

Longitudinal and survival joint prediction: time reparameterization in amyotrophic lateral sclerosis context

Juliette Ortholand, Stanley Durrleman, Sophie Tezenas Du Montcel

▶ To cite this version:

Juliette Ortholand, Stanley Durrleman, Sophie Tezenas Du Montcel. Longitudinal and survival joint prediction: time reparameterization in amyotrophic lateral sclerosis context. ISCB 2023 - 44th Annual Conference of the International Society for Clinical Biostatistics, Aug 2023, Milan, Italy. hal-04216888

HAL Id: hal-04216888 https://hal.science/hal-04216888v1

Submitted on 25 Sep 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Longitudinal and survival joint modelling prediction: time reparametrization in Amyotrophic Lateral Sclerosis context J. ORTHOLAND¹, S. DURRLEMAN¹, S. TEZENAS DU MONTCEL¹

1. Inria, centre of Paris, ARAMIS team, Sorbonne Université, Institut du Cerveau/Paris Brain Institute AP-HP, INSERM, CNRS, University Hospital, Paris, France

Background & Objectives

Neurodegenerative diseases, among which Amyotrophic Lateral Sclerosis, have no precise starting time. Nevertheless, in Joint modelling, most models use Generalised Linear Mixed-effects Models (GLMM) to model the longitudinal process. Such kind of model, by design, needs a reference time. An existing longitudinal model does not need that reference time but has never been extended to a Joint model. It has also the advantage to create a latent disease age (Schiratti et al., 2015).

We validated and bench-marked a new Joint model with latent disease age that does not need a reference time.

Methods

We created a non-linear joint model with shared random effects composed of a time reparametrization into the disease age ψ_i for each patient, a longitudinal model γ_0 and a survival model S_0 from the disease age .

We evaluated it against, two one-process-only models, an AFT model using Lifelines package (Davidson-Pilon, 2019) and the existing longitudinal model using Leaspy package, a two-stage model using AFT and the existing longitudinal model and a joint model with shared random effects using JMbayes2 package.

Simulation Results

Data We have simulated data thanks to real-like parameters extracted from PRO-ACT ALS data, using the existing longitudinal model and AFT model. We have simulated 1,000 patients with an average of 8 visits for a follow-up of 1 year with 85 % censored events and a noise of 5% on the longitudinal process.

Cohort description We compared the progression of the patients with mean random effects.

	Joint	Two stages	p-value	Longitudinal	p-value	AFT	p-value	JMbayes2	p-value
growth	0.318 (0.13)	-	-	0.409 (0.089)	4.6e-01	-	-	2.03 (0.116)	3.9e-03
midpoint	0.035 (0.018)	-	-	0.102 (0.011)	3.9e-03	-	-	0.058 (0.031)	2.6e-01
median	0.255 (0.065)	0.231 (0.051)	1.0e+00	-	-	0.698 (0.089)	5.9e-03	3.192 (0.241)	5.9e-03

Table 1 Absolute clinically meaningful estimated parameters bias on real-like dataset

Real Data Results

Data We used PRO-ACT a large multi-centric ALS cohort. We had access to 2,529 patients with an average of 9.2 \pm 4.3 for a follow-up of 1 \pm 0.6 with 76.7 % of censored events. We have normalised the score using its natural scale on 48.

Cohort description We compared the progression of the patients with mean random effects.

	Joint	Two stages	p-value	Longitudinal	p-value	AFT	p-value	JMbayes2	p-value
growth	-13.233 (0.094)	-	-	-13.98 (0.079)	2.0e-11	-	-	-15.351 (0.118)	3.6e-13
midpoint	2.841 (0.011)	-	-	2.786 (0.011)	2.0e-09	-	-	3.222 (0.014)	6.8e-13
median	4.185 (0.038)	4.071 (0.015)	2.4e-05	-	-	4.666 (0.024)	6.1e-10	4.392 (0.118)	7.5e-04

Table 3 Clinically meaningful estimated parameters bias on real-like dataset

Prediction We have made a 10-fold cross-validation using two visits to predict the longitudinal outcome at the remaining visits and the event.

	Joint	Two stages	p-value	Longitudinal	p-value	AFT	p-value	JMbayes2	p-value
Absolute bias \downarrow	3.561 (3.579)	-	-	3.596 (3.682)	1.3e-01	-	-	3.981 (3.892)	3.6e-33
IBS↓	0.155 (0.033)	0.147 (0.033)	4.3e-02	-	-	0.196 (0.039)	1.8e-03	0.198 (0.039)	3.7e-04
C-index 1.0y \uparrow	0.654 (0.04)	0.658 (0.038)	1.0e+00	-	-	0.531 (0.047)	1.3e-04	0.536 (0.05)	1.4e-04
C-index 1.5y ↑	0.656 (0.038)	0.666 (0.037)	5.2e-02	-	-	0.531 (0.047)	1.0e-04	0.537 (0.05)	1.2e-04
C-index 2.0y \uparrow	0.66 (0.034)	0.668 (0.034)	2.5e-03	-	-	0.531 (0.047)	6.1e-05	0.539 (0.051)	9.9e-05

Table 2 Prediction metrics on real-like dataset

Figure 2 Average patient curve on PRO-ACT dataset

Prediction We have made a 10-fold cross-validation using two visits to predict the longitudinal outcome at the remaining visits and the event.

10

	Joint	Two stages	p-value	Longitudinal	p-value	AFT	p-value	JMbayes2	p-value
Absolute bias \downarrow	4.1 (4.264)	-	-	4.192 (4.396)	1.2e-20	-	-	5.42 (5.687)	6.5e-201
IBS↓	0.245 (0.04)	0.238 (0.036)	2.6e-01	-	-	0.267 (0.027)	1.0e-01	0.222 (0.032)	2.1e-03
C-index 1.0y \uparrow	0.693 (0.047)	0.612 (0.065)	2.9e-04	-	-	0.408 (0.05)	6.5e-07	0.64 (0.059)	3.3e-04
C-index 1.5y ↑	0.7 (0.046)	0.644 (0.058)	1.3e-03	-	-	0.408 (0.05)	9.0e-07	0.668 (0.049)	4.8e-04
C-index 2.0y \uparrow	0.704 (0.046)	0.664 (0.053)	4.0e-03	-	-	0.408 (0.05)	1.4e-06	0.679 (0.048)	1.4e-03

 Table 4 Prediction metrics on real-like dataset

Conclusion

As it does not need reference time our joint model with latent disease age enables us to improve the performance of most of the prediction metrics compare to existing joint models. To continue developing this model, future improvement could consider adding more flexibility to the survival function and integrating the use of covariates or modelling of several longitudinal outcomes or events.

