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Longitudinal and survival joint modelling prediction: time reparametrization in

Amyotrophic Lateral Sclerosis context
J. ORTHOLAND!?, S. DURRLEMAN?!, S. TEZENAS DU MONTCEL!

1. Inria, centre of Paris, ARAMIS team, Sorbonne Université, Institut du Cerveau/Paris Brain Institute AP-HP, INSERM, CNRS, University Hospital, Paris, France

Background & Objectives

Neurodegenerative diseases, among which Amyotrophic Lateral Sclerosis, have no precise starting time. Nevertheless, in Joint modelling, most models use Generalised
Linear Mixed-effects Models (GLMM) to model the longitudinal process. Such kind of model, by design, needs a reference time. An existing longitudinal model does not
need that reference time but has never been extended to a Joint model. It has also the advantage to create a latent disease age (Schiratti et al., 2015).

We validated and bench-marked a new Joint model with latent disease age that does not need a reference time.

We created a non-linear joint model with shared random effects composed of a time reparametrization into the disease age y; for each patient, a longitudinal model y,
and a survival model S, from the disease age .
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We evaluated it against, two one-process-only models, an AFT model using Lifelines package (Davidson-Pilon, 2019) and the existing longitudinal model using Leaspy
ackage, a two-stage model using AFT and the existing longitudinal model and a joint model with shared random effects using JMbayes2 package.
-
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Simulation Results Real Data Results

Data We used PRO-ACT a large multi-centric ALS cohort. We had access to 2,529
patients with an average of 9.2 * 4.3 for a follow-up of 1 + 0.6 with 76.7 % of
censored events. We have normalised the score using its natural scale on 48.

Data We have simulated data thanks to real-like parameters extracted from
PRO-ACT ALS data, using the existing longitudinal model and AFT model. We have

simulated 1,000 patients with an average of 8 visits for a follow-up of 1 year with
85 % censored events and a noise of 5% on the longitudinal process.

Cohort description We compared the progression of the patients with
mean random effects.

Cohort description We compared the progression of the patients with
mean random effects.

‘ Joint ‘ Two stages p-value ‘ Longitudinal  p-value ‘ AFT p-value ‘ JMbayes?2 p-value | Joint | Two stages  p-value | Longitudinal  p-value | AFT p-value | JMbayes2 p-value
growth 0.318 (0.13) 0.409 (0.089) 4.6e-01 - 2.03 (0.116)  3.9¢-03 growth | -13.233 (0.094) -13.98 (0.079)  2.0e-11 -15.351 (0.118) 3.6e-13
midpoint | 0.035 (0.018) 0.102 (0.011)  3.9e-03 - 0.058 (0.031) 2.6e-01 midpoint | 2.841 (0.011) 2.786 (0.011)  2.0e-09 3.222 (0.014) 6.8e-13
median | 0.255 (0.065) | 0.231 (0.051) 1.0e+00 0.698 (0.089) 5.9e-03 | 3.192(0.241) 5.9e-03 median 4.185(0.038) | 4.071 (0.015) 2.4e-05 4.666 (0.024) 6.1e-10 | 4.392(0.118)  7.5e-04
Table 1 Absolute clinically meaningful estimated parameters bias on real-like dataset Table 3 Clinically meaningful estimated parameters bias on real-like dataset
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. , , Figure 2 Average patient curve on PRO-ACT dataset
Figure 1 Average patient curve on real-like dataset

Prediction we have made a 10-fold cross-validation using two visits to predict
the longitudinal outcome at the remaining visits and the event.

Prediction we have made a 10-fold cross-validation using two visits to predict
the longitudinal outcome at the remaining visits and the event.

Joint Two stages p-value | Longitudinal p-value AFT p-value JMbayes2 p-value Joint Two stages p-value | Longitudinal  p-value | AFT p-value | JMbayes2 p-value

Absolute bias | | 3.561 (3.579) - 3.596 (3.682) 1.3e-01 - - 3.981 (3.892) 3.6e-33 Absolute bias | | 4.1 (4.264) - - 4.192 (4.396)  1.2e-20 | - - 5.42(5.687)  6.5e-201
IBS | 0.155 (0.033) | 0.147 (0.033) 4.3e-02 - - 0.196 (0.039) 1.8e-03 | 0.198 (0.039) 3.7e-04 IBS | 0.245 (0.04) | 0.2383(0.036) 2.6e-01 | - - 0.267 (0.027)  1.0e-01 | 0.222 (0.032) 2.1e-03
C-index 1.0y T | 0.654 (0.04) | 0.658 (0.038) 1.0e+00 0.531 (0.047) 1.3e-04 | 0.536 (0.05) 1.4e-04 C-index 1.0y T | 0.693 (0.047) | 0.612 (0.065) 2.9¢e-04 0.408 (0.05)  6.5e-07 | 0.64 (0.059)  3.3e-04
C-index 1.5y T | 0.656 (0.038) | 0.666 (0.037) 5.2e-02 0.531 (0.047) 1.0e-04 | 0.537 (0.05) 1.2¢-04 C-index 1.5y T | 0.7 (0.046) 0.644 (0.058)  1.3e-03 0.408 (0.05)  9.0e-07 | 0.668 (0.049) 4.8e-04
C-index 2.0y T | 0.66 (0.034) | 0.668 (0.034) 2.5¢-03 0.531 (0.047) 6.1e-05 | 0.539 (0.051)  9.9e-05 C-index 2.0y T | 0.704 (0.046) | 0.664 (0.053) 4.0e-03 0.408 (0.05)  1.4e-06 | 0.679 (0.048) 1.4e-03

kTable 2 Prediction metrics on real-like dataset KTable 4 Prediction metrics on real-like dataset
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Conclusion |

As it does not need reference time our joint model with latent disease age enables us to improve the performance of most of the prediction metrics compare to existing
joint models. To continue developing this model, future improvement could consider adding more flexibility to the survival function and integrating the use of covariates
or modelling of several longitudinal outcomes or events.
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