the environment disap-
pears. Relevant information about the baths
may be extracted, for instance, the time-
dependent distribution of the collective bath
modes in each electronic state, which may be
seen as the square modulus of a dissipative
wave packet [48, 59, 62, 63] or projection of
the coherence among electronic states along
the collective modes [48] and fluxes [54].
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In this work, we present a pedagogical
survey about HEOM and their implemen-
tation with the TT format. We recall the
main lines and in particular the link with
the perturbative second order time convo-
lution equations also known as the Bloch-
Redfield equations, which are an illuminating
step to understand the complicated structure
of HEOM. We briefly discuss how HEOM
may be used to compute some theoretical
tools (non-Markovianity measure or dynam-
ical map) related to non-Markovian dynam-
ics. We then present the principal points
of the TT expansion by giving the expres-
sions related to a simple example where a
qubit interacts with a bath. Finally, we give
three applications based on models in which
the system-bath coupling operator is similar
to the one used in the survey. Finally, the
appendix explains how to encode the main
expressions with a Python package.

2 Open quantum systems
and HEOM

The standard starting point in open quan-
tum system [64–66] is the partition of the
DoFs of the full complex system. The ac-
tive subsystem may be only electronic DoFs
like in the usual spin-boson model or in-
clude some Brownian coordinates coupled to
residual baths [43, 45, 67, 68]. The generic
partitioning of the full Hamiltonian in three
parts is written as:

H = HS + HSB + HB (1)

where HS and HB are the Hamiltonians
of the active system and of the vibrational
or phonon bath(s) respectively. The system
Hamiltonian may be time dependent if it con-
tains interaction with external fields. When
the system interacts with Nbath, the system-
bath coupling is HSB =

∑Nbath

α=1 SαBα. Sα

and Bα are operators in the space of the
system and in the complementary space re-
spectively.

In the electronic-nuclear partition, the
system operators Sα are n × n matrices with
n the number of electronic states. They act
as projectors on some states when the baths

tune the electronic energies (i.e. are diago-
nally coupled) or transition matrices between
some of them when the baths make fluctuate
the off-diagonal electronic coupling such as in
the case of conical intersections [46–50]. In
other system-bath partition cases, the system
operators are the Brownian coordinates in-
cluded in the active subspace [43, 45, 67, 68].
Furthermore, each bath operator Bα is a lin-
ear combination of the position operators qj

of the oscillators Bα =
∑Nα

j c
(α)
j qj in the dis-

crete bath representation with N oscillators.
The expression of the coupling coefficients
c

(α)
j depends on the partition and on the

choice of the coordinates. In the following,
we adopt mass-weighted coordinates and the
electronic-nuclear partition.

The initial total density operator ρtot(0) =
ρS(0) ⊗ ρB,eq is assumed to be factorized and
is the product of the system density operator
ρS(0) and a thermally equilibrated bath den-
sity operator ρB,eq = e−βHB /TrB

[
e−βHB

]
.

Extension to correlated initial conditions have
been proposed in Refs. [69–72].

2.1 Second order auxiliary
operators

It is very instructive to first examine the
non-Markovian perturbative equations, which
contain all the crucial tools occurring in
HEOM. To do so, we consider the simplest
case with only one bath, i.e. HSB = SB.
The exact formal Nakajima-Zwanzig equation
given the evolution of the reduced density
matrix ρ̇S(t) = − i

ℏTrB [H, ρtot(t)] may be
written as:

ρ̇S(t) = LSρS(t) +
∫ t

0
K(t, τ)ρS(τ)dτ + I(t)

(2)
with LS � = −i [HS , �] the system Liouvillian
and ℏ = 1. K(t, τ) is the memory kernel
which embeds the bath influence on the sys-
tem and I(t) is an initial correlation term
which cancels when the system and bath can
be initially factorized (i.e. I(t) = 0 when
ρtot(0) = ρS ⊗ ρB,eq).
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At the second order in the HSB coupling,
the memory kernel becomes [73]:∫ t

0
dτK(t, τ)ρS(τ) =

∫ t

0
dτK(2)(t, τ)ρS(τ)

= i

∫ t

0
dτ [S, {iC(t − τ)US(t − τ)SρS(τ)

×U†
S(t − τ)

}
+ {hc}

]
(3)

where C(t) is the correlation function of the
collective bath mode C(t) = ⟨B(t)B(0)⟩eq,
B(t) is the Heisenberg representation of the
operator with Hamiltonian HB and ⟨�⟩eq de-
notes the average over a Boltzmann distri-
bution at a given temperature T . US(t) =
e−iHSt is the propagator of the system. The
treatment up to the fourth order may be
found in Ref. [74] and the extension by the
generalized master equation method in Ref.
[75].

The quantum bath correlation function is
the main descriptor of the bath [76]. The
usual step to go towards the second order aux-
iliary density operator (ADO) or HEOM is
the representation of the correlation function
as a sum of damped decaying functions:

C (t − τ) = ⟨B(t)B(τ)⟩eq =
K∑

k=1
αkeiγk(t−τ)

(4)
where αk and γk are complex parameters. The
sum is a priori infinite but truncated to K
modes, which have been called the "artificial
bath modes" in Ref. [73]. Some extensions to
different analytical forms or arbitrary corre-
lation functions have been proposed recently
in Refs. [77–81].

By inserting Eq.(4) in Eqs.(2) and (3),
each artificial mode corresponds to a partic-
ular memory integral of the time dependent
integro-differential equation. Each integral is
set equal to an ADO :

ρk(t)/(iαk)

=
∫ t

0
dτ

[
S,

{
ie−γk(t−τ)US(t − τ)SρS(τ)

×U†
S(t − τ)

}
+ {hc}

]
. (5)

Figure 1 Schematic representation of the auxiliary
operators associated to each artificial bath mode k =
1, K and involved in the second order master equation
(Eq.( 6). Each ADO corresponds to a single excitation
in the mode.

The dimension of ρk(t) is that of the S op-
erator and thus of HS . A time local system
of coupled equations may be obtained by tak-
ing the first derivative [69, 73, 82]. Different
choices are possible to define the ADOs. From
Eq.(5), we obtain the operational equations
[69]:

ρ̇S(t) = LSρS(t) + i
K∑

k=1
[S, ρk(t)]

ρ̇k(t) = (iγk + LS) ρk(t) + i [αkSρS(t)
−α̃kρS(t)S] (6)

where LS is the system Liouvillian. The α̃k

parameters will be discussed below.
Each ADO being associated only to one

decay mode, it may be considered as result-
ing from a single excitation in this mode and
denoted by an array of K indexes with one in
the kth position and zero everywhere else as
shown in figure 1. These ADOs will constitute
the first level of the HEOM hierarchy.

A real classical correlation function may
be obtained by molecular dynamics [15, 38,
44, 83] or directly from experimental re-
sults [84] and corrected to get the complex
quantum correlation function satisfying the
fluctuation-dissipation theorem [76]. Direct
parametrization of C(t) fitted by different
approaches [81], Prony method [80] or expan-
sion on Chebyshev or Bessel functions [77]
have also been proposed. However, the rela-
tion with the bath spectral density, defined as
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follows:

C(t) =
∫ ∞

−∞
dωJ (ω)

(
eβω − 1

)−1
e−iωt (7)

where β = 1/kBT is the Boltzmann factor,
is currently used and the {αk, γk} parame-
ters are obtained from the parametrization of
C(ω) = J (ω)

(
eβω − 1

)−1 where J (ω) is inde-
pendent of the temperature and

(
eβω − 1

)−1

is the Bose function related to the quan-
tum fluctuation-dissipation theorem. In the
discrete case, the spectral density is defined
from the system-bath coupling coefficients cj

related to Ndisc discrete modes

J(ω) = π

2

Ndisc∑
j=1

c2
j

ωj
δ(ω − ωj). (8)

In the continuous representation, the
spectral density is often approximated by
an Ohmic function JOhm ≈ cωfcutoff (ω)
or a super Ohmic function JSuperOhm ≈
cω3fcutoff (ω), with c a constant and fcutoff

an exponential or Lorentzian cutoff. The
Ohmic function is used for solvents while the
super Ohmic one is relevant for the solid
phase and phonon baths. In order to get a
parametrization of the bath correlation func-
tion (Eq.(4)) through Eq.(7), one has to
perform a fitting procedure of the spectral
functions with relevant analytical functions.
A special care in fitting the spectral den-
sity low frequency behavior is often necessary
to get accurate results [85]. Here, we will
discuss only the cases of Ohmic and super-
Ohmic Lorentzian functions. We adopt the
Tannor-Meier parametrization [73] in which
the spectral density is fitted by nlor two-pole
Lorentzian functions depending on three pa-
rameters (pl, Ωl, Γl) where pl is the associated
weight, Ωl the central frequency, and Γl the
bandwidth.

JOhm (ω) =
nlor∑
l=1

plω

Υ (Ωl, Γl)
(9)

with

Υ (Ωl, Γl) =
[
(ω + Ωl)2 + Γ2

l

] [
(ω − Ωl)2 + Γ2

l

]

All the {αk, γk} parameters may be obtained
from the integral (7) after substitution of
Eq.(9). Each Lorentzian corresponds to two
artificial decay modes. The Bose function gen-
erates an infinite series of terms coming from
its poles. They are known as the Matsubara
terms. In practice, the number of Matsubara
terms is very small at high temperature but
may become numerous at low temperature
rendering the ADO method computationally
more demanding. In the low temperature
regime, Padé approximants of the Bose func-
tion [86], fitting procedure of C(t) used to
capture the Matsubara terms [87] or a re-
cent correction scheme [88] can be used. The
analytical expressions of {αk, γk} (Eq.(4))
as functions of the (pl, Ωl, Γl) parameters of
JOhm(ω) and those related to the Matsub-
ara terms are given in Refs. [69] or [67]. One
also could find in these references the expres-
sion of the α̃k parameters (see Eq.(6)). They
come from a particular expression of the com-
plex conjugate of C(t) that may be written

as: C∗ (t) =
K∑

k=1
α̃keiγkt with the same γk as

in Eq.(4). In the super Ohmic case, the fit-
ting functions have four poles leading to four
artificial decay channels

JSuperOhm (ω) =
nlor∑
l=1

plω
3

Υ (Ωl,1, Γl,1) Υ (Ωl,2, Γl,2) .

(10)
The analytical expressions to get the
{αk, γk} parameters of C(t) (Eq.(4))
from (pl, Ωl,1, Γl,1, Ωl,2, Γl,2) parameters of
JSuperOhm(ω) are gathered in Ref. [89].

2.2 HEOM
First, we discuss the case with a single bath,
i.e. we consider only one S operator. The gen-
eralization will be discussed at the end of
the section. When the bath correlation time
becomes long with respect to the system char-
acteristic timescale due to a strongly peaked
spectral density, the high non-Markovianity
generally involves a non-perturbative regime.
HEOM are one of the reference dynamical
methods for open quantum systems modelled
with a harmonic bath. The equations giving
the evolution of the reduced density matrix
were originally derived for a Drude-Lorentz
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spectral density in the high-temperature limit
from the Kubo stochastic Liouville equation
[22–24, 90] and the Feynman-Vernon influ-
ence functional formalism [25, 26]. Another
approach to derive these equations is by re-
ferring to the remarkable property that the
cumulant expansion limited to second order
is exact when the bath statistics are Gaus-
sian [29, 91]. This is based on the Wick
theorem [92]. The reduced density matrix
ρS,I(t) for the system in interaction represen-
tation ρS,I(t) = eiH0tρS(t)e−iH0t with H0 =
HS +HB , is given by the partial trace over the
bath of the time evolution of the total density
matrix :

ρS,I(t) = TrB

T (+)e

t∫
0

dτLSB,I (τ)
ρeq

B

 ρS,I(0)

(11)
where T (+) is a time-ordering operator and a
factorization is assumed at the initial time t =
0. LSB,I(t) is the Liouvillian in interaction
representation, LSB,I(t)� = −i[S(t)B(t), �],
where S(t) = eiHStSe−iHSt and B(t) =
eiHBtSe−iHBt.

At the second order in the cumulant ex-
pansion, Eq.(11) becomes

ρS,I(t) = T (+)e

t∫
0

dτKI (τ)
ρS,I(0). (12)

KI(τ) =
τ∫
0

dt′K
(2)
I (τ, t′) corresponds to the

second-order memory term occurring in the
second-order perturbation theory (Eq.(3))
but here, the second order is an exact expres-
sion for the cumulant expansion :∫ τ

0
dt′K

(2)
I (τ, t′)�

= −[S(τ),
τ∫

0

dt′C(τ − t′)S(t′) � −{h.c.}].

(13)

By inserting the correlation function
parametrization (Eq.(4)), equation (13) is
separable into a sum of K operators KIk

where K is the number of artificial decay
modes. In addition, each KIk is decomposed

as :
KIk(τ) = ΦI(τ)WIk(τ) (14)

where
ΦI(τ)� = −[S(τ), �] (15)

and

WIk(τ) =
τ∫

0

dt′eiγk(τ−t′)ΘIk (t′) (16)

with

ΘIk(t′)� = αkS (t′) � −α̃k � S (t′) . (17)

The exact solution takes the following
form:

ρS,I(t) = T (+)
∏K

k
e

∫ t

0
dτKIk(τ)

ρS,I(0)

= T (+)
∏K

k
e

∫ t

0
dτ

∫ τ

0
dt′ΦI (t′)eiγk(τ−t′)ΘIk(t′)

× ρS,I(0). (18)

The master equation can then be derived as

ρ̇S,I(t) = T (+)
∑K

k
KIk(t)ρS,I(t). (19)

This equation is time non-local since KIk(t)
contains an integral. A time local system of
coupled equations is obtained by defining the
ADOs by the same strategy as in the second
order approach :

ρn,I(t)

= T (+)
∏K

k
WIk(t)nk e

∫ t

0
dτKIk(τ)

ρS,I(0)
(20)

where
n = {n1, ..., nk, ...nK} (21)

in a vector of nonnegative integers giving the
occupation number in each artificial decay
mode. The case n = {0, ..., 0, ...0} corre-
sponds to ρS,I . Time local coupled equations
among the ADOs may be derived by working
with the Fourier-Laplace transforms of Eqs.
(18) and (20) and using integration by parts
[36, 48]. One recovers the relations established
in Ref.[22]. After the inverse Laplace-Fourier
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transform and the return in the Schrödinger
representation, the HEOM read :

ρ̇n(t) =LSρn(t) + i
K∑

k=1
nkγkρn(t)

− i

[
S,

K∑
k=1

ρn+
k

(t)
]

− i
K∑

k=1
nk

(
αkSρn−

k
(t) − α̃kρn−

k
(t)S

)
(22)

or more shortly by using definitions (15)
and (17) in Schrödinger representation (i.e.,
Φ(τ)� = −[S, �] and Θk� = αkS � −α̃k � S):

ρ̇n(t) = LSρn

+ i
K∑

k=1

(
nkγkρn − Φρn+

k
− nkΘkρn−

k

)
. (23)

The subscripts

n+
k = {n1, · · · , nk + 1, . . . , nnK

}

and

n−
k = {n1, · · · , nk − 1, . . . , nnK

}

denote the matrices for which one occupation
number differs by one unit in the hierarchy
nk → nk ± 1. The sum of the occupation
numbers defines the level of the hierarchy
L =

∑
nk. The total number of matrices

when the hierarchy is limited at level L is
(L + K)!/L!K!. Each matrix is connected to
the matrices of the lower or the upper levels.
Figure 2 illustrates the case with two artifi-
cial decay channels (i.e. one Ohmic Lorentzian
in the spectral density and no Matsubara
term). Initially, ρ00...0 = ρS and all the ADOs
are zero. They represent the initial bath at
equilibrium. When the final relaxed state is
reached, the converged ADOs represent the
new equilibrium and may be taken as the ini-
tial condition to describe another process af-
fecting the equilibrated system. For instance
to describe the stationary fluorescence. All
the terms occurring in the derivative of each
ADO are schematized in figure 2 for a simple
example with two bath modes.

Figure 2 Schematic representation of the auxiliary
operators of the HEOM hierarchy up to level L = 2
for the case with two artificial bath modes K = 2.
Φ acts on matrices for which one occupation number
increases by one unit. Θk is applied on matrices for
which one occupation number decreases by one unit.
The sum of the decay rates nkγk multiplying each
matrix is indicated. The schematic representation of
the terms involved in the derivative of one matrix is
complete for ρ00 (orange); ρ10 (blue) and ρ01 (green).

The generalization is straightforward
when there are Nbath uncorrelated baths,
each associated with Kb artificial bath modes.
Then, K =

∑Nbath

b=1 Kb. Each bath is linked
to the system by an operator Sb and the
equations become :

ρ̇n(t) = LSρn + i

Nbath∑
b

Kb∑
k=1

(nb,kγb,kρn

−Φbρn+
k

− nb,kΘb,kρn−
k

)
. (24)

An alternative to the continuous represen-
tation of the spectral density with K artificial
modes is the discretization with Ndisc un-
damped modes in the spirit of MCTDH or
ML-MCTDH computations [93–96] or MPS
simulations in the Hilbert space [12–15]. Dis-
cretization has also been illustrated with
HEOM [59] and checked in TT format [31,
35]. The expression of the corresponding
HEOM equations are given in Refs. [31, 59].
The active system is then coupled to two
identical baths with positive or negative fre-
quencies describing emission and absorption
of energy. Since there are two baths, the num-
ber of terms in the correlation function is
large K = 2Ndisc but there are no Matsub-
ara terms associated with the poles of the
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Bose function in the continuous case. The dis-
crete couplings are smaller than those of the
artificial modes. We will illustrate in one ap-
plication that the TT implementation may be
more efficient than the standard one in that
case.

The system of the coupled differential
equations (24) or those related to discrete
modes given in refs. [31, 59] can then be solved
using standard numerical methods such as
Runge-Kutta 4 (RK4), Cash-Karp (RK4-5)
adaptative step-size or Arnoldi algorithms.
Although HEOM are an infinite system of dif-
ferential equations, they are truncated at a
maximum value of nk = nmax. Thus, several
simulations with increasing values of nmax

should be carried out until the results (den-
sity matrix or observables) are properly con-
verged. For comparison between the standard
and TT formulations, we have used a home-
made fortran code parallelized with OpenMP.
Other implementations in python or on new
architectures such as GPU [97] could be use-
ful. See a review of different softwares in Ref.
[81].

2.3 HEOM and
non-Markovianity

As mentioned above, HEOM are a standard
method to tackle non-perturbative and non-
Markovian regimes. Non-Markovianity ob-
viously depends on the partition since it
is roughly predicted by the characteristic
timescales of the active system and the corre-
sponding bath. These typical dynamical times
may be very different with respect to the sys-
tem definition. Inserting some effective bath
coordinates into the system part (to reduce
the coupling towards the residual bath and
modify the corresponding timescales) may be
an efficient strategy to change the Markovian-
ity regime [43, 48, 67, 68, 98, 99]. When the
partition leads to a non-Markovian regime,
an abundant literature has been devoted to
the characterization of the non-Markovianity
by different measures and from a fundamen-
tal perspective, to a mathematical definition
of non-Markovian quantum dynamical maps,
which is still an open problem. These funda-
mental questions are reviewed for instance in
Refs. [100, 101]. A detailed presentation of

these items is beyond the scope of this pa-
per and we summarize here only the main
points. A Markovian behavior is linked to a
continuous loss of information from the open
system to the surrounding while a flow from
the environment back to the open system
is the signature of a non-Markovian effect.
The return of information from the bath
could modify the system dynamics. The mea-
sures aim at quantifying this backward flow.
One may cite, among others, the trace dis-
tance measure [100, 102], the entanglement
measure [103], negativity of time-dependent
canonical rates [104], and the Bloch volume
measure [105]. They are compared for in-
stance in Refs. [104, 106]. In the last case, the
measure is based on an estimation of the vol-
ume of the accessible states in the generalized
Bloch sphere for a n−state system. A non-
monotonic decrease of this volume is a signa-
ture of non-Markovianity. Any density matrix
may be expanded in the basis set of n2 opera-
tors : the normalized identity G0 = I/

√
n and

Gi(i = 1, ..., n2 − 1): the n2 − 1 generators of
SU(n) [107, 108]. They are the Pauli matri-
ces for n = 2 and the Gell-Mann matrices for
n = 3. The volume of accessible states V (t) =
det(F(t)) is obtained from the determinant
of the matrix Fm,n(t) = Tr (Gm(0)Gn(t)).
This requires n2 propagations of the basis
operators and this is easily obtained with
HEOM [48, 52, 63, 89, 109, 110]. Simi-
larly, the n2 basis operators may be used to
build the n2 × n2 decoherence matrix [89,
104] Dij(t) =

∑n2−1
m=0 Tr [GmGiΛt [Gm(t)] Gj ]

where Λt [Gm(t)] is the right member of the
master equation Ġm(t) = Λt [Gm(t)], in other
words, the expression of ρ̇00..0(t) when the
initial state is Gm (see Eq.(22)). The eigen-
values of this decoherence matrix are called
the canonical decay rates γk(t) [89, 104]. They
witness non-Markovianity when some of them
become negative signalizing an information
return towards the system.

The concept of dynamical map in the the-
ory of open quantum is relevant when the
initial state of the total system is a factor-
ized product state but it remains a debated
point for initial system-bath entangled state
[100, 111, 112]. While the master equation is
related to the time derivative ρ̇(t) = Λt [ρ(t)],
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the corresponding dynamical map ϕt trans-
formed any initial state ρ(0) to ρ(t), i.e.,
ρ(t) = ϕt [ρ(0)]. The map is expected to
be completely positive or at least positive
to ensure that ϕt maps physical states to
physical states. This preserves the Hermitic-
ity and the trace of operators. The mathe-
matical properties of the map are discussed
mainly in the quantum information commu-
nity. By expanding both ϕt [ρ(0)] and ρ(0) in
the basis of the n2 operators Gk, the map
may be expressed in matrix notation ρ(t) =∑n2−1

k,l=0 Flk(t)Tr [Glρ(0)] Gk, i.e., as a func-
tion of the F(t) matrix discussed above and
easily computed by HEOM. In order to ana-
lyze the positivity, it is rather the n2×n2 Choi
matrix [104, 113, 114] that is used. It corre-
sponds to the expansion of the map in the
basis set of the n2 projector matrices |j⟩⟨k| re-
lated to a basis of the system Hilbert space in
place of the generators Gn. The map is com-
pletely positive if and only if the eigenvalues
of the Choi matrix are positive. This Choi ma-
trix would be easily obtained by HEOM by a
procedure similar to that providing the F(t)
matrix via the propagation of the n2 projector
matrices |j⟩⟨k|. To our knowledge, this sys-
tematic analysis has not been carried out with
HEOM and could be interesting. In our pre-
vious works, we have mainly computed with
HEOM F(t) [109, 110] and the canonical rates
γk(t) [52, 89]. Anyhow, we did not detect a
loss of conservation of the trace of ρS(t) even
when dynamics is non-Markovian as shown
by the volume of accessible states or by the
canonical rates. It is well known that numer-
ical instabilities with non-conservation of the
norm may occur mainly for long time in the
standard formulation of HEOM [115] or in the
TT approach due to the variational approach
[32] and limitation of the tensor ranks [33].

The control of open quantum systems
[116] has aroused a renewed interest mainly in
the context of quantum technologies that rely
on the coherent manipulation and transfer of
information, encoded in quantum states [117–
119]. Non-Markovianity is expected to be a
resource to improve the control by exploiting
the transitory flow back. The HEOM formal-
ism has proven its efficiency when it is coupled

with different control strategies, in particular
with optimal control protocols [50, 52].

3 HEOM in Tensor-Train
format

In this section, we summarize the main re-
lations of the tensor train formalism (also
named matrix product state (MPS)) that is
an interesting way for representing a high-
dimensional tensor as the one we are using
for HEOM. The idea of this TT format is
to decompose the tensor into a network of
low-dimensional tensors called TT cores cou-
pled in a chain. MPS has received a growing
interest in the quantum physics community
[11–20]. The application in HEOM was al-
ready suggested by Shi [31, 32] who also uses
the Tucker representation [35] and later by
Borelli [33, 34]. We present a pedagogical
survey showing the way the super-operators
involved in the TT-HEOM formalism are
written and by expliciting them in a simple
case of a two-level system coupled to a bath
with a spectral density fitted by an Ohmic
Lorentzian (Eq.(9)) leading to two artificial
decay modes. The Appendix gathers the main
steps for the encoding in python.

3.1 Representation of the ADOs
When the system is a n-state case, each ADO
is a n × n matrix that may be reshaped in a
super-vector with n2 elements ρ̄α

n where α ∈
[1, n2] stands for a (a, b) element of the sys-
tem density matrix (a, b ∈ [1, n]). The global
index n corresponds as in Eq.(21) to the oc-
cupation number in each decay mode. When
the TT format is adopted, each occupation
number nk runs from 0 to nmax. The total
number of matrices is then larger than when
the hierarchy is truncated at a given level
L in the standard formulation. Each element
of the high-dimensional array ρ̄ is written in
TT-format as :

ρ̄α
n ≈

∑
j0

∑
j1

· · ·
∑
jk

· · ·
∑

jK+1

A0(j0, α, j1)

× A1(j1, n1, j2) · · · Ak(jk, nk, jk+1)
× · · · AK(jK , nK , jK+1). (25)
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The summation index jk goes from 1 to rk

where rk is the rank also called the bond
(r0 = rK+1 = 1 for dimensionality consis-
tency). K is the number of decay modes.
Ak are the cores, i.e. arrays of dimension
rk × ndim × rk+1 where ndim = n2 for k = 0
and ndim = nHEOM = nmax + 1 for k ̸= 0
(nHEOM = L + 1 where L is the hierarchy
level). The choice of the rank rk is crucial
and convergence must be carefully checked.
Complex baths (and realistic ones) often need
many decay modes and high hierarchy level:
K and L increase dramatically which leads to
heavy simulations.

TT decomposition allows a priori to deal
with this dimensionality curse. Indeed, in-
stead of using an array with n2 ×nHEOM

K in
a standard approach, the tensor train decom-
position stores n2r1 × nHEOM

∏K
k=1 rkrk+1

tensor elements. For instance, if the ranks
for every core are all the same (∀k ∈
[1, K], rk = r), the number of elements is
r(n2 + nHEOM ) + Kr2nHEOM in the TT ap-
proach. With the TT formalism, the increase
with the number of modes is linear with K.
This might allow to deal with large values
of K and thus extend the capabilities of the
HEOM method to describe more complex en-
vironments. However, the TT decomposition
approximates the real tensor and is exact only
if the ranks rk grow up to infinity. In prac-
tise, they are truncated to a sufficiently high
value to ensure the computation convergence.
Choosing the best ranks is not a trivial task
and goes beyond the scope of this article. We
discuss this point in section 3.3.

Tensor representations are schematized in
figure 3.

3.2 HEOM super-Liouvillian
The HEOM equations (23) and (24) contain
a Liouvillian operator related to the Hamito-
nian of the system, a damping term, a term
coupling to matrices of a higher level in the
hierarchy and a term coupling to a lower level.
In super-operator notation, one has:

L = LS +
K∑

k′=1
(Lk′ + Lk′+ + Lk′−) (26)

where, k′ = (k, b) is a collective index which
adresses both the index of the correlation
function terms (k ∈ [1, ncor,b]) and the bath b.

For pedagogical purpose, in this section,
we give the expression of the different contri-
butions to the super-operator of the forward
propagation with TT for a simple example.
We consider a two-level system (n = 2).
The excited state is coupled to a single bath
that tunes the energies and is coupled diag-
onally to the system. The spectral density is
a two-pole Lorentzian leading to two decay
modes (K = 2). We assume a high temper-
ature so there is no Matsubara term. The
corresponding coupling operator is

Sk =
(

0 0
0 1

)
(27)

for decay mode k = 1, 2. HEOM is treated at
order two nHEOM = 2, i.e., for each mode,
the occupation number nk may take the value
0 or 1 (nmax = 1). The hierarchy contains 4
(2×2) matrices related to occupation numbers
00, 01, 10 and 11. The super-operator is then
a (16 × 16) matrix in this example.

All the elements of all the ADOs (n ×
n matrices) are reshaped in a supervector
that contains n2 groups corresponding to
a given element of the system density ma-
trix α = (a, b) when the ADO indexes of
{n1, .., nk, ., nK} run from 0 to nmax begin-
ning by the last one. In the example with a
two-level system, two decay modes (K = 2)
and nmax = 1, there are 4 groups labelled 00,
01, 10 and 11 (see figure 4.

3.2.1 Matrix LS

The expression of the n2 × n2 super-operator
for the system Liouvillian, which must act on
the system density matrix and on each aux-
iliary density operator (ADO) is straightfor-
ward (⊗ denotes here the Kronecker product):

LS(ADO) = −i(H ⊗ In − In ⊗ H)

= −i


0 −H12 H12 0

−H21 H11 − H22 0 H12
H21 0 H22 − H11 −H12

0 H21 −H21 0

 .

(28)
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Figure 3 Upper panel : Schematic representation of a tensor train with the HEOM formalism for a two-level
system (n = 2) with a bath modelled by two single Tannor-Meier Lorentzian functions with no Matsubara
frequencies (K = 4) at a hierarchy level of nHEOM = 3. Individual matrices or vectors are called cores of the
tensor (and often denoted as Ak). Arbitrary values have been chosen here for the tensor ranks: r1 = 4, r2 = 2,
r3 = 3 and r4 = 4. For instance, the tensor element ρ2,3,2,2,1, which corresponds to ρ12

3,2,2,1, i.e. the element
1,2 of the ADO for occupation number n = 3, 2, 2, 1, is computed by performing vector-matrix, matrix-matrix or
matrix-vector products with the blue cores on the figure. As the initial and final tensor ranks (r0 = rK+1 = 1)
are equal to one, the final result is a scalar number. Lower panel : Tensor train representation of the ADOs. Ak

are the cores of the tensor. The circles represent the physical legs. α runs from 1 to n2 where n is the number of
states in the system and nk is the index (occupation number) for each decay mode that runs from 0 to nmax.
The rectangles are matrices rk−1 × rk where the rank rk is also called the bond.

The expression of the superoperator LS is
then

LS = LS(ADO) ⊗
K∏

k′′=1
InHEOM

(29)

becoming LS = LS(ADO) ⊗ I2 ⊗ I2 in the
example with K = 2 and nHEOM = 2.
The corresponding matrix is given in figure 4
where we have adopted the concise notation
Lij = (LS(ADO))ij .

3.2.2 Damping Liouvillian Ldamp

The damping term is Ldamp =
∑K

k′=1 (Lk′)
where

Lk′ = iγk′In2 ⊗
K∏

k′′=1
Mk′′ (30)

with Mk′′ = InHEOM
if k′′ ̸= k′ and Mk′′,lm =

(l−1) δl,m if k′′ = k′ (l, m ∈ [1, nHEOM ]). It is
diagonal in the superoperator representation.
For each decay mode k′, all the elements of the
matrices ρn are multiplied by the decay rate
γk′ times the occupation number nk′ . In the

Figure 4 Matrix LS (Eq.(29)). The Lij elements
are the concise notation for (LS(ADO))ij defined in
Eq.(28). The empty regions correspond to zero.

two-level and two-decay case with nHEOM =
nmax, one has:

L1 = iγ1In2 ⊗ M ⊗ InNHEOM
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= iγ1


1

1
1

1

 ⊗


0

1
. . .

nmax



⊗


1

1
. . .

1

 (31)

and

L2 = iγ2In2 ⊗ InNHEOM
⊗ M

= iγ2


1

1
1

1

 ⊗


1

1
. . .

1



⊗


0

1
. . .

nmax

 (32)

When nmax = 1 and thus nNHEOM = 2, M =(
0

1

)
and InNHEOM

= I2. The corresponding
Ldamp matrix divided by i is given in figure 5.

3.2.3 Matrix L+

Each term Lk′+ addressing the upper level of
the hierarchy in Eqs.(23) or (24) corresponds
to the superoperator

Lk′+ = −i(Sk′ ⊗ In − In ⊗ Sk′) ⊗
K∏

k′′=1
M ′

k′′ .

(33)
where M ′

k′′ = InHEOM
if k′′ ̸= k′ and

M ′
k′′,lm = δl+1,m if k′′ = k′ (l, m ∈

[1, nHEOM ]). We consider the case with a sin-
gle bath with a system-bath coupling operator
S (Eq.(27)). Then Sk′ is independant of k′.
The factor Q+ = (S ⊗ In − In ⊗ S) in the
two-state case with n = 2 is:

Q+ =


0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

 . (34)

The two contributions Lk′+ for two decay
modes and nmax > 1 are:

L1+ = −iQ+ ⊗ M ′ ⊗ InNHEOM

= −i


0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

 ⊗


0 1

0 . . .
. . . 1

0



⊗


1

1
. . .

1

 (35)

and

L2+ = −iQ+ ⊗ InNHEOM
⊗ M ′

= −i


0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

 ⊗


1

1
. . .

1



⊗


0 1

0 . . .
. . . 1

0

 . (36)

When nmax = 1, InNHEOM
= I2 and M ′ =(

0 1
0 0

)
The corresponding matrix of the sum

(L1+ + L2+)/(−i) is displayed in figure 6. By
comparing with Eq.(22), the contribution to
ρ̇00 of the term related to the upper ADOs
with only single excitation is −i [S, ρ10 + ρ01],
i.e., ρ̇12

00 → −ρ12
01 − ρ12

10, ρ̇21
00 → ρ21

01 + ρ21
10

and ρ̇11
00 = ρ̇22

00 → 0. Matrix-vector products
of lines 5 and 9 with the column vector ρα

n
in figure 6 provide these expressions for the
contribution to ρ̇12

00 and ρ̇21
00 respectively. The

results for ρ̇11
00 and ρ̇22

00 can be obtained in the
same way at lines 1 and 13.

3.2.4 Matrix L−

The superoperator connecting the ADOs with
a lower layer in the hierarchy involves the
operator:

Lk′− = − i(αk′,t/cSk′ ⊗ In − α̃k′,t/cIn ⊗ Sk′)
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Figure 5 Color on line. Damping superoperator (L1 + L2)/i (Eqs.(31) and (32)). (a) Example of a two-state
system with two artificial decay modes and nmax = 1. L1 in blue and L2 in red. (b) Block related to a particular
element ρα

n where α = ij, when nmax > 1. All the blocks (ij) have the same structure

Figure 6 Color online. Matrix (L1+ + L2+)/(−i) in
the case of a two-state system with two artificial decay
modes and nmax = 1. L1+ in blue and L2+ in red.

⊗
K∏

k′′=1
M ′′

k′′ (37)

where M ′′
k′′ = InHEOM

if k′′ ̸= k′ and
M ′′

k′′,lm = (l − 1) δl−1,m if k′′ = k′ (l, m ∈
[1, nHEOM ]). In the two-level case with Sk′

independent of k′, for each mode, one has the
factor:

Q−k′ = αk′S ⊗ In − α̃k′In ⊗ S

= αk′

(
0 0
0 1

)
⊗

(
1 0
0 1

)
− α̃k′

(
1 0
0 1

)
⊗

(
0 0
0 1

)

=


0 0 0 0
0 −α̃k′ 0 0
0 0 αk′ 0
0 0 0 αk′ − α̃k′

 . (38)

The two contributions to the
super-Liouvillian when nmax > 1 are:

L1− = Q−1 ⊗ M ′′ ⊗ InHEOM

=


0 0 0 0
0 −α̃1 0 0
0 0 α1 0
0 0 0 α1 − α̃1

 ⊗



0
1 0

2 . . .
. . . . . .

nmax 0



⊗


1

1
. . .

1

 (39)

and

L2− = Q−2 ⊗ InHEOM
⊗ M ′′

=


0 0 0 0
0 −α̃2 0 0
0 0 α2 0
0 0 0 α2 − α̃2

 ⊗


1

1
. . .

1
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Figure 7 Color on line. Matrix (L1− +L2−)/(−i) in
the case of a two-state system with two artificial decay
modes and nmax = 1. L1+ in blue and L2+ in red.

⊗



0
1 0

2 . . .
. . . . . .

nmax 0

 . (40)

In the example of the two decay modes with
nmax = 1, one has M ′′ =

(
0 0
1 0

)
. The ma-

trices for L1− and L2− are given in figure 7.

3.3 Dynamics with Tensor-Train
format

Dynamics is driven by solving

˙̄ρ(t) = Lρ̄(t) (41)

where ρ̄ is the full TT-converted vector
of the elements of all the ADOs and L
is the super-operator described in Sec.3.2.
We use the projector-splitting KSL scheme
[9, 19, 120, 121] implemented in the ttpy
package (tt.ksl.ksl) [122]. The method is
based on the dynamical low-rank approxima-
tion which is equivalent to the Dirac-Frenkel
time-dependent variational principle used in
MCTDH. It consists in using an approximate
low-rank tensor with fixed ranks instead of
getting a solution with a high rank tensor and
then truncate it with singular value decom-
position (SVD). To comply with this goal,

the derivative of the approximate low-rank
tensor is obtained by orthogonally projecting
the derivative of the tensor on the tangent
space of the approximate low-rank tensor at
its current position. Time-integration is then
obtained by a splitting scheme (second or-
der in this work) of the projector (see Refs.
[9, 19, 120, 121] for more details). An adap-
tative rank may be necessary during the
propagation as proposed in Refs.[123, 124].
We have adopted a mixed strategy. The stan-
dard Runge-Kutta integrator (written with
TT algebra available with the ttpy package)
is run after some time steps to allow the in-
crease of the ranks during the propagation.
In the application, we use a Runge-Kutta run
after 10 timesteps.

4 Illustrative Applications
We give three examples for which dynam-
ics is driven by the TT method. In the first
two cases, the spectral density is continuous
and is an Ohmic two-pole Lorentzian function
(Eq.(9)) leading to two artificial bath modes.
The third application uses undamped discrete
modes.

4.1 Population to coherence
transfer via a bath

The zero-order model and the eigenstates are
schematized in figure 8. This model was intro-
duced to analyze one of the first applications
of an experimental ‘quantum simulator’ for
molecular quantum dynamics [125]. As we
show, using a circuit of qubits to represent
a network of chromophores gives access to
strongly non-Markovian regimes of open dy-
namics, including situations in which strong
dissipation actually induces coherent dynam-
ics. Indeed, one of the original motivations
for the experiment and analysis of Ref.[126]
was to explore the existence, robustness and
uses of coherent transport in photosynthetic
light-harvesting proteins, which are described
by analogous models. However, they are much
harder to control compared to superconduct-
ing circuits. The Hamiltonian of the active
subsystem is:

HS(t) = Hs + Hren
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−
3∑

n=0

3∑
m ̸=n=0

µnm|n⟩⟨m|E(t) (42)

with

Hs =
3∑

n=0
εn|n⟩⟨n| +

3∑
n=0

3∑
m ̸=n=0

Hnm|n⟩⟨m|

(43)
where Hren is the renormalization term given
below and µij is the dipolar coupling. The
ground state is coupled to the excited states
only radiatively, i.e. H0j = 0 for j ̸= 0 and
only µ02 and µ03 induce the radiative cou-
pling. Two degenerate excited bright states
(|2⟩ and |3⟩) strongly interact by interstate
coupling H23 and state |2⟩ is weakly coupled
to a dark lower state |1⟩ and to a tuning bath
that makes fluctuate the energy. The strong
H23 coupling leads to eigenstates that are
mainly the bright in phase and the dark out
of phase superpositions denoted |B⟩ and |D+⟩
respectively. Both eigenstates |D+⟩ and |D−⟩
form a dark doublet. Their dipole transition
moments µ0D± are very weak, being two or-
ders of magnitude smaller than the transition
moment µ0B to the |B⟩ state. Spontaneous
radiative decay is not taken into account in
the simulation.

The bath is coupled to state |2⟩ only. The
corresponding system-bath operator takes the
form:

S =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 . (44)

The spectral density is highly structured
and peaks nearly at the mean (∆B−D =
⟨B|Hs|B⟩ − ⟨D|Hs |D⟩) transition energy,
⟨D|Hs |D⟩ being the average energy of states
⟨D+|Hs |D+⟩ and ⟨D−|Hs |D−⟩. It is a single
Ohmic Lorentzian (Eq.(9)) with parameters
p = 2.0 × 10−12a.u., Ω = 4.5 × 10−3a.u.
and Γ = 4.0 × 10−4a.u.. It is represented
with the correlation function at T = 298K
in figure 9. The renormalisation energy is
λ = (1/π)

∫ ∞
0 dωJ(ω)/ω. The correspond-

ing renormalization term is Hren = λ |2⟩ ⟨2|.
The system-bath coupling is weak. It is esti-
mated by the ratio η = λ/∆(|B⟩−|D⟩) where

∆(|B⟩−|D⟩) is the energy gap corresponding
here to the cutoff of the spectral density. It
is a perturbative regime, however, the cor-
relation time is long (about 250 fs) due to
the peaked shape of the spectral density. It
is longer than the Rabi period of the (|B⟩ −
|D⟩) transition that is 34 fs. Dynamics is
then non-Markovian with nHEOM = 5. In
the eigenstate representation (Fig.8(b)), the
S operator becomes:

Seigen =


0 0 0 0
0 0.26 0.25 0.36
0 0.25 0.24 0.34
0 0.36 0.34 0.50

 . (45)

In this basis set, the bath is coupled diago-
nally and off-diagonally to the system. This is
an interesting device leading to a population-
to-coherence transfer from the bright |B⟩
state to the dark doublet. This process re-
quires exact non-Markovian dynamics taking
terms that are neglected in the secular ap-
proximation of a Redfield treatment [126,
127]. From the analysis in Ref.[126], we choose
a coupling strength η = 0.013 relevant to il-
lustrate an efficient population-to-coherence
process. The populations in the eigenstates
and the modulus of the coherence (ρS)D+D−

between the two dark states are displayed
in figures 10(a) and 10(c) when the initial
state is the bright state |B⟩. In this ideal
case, the population-to-coherence is complete
in 250 fs. The coherence is long-lasting and
slowly decays in about 25 ps. Figures 10(b)
and 10(d) compare this ideal preparation with
the results obtained by an excitation from
the ground state by a laser field of 24 fs.
To respect the condition that the area of
the oscillating field must be equal to zero
[128, 129], the field is then given by E(t) =
− ∂A(t)

∂t with the vector potential A(t) =( E0
ω

)
sin2

(
π(t−ti)

τ

)
sin (ω(t − ti)), where ti is

the initial time of the pulse, ti = 0 here,
τ is the pulse duration and E0 is the field
maximum amplitude. The carrier frequency is
in resonance with the |0⟩ → |B⟩ transition.
When the number of cycles is large for a pulse
duration longer than about 20 fs, the expres-
sion becomes similar to a pulse with a sine
square envelope E(t) = E0sin2 (

πt
τ

)
cos (ω0Bt).
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Figure 8 Schematic representation of the energy levels, the interstate couplings Hij , the dipolar couplings µij

and the system-bath couplings of a device in which a long-lasting coherence in a dark doublet may be created by
interaction with a bath after excitation of a bright state. (a) zero-order basis, (b) eigenstates.

Figure 9 (a) Spectral density of the model presented
in figure 8 to illustrate the population-to-coherence
transfer. The spectral density maximum is close to the
mean BD energy gap; (b) corresponding normalized
correlation function C(t)/C(0) (Eq.(4)) at T = 298K
with real part (dashed line), imaginary part (dots) and
modulus (solid line).

We use this expression to estimate E0 provid-
ing a π pulse for which the integral of the Rabi
frequency Ω(t) = E0sin2 (

πt
τ

)
µ0B/ℏ is equal

to π [130, 131]. µ0B is the transition dipole.
Then E0 = 2π/(µ0Bτ). This field would in-
duce a complete transfer towards the bright
state in the absence of coupling to the bath.
A slight modification of the amplitude should
be necessary for short pulses with few cycles
for which the envelope slighly differs from a
sine square.

Figure 11 shows the influence of the pulse
duration τ on the coherence generation in
the dark doublet. The result is close to the

Figure 10 Upper panels: populations in the eigen-
states B, D− and D+, (a) ideal preparation in the
bright state B, (b) excitation of the B state from the
ground state by a π pulse of 24 fs. lower panels: modu-
lus of the coherence (ρS)D+D− , (c) ideal preparation
in the bright state, (d) excitation by a π pulse.

ideal case for pulses with τ in the range 20-
50 fs. The decrease of the yield comes from
the environment that makes fluctuate the
energies.

Simulations are made with a timestep of
0.24 fs and the maximum rank is 10 with
ϵ = 10−15. The temperature is 298 K. No
Matsubara term is needed due to the high
temperature and the narrow spectral density.
No significant change has been observed when
carrying out this simulation with 3 additional
Matsubara terms.

4.2 Simulation of absorption and
emission spectra

HEOM have already been used to simulate
stationary absorption σabs and emission σem

spectra [23, 24, 132–135]. They are computed
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Figure 11 Excitation of the bright state B by
a π pulse of different durations. (a) Population in
the ground state, (b) Modulus of the coherence
(ρS)D+D− generated in the dark doublet .

by the linear response theory as:

σabs(ω) = Re
∫ ∞

0
dteiωtTrS

[
ρ†

µ−(t)ρµ−(0)
]

(46)
σem(ω) = Re

∫ ∞

0
dteiωtTrS

[
ρ†

µ+(t)ρµ+(teq)
]

(47)
where µ− =

∑
k ̸=0 µk |0⟩ ⟨k| and µ+ =∑

k ̸=0 µk |k⟩ ⟨0|. The initial conditions for the
absorption is ρµ−(0) = µ−ρS(0) where ρS(0)
is the reduced density matrix of the system
in its ground state and all the ADOs are
zero. The stationary emission is computed
at the thermal equilibrium of the emitting
state. The first strategy is to propagate an
arbitrary system density matrix with popu-
lation in the excited states towards the ther-
mally equilibrated state, which is independent
of the chosen initial state [70, 132, 135].
Then, the initial conditions for the emission
is ρµ+(teq) = µ+ρS(teq) where ρS(teq) is the
reduced system density matrix at equilibrium
and the ADOs take their asymptotic values
at time teq. teq is estimated by verify the
population and the average value of the collec-
tive bath mode. Another possibility to reach
the equilibrium involves propagation with an
imaginary time [69, 71, 72].

Figure 12 schematizes the model. Accord-
ing to the value of the interstate coupling
H12, we consider a single bright state when
H12 = 0 or a two-excited-state case with
a nonadiabatic coupling with the dark state

Figure 12 Schematic representation of the diabatic
potential energy surface of the excited states used in
the simulation of absorption and emission spectra. q
is a bath nuclear coordinate and ∆qe is the difference
of equilibrium positions. The bath is at equilibrium
in the ground state and in the dark state |D⟩ since
the equilibrium positions are assumed to be the same.
The electronic energies of the system correspond to
Franck-Condon vertical energies represented by full
circles. λ is the renormalization energy. Two cases are
simulated, the first one with H12 = 0 (the |D⟩ state
is spectator) and the second one with H12 ̸= 0

.

when H12 ̸= 0. The spectra are computed by
making the electronic-nuclear partition. The
system is composed of two or three electronic
states corresponding to vertical energies at
the ground state equilibrium geometry. The
bath consists in all the nuclear intermolecular
and solvent vibrators. Within this partition,
the system-bath couplings cj = ω2

j ∆eq,j de-
pend on the difference ∆qe between the equi-
librium position of all the vibrational modes
in the ground and excited state. In our exam-
ple, only state |B⟩ is displaced and therefore
coupled to the bath. In the first example
(H12 = 0), the system-bath coupling operator
is that given in Eq.(27). In the second case,
in the diabatic representation, it becomes

S =

0 0 0
0 1 0
0 0 0

 . (48)

We intend to illustrate the strong influence
of the spectral density on the Stokes shift by
referring to Mukamel’s κ parameter [76]

κ = Λ
∆ . (49)
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Figure 13 Spectral densities used in the simulation
of the absorption and emission spectra. κ is defined
in Eq.(49). The ∆ parameter is given by the initial
value of the correlation function (Eq.(4)). The cutoff
Λ is estimated by the energy at the maximum. The
renormalization energy λ for decreasing values of κ
are 0.034 eV, 0.17 eV, 0.34 eV and 0.52 eV.

Λ corresponds to the cutoff of the spectral
density. Λ−1 is an estimation of the bath fluc-
tuation timescale. ∆2 = C(t = 0) is related
to the initial value of the bath correlation
function, which is a real value obtained from
Eq.(7). ∆ is an estimation of the amplitude
of the fluctuations.

Figure 13 displays the four spectral den-
sities adopted in the simulation and the
corresponding κ.

(i) The case with a single excited bright
state is the basic example for which the be-
havior is well predicted by the κ value. When
κ > 1, the bath dynamics become fast and
this situation is known as a homogeneous de-
phasing case leading to Lorentzian profiles for
linear absorption or relaxed emission spec-
tra and no Stokes shift. On the contrary,
when κ < 1, bath dynamics become slow,
this is the static limit or inhomogeneous case
for which the profiles become Gaussian and
the maximum Stokes shift is given by 2λ.
The four simulations are presented in figure
14. One could observe the expected behav-
ior passing from no Stokes shift when κ =
1.45 to a large shift when κ = 0.21 for which
λ = 0.52 eV. In this example, the relaxation
is simply the evolution towards the thermal
mixture at the new equilibrium geometry of
the excited bright state. This stationary state
is obtained in about 150 fs. The ADOs are

Figure 14 Normalized absorption (solid lines) and
emission (dashed lines) spectra for the case with a
single bright state (H12 = 0) represented in figure
12. The panels correspond to the different spectral
densities given in figure 13. κ is defined in Eq.(49).

taken after a propagation of 180 fs. Generally,
the computation of the emission spectrum
is more demanding than for the absorption.
Convergence of the correlation function re-
quires higher HEOM level (up to level 55 for
κ = 0.21). Propagation with the TT method
has required a small time step of 0.012 fs. The
maximum tensor rank remains below 10 with
ϵ = 10−20. The spectra are computed at 298
K. We have verified for the case with κ = 0.21
that no Matsubara term is necessary.

(ii) In the second example presented in
figure 15, dynamics is more complicated since
the emission occurs from the eigen vibronic
states having a component on the bright
state. The propagation duration to reach
the asymptotic populations and prepare the
ADOs depends on λ. It is 500 or 600 fs for the
different examples. The absorption spectrum
is more affected by the nonadiabatic interac-
tion. For the emission spectrum, one recovers
the shape corresponding to the relaxed bright
state in this example since the second excited
state is assumed to be dark. The evolution
of the Stokes shift with respect to the κ pa-
rameter is the same and corresponds to the
expected behavior.

These results highlight that tools like
HEOM can now predict optical spectra with
great precision, given the spectral density.
Therefore, attention must now be given to
extracting high quality spectral densities to
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Figure 15 Normalized absorption (solid lines) and
emission (dashed lines) spectra for the case with a
bright state coupled to a dark state (H12 ̸= 0) rep-
resented in figure 12. The panels correspond to the
different spectral densities given in figure 13. κ is de-
fined in Eq.(49).

match experimental results, particulary in
condensed phases where there can be very dis-
tinct timescales in the environment, i.e. fast
intramolecular motions and slow solvent/lat-
tice/protein reorganisation. The importance
of including the latter and a way of obtain-
ing them from first principles was given in
Ref.[15].

4.3 Excitation transfer with
discrete bath modes

In this example, the bath is formed by dis-
crete undamped vibrational modes. We revisit
the excitation transfer in a dimer oligothio-
phene (OT4)-fullerene(C60) investigated by I.
Burghardt and coworkers [67, 93, 95, 136].
The excited states may be schematized as in
Fig.12 with D being the excitonic state XT
and B becoming the charge transfer (CT)
state. We consider the parameters for an
inter-fragment distance of 0.35 nm [67]. The
energy gap is 0.07 eV and the electronic cou-
pling is 0.007 eV. The continuous spectral
density has been obtained from the differ-
ence of the equilibrium position ∆qeq of the
fragment normal modes [136]. The reference
position of the equilibrated bath is taken at
the middle point ∆qeq/2 so that the coupling

operator is

S =
(

−0.5 0
0 0.5

)
. (50)

The smooth spectral density [93] is fitted by
five two-pole Lorentzians (Eq.(9)) and dis-
played in Fig.16(a). The parameters are given
in the supplementary material of Ref.[67].
This leads to K = 10 artificial decay modes
without Matsubara terms at 298 K. We have
used the discretization procedure of Ref.[137]
providing unequally spaced modes that corre-
spond to equal fractions of the reorganization
energy. The discrete spectral density at the
Ndisc = 40 selected points k (πc2

k/(2ωk∆(ω))
where ∆(ω) is the local state density) is shown
in Fig.16(b). Since two baths are involved in
the discrete procedure, this corresponds to
K = 80 modes. Figure 16(c) gives the occu-
pation probability of the XT and CT states
when the initial state is XT. The dashed
lines are obtained with the continuous spec-
tral density and the five artificial modes, at
level 5 of the hierarchy, with the tolerance pa-
rameter ϵ = 10−10 and the maximum rank
(rmax) is 20 (see Appendix). This example
requires only 3003 matrices and the TT for-
mulation is not more advantageous than the
standard one. However, the discrete case may
emphasize the utility of the TT propagation
when compared with a standard treatment.
The corresponding population are drawn in
solid lines in Fig.16(c). We may estimate the
total number of elements in the full matrix
array. One has n = 2, K = 80, L = 5 lead-
ing to Nstandard = n2(K + L)!/ (K!L!) =
131,206,068 elements. This is a computation-
ally heavy simulation (≈ 21 Go for the density
matrix only) and intractable with our current
Fortran implementation. In the TT imple-
mentation, one has n = 2, K = 80, L = 5 and
rmax = 80. The number of stored elements
might reach a maximum value of NT T =
(n2+L)∗rmax+rmax

2∗(K−1)∗L = 2,528,720.
The storage is obviously more attractive (≈
400 Mo). The tolerance is ϵ = 10−8. The norm
is well conserved up to about 250 fs. The re-
sult is promising but it will be necessary to
improve the adaptation of the maximum rank
to further extend the performance [33, 123].



Springer Nature 2021 LATEX template

20 Article Title

Figure 16 Excitation energy transfer dynamics with
a continuous or discretized spectral density by the
TT implemetation. (a) : continuous spectral density
fitted by five two-pole Lorentzian functions (Eq.(9)),
see Refs.[67, 93], (b) : discretization in Ndisc = 40
modes by the Makri procedure (see Ref.[137]) leading
to K = 2Ndisc decay modes, (c) : population in the
XT (black) and CT (red) states when the initial state
is XT. Dashed lines: TT implementation with the con-
tinuous spectral density leading to K = 10 decay
modes without Matsubara terms at 298 K; solid lines
: TT implementation with K = 80 discrete modes .

5 Conclusion
We have given a detailed description of the
TT formulation of HEOM and how it is im-
plemented which we hope will be a useful
guide to newcomers to the field. This is an
exciting development, linking the widely used
HEOM method with rapidly developing ad-
vances in tensor networks across physics and
theoretical chemistry. One could connect to
them the recent explosion of physical sci-
ence applications of machine learning, for
example: tensor network simulation of multi-
environmental open quantum dynamics via
machine learning [138, 139] and entanglement
renormalisation [140].

We have shown three examples where the
TT method allows us to obtain highly ac-
curate results for complex phenomena, such
as ‘noisy’ generation of coherences (popula-
tion to coherence transfer) and the dramatic
impact of bath relaxation times on optical
spectra. The latter is important, as Stokes
shifts are often used as a direct measure of
system-bath coupling. This is clearly only
one part of the story, as the relaxation time
is also important. Hence suitable techniques

that can handle multiple timescales (long and
short-lived ADOs) are essential. These effects
described above will be even more important
in larger multistate systems. The third exam-
ple simulates an ultrafast excitation transfer
by using only undamped decay modes. This
example illustrates the efficiency of the TT
formulation when compared to the standard
method, which would involve a huge num-
ber of matrices. All the applications involve
non-Markovian dynamics, either due to long
correlation times or high level of hierachy.

It would be interesting to consider exten-
sions to time-dependent spectroscopies, 2D-
spectroscopies [24, 56–58] and optical control.
Adaptation of the TT formulation for optimal
control has already been given in Ref.[50]. An-
other important prospect is the consideration
of non-harmonic environments, for instance
by including some modes in the active system
[43, 45, 67, 68] and the treatment of fermionic
baths [55, 81].

Appendix: Numerical
implementation of HEOM
with ttpy
Most of the TT algebra is carried out by
the ttpy package developed by Oseledets and
coworkers [122]. In this appendix, we show a
minimal code to build the system Liouvillian
and time-integrate a given system density ma-
trix with initial system-bath factorization in
TT format with Python3, Numpy and ttpy
packages.

The system Liouvillian is defined as
LS(ADO) = −i(H ⊗ In − In ⊗ H) where H is
the system Hamiltonian, In the identity ma-
trix with n the number of system states. Thus,
LS(ADO) is a n2 × n2 matrix which can be
built from standard numpy functions (np.eye
returns the identity matrix and np.kron the
Kronecker product of both matrices) :
ids = np.eye(n)
Ls = -j * (np.kron(hamil,ids) \
- np.kron(ids,hamil))
where ids is the identity matrix of size n × n
and j the imaginary unit. To convert this
numpy array to a TT format, tt.matrix rou-
tine performs an approximation of LS(ADO)
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for a maximal rank (rmax) and an accuracy
eps :
Ls = tt.matrix(Ls, eps=eps, rmax=rmax)
where Ls is the system Liouvillian superoper-
ator. At this point, we are still only dealing
with a representation of an array of n2 × n2

dimensions. The HEOM superoperator LS

which spans over the whole Liouville space is
defined as LS = LS(ADO) ⊗

∏K
k′′=1 InHEOM

.
To avoid memory issues due to the high di-
mensionality of the array, one must work
with the Kronecker products ( tt.kron) of
ttpy packages instead of the one of numpy
(np.kron). Indeed, numpy will build the full
tensor which can be very large and thus
might suffer from the dimensionality curse. To
carry out this task, a single loop iterates over
the number of artificial decay modes K with
successive Kronecker products:
idr = np.eye(nheom)
idr = tt.matrix(idr)
for i in range(K):

Ls = tt.kron(Ls,idr)

The total Liouvillian super-operator L is
a sum of several other super-operators, i.e.
Lk′ , Lk′+, Lk′− (see Eq.(26)). Addition can
be performed directly with the usual algebraic
symbol (+) on TT objects. The ttpy library
carries out automatically the correct tensor
operations. However, tensor ranks increase at
each iteration. Thus, rounding operations are
regularly performed to reduce the rank for a
given accuracy and maximum rank with the
following command:
L = L.round(eps,rmax)
where L is the total HEOM Liouvillian super-
operator.

The initial vectorized density matrix is de-
fined directly from its cores. The first core
is filled with the initial system density ma-
trix. As all auxiliary density matrices are
vectors of zeros when assuming system-bath
factorization all the other cores are vectors of
dimensions nHEOM with only the first index
equal to 1.

For a given system density matrix rho de-
fined as a numpy array and r the initial core
rank (equal to 1) in this example, we compute
rho the initial density matrix in TT format
with the following algorithm:

rho = np.zeros((n**2), \
dtype=np.complex128)

rho = np.reshape(rhos,n**2)
cores =[]
a = np.zeros((1,n**2,r))
a[0,:,0] = rho.copy()
cores.append(a)
vec = np.zeros((nheom), \

dtype=np.complex128)
vec[0] = 1.
for i in range(K-1):

a = np.zeros((r,nheom,r))
a[0,:,0] = vec[:]
cores.append(a)

a = np.zeros((r,nheom,1))
a[0,:,0] = vec[:]
cores.append(a)
rho = tt.vector().from_list(cores)}

Time-integration is performed with the
KSL second-order splitting algorithm [120].
For each time step dt, the density matrix in
TT format is updated by using the function
ksl implemented in tt.ksl routines :
rho = tt.ksl.ksl(L,rho,dt)

By iterating over the desired number of
timesteps, we compute the full density ma-
trix at time t. In order to extract the system
density matrix, projection techniques (by ex-
pressing projectors on the full Liouville space
in the TT format) or core manipulations can
be used.
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