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ON THE APPROXIMATION OF THE δ-SHELL INTERACTION
FOR THE 3-D DIRAC OPERATOR.

MAHDI ZREIK 1

ABSTRACT. We consider the three-dimensional Dirac operator coupled with a combination of
electrostatic and Lorentz scalar δ-shell interactions. We approximate this operator with general
local interactions V . Without any hypotheses of smallness on the potential V , converges in the
strong resolvent sense to the Dirac Hamiltonian coupled with a δ-shell potential supported on Σ,
a bounded smooth surface. However, the coupling constant depends nonlinearly on the potential
V.
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1. INTRODUCTION

Dirac Hamiltonians of the typeDm+V , where V is a suitable perturbation, are used in many
problems where the implications of special relativity play an important role. This is the case,
for example, in the description of elementary particles such as quarks, or in the analysis of
graphene, which is used in research for batteries, water filters, or photovoltaic cells. For these
problems, mathematical investigations are still in their infancy. The present work studies the
three-dimensional Dirac operator with a singular interaction on a closed surface Σ.

Mathematically, the Hamiltonian we are interested in can be formulated as follows

Dη,τ = Dm +Bη,τδΣ = Dm +
(
η I4 + τβ

)
δΣ, (1.1)

where Bη,τ is the combination of the electrostatic and Lorentz scalar potentials of strengths η
and τ , respectively. Physically, the Hamiltonian Dη,τ is used as an idealized model for Dirac
operators with strongly localized electric and massive potential near the interface Σ (e.g., an
annulus), i.e., it replaces a Hamiltonian of the form

Hη̃,τ̃ = Dm +Bη̃,τ̃ = Dm +
(
η̃ I4 + τ̃β

)
PΣ, (1.2)

where PΣ is a regular potential localized in a thin layer containing the interface Σ.

The operators Dη,τ have been studied in detail recently. Starting from the first directed work
on spectral studies of Hamiltonian Dη,τ in Ref. [8], in which the authors treated the case that
the surface is a sphere, assuming η2 − τ 2 = −4. This is known as the confinement case and
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in physics means the stability of a particle (e.g., an electron) in its initial region during time
evolution, i.e., if for time t = 0 the particle is considered in a confined region Ω ⊂ R3, then it
cannot cross the surface ∂Ω to join the region R3 \Ω for all t > 0. Mathematically, this means
that the Dirac operator under consideration decouples into a direct sum of two Dirac operators
acting on Ω and R3 \ Ω, respectively, with appropriate boundary conditions. After this work,
spectral studies of Schrodinger’s operators coupled with δ-shell interaction flourished, while
spectral studies of δ-shell interaction of Dirac operators in deep stability were lifeless.

In 2014, the spectral studies of δ-shell interaction of Dirac operators was revived in [1], where
the authors developed a new technique to characterize the self-adjointness of the free Dirac
operator coupled to a δ-shell potential. In a special case, they treated pure electrostatic δ-shell
interactions (i.e., τ = 0) supported on the boundary of a bounded regular domain and proved
that the perturbed operator is self-adjoint. The same authors continued the spectral study of the
electrostatic case; for example, the existence of a point spectrum and related problems; see [2]
and [3].

The approximation of the Dirac operator Dη,τ by Dirac operators with regular potentials with
shrinking support (i.e., of the form (1.2)) provides a justification of the considered idealized
model. In the one-dimensional framework, the analysis is carried out in [14], where Šeba
showed that convergence in the sense of norm resolution is true. Subsequently, Hughes and
Tušek prove strong resolvent convergence and norm resolvent convergence for Dirac opera-
tors with general point interactions in [9, 10] and [17], respectively. In 2D, [7] considered the
approximation of Dirac operators with electrostatic, Lorentz scalar, and anomalous magnetic
δ-shell potentials on closed and bounded curves. Furthermore, in [5] the authors examined the
same question as in the paper [7], but on a straight line. More precisely, taking parameters
(η̃, τ̃) ∈ R2 in (1.2) and a potential Pε

Σ converging to δΣ when ε tends to 0 (in the sense of
distributions), then Dm +

(
η̃ I4 + τ̃β

)
Pε

Σ converges to the Dirac operator Dη,τ with different
coupling constants (η, τ) ∈ R2 which depend nonlinearly on the potential Pε

Σ.

In the three-dimensional case, the situation seems to be even more complex, as recently shown
in [12]. There, too, the authors were able to show the convergence in the norm resolvent sense
in the non-confining case, however, a smallness assumption for the potential Pε

Σ was required
to achieve such a result. On the other hand, this assumption, unfortunately, prevents us from
obtaining an approximation of the operator Dη,τ with the parameters η and τ which are more
relevant from the physical or mathematical point of view. Believing this to be the case, the
authors of the recent paper [6] have studied and confirmed the approximation problem for
two- and three-dimensional Dirac operators with delta-shell potential in norm resolvent sense.
Without the smallness assumption of the potential Pε

Σ, no results could be obtained here either.
Finally, we note that in the two- and three-dimensional setting a renormalization of the interac-
tion strength was observed in [7, 12, 6].

Our main goal in this work is to develop new techniques that will allow us to establish the
approximation in terms of the strong resolvent in the non-critical and non-confinement cases
(i.e., when η2 − τ 2 ̸= ±4) without the smallness assumed in [12] and to obtain results on how
the initial parameters should be chosen so that the mathematical models reflect the physical
reality in the correct way.
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Let m > 0, recall the free Dirac operator Dm on R3 defined by Dm := −iα · ∇+mβ, where

αk =

(
0 σk
σk 0

)
for k = 1, 2, 3, β =

(
I2 0
0 −I2

)
, I2 :=

(
1 0
0 1

)
,

and σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

are the family of Dirac and Pauli matrices satisfy the anticommutation relations:

{αj, αk} = 2δjkI4, {αj, β} = 0, and β2 = I4, j, k ∈ {1, 2, 3}, (1.3)

where {·, ·} is the anticommutator bracket. We use the notation α · x =
∑3

j=1 αjxj for
x = (x1, x2, x3) ∈ R3. We recall that (Dm, dom(Dm)) is self-adjoint (see, e.g., [15, Sub-
section 1.4]), and that

Sp(Dm) = Spess(Dm) = (−∞,−m] ∪ [m,+∞).

Finally, we also give the Dirac operator coupled with a combination of electrostatic, Lorentz
scalar δ-shell interactions of strength η and τ , respectively, which we will denote Dη,τ in what
follows. Throughout this paper, for Ω ⊂ R3 a bounded smooth domain with boundary Σ :=
∂Ω, we refer to H1(Ω,C4) := H1(Ω)4 as the first order Sobolev space

H 1(Ω)4 = {φ ∈ L2(Ω)4 : there exists φ̃ ∈ H 1(R3)4 such that φ̃|Ω = φ}.

We denote by H1/2(Σ,C4) := H1/2(Σ)4 the Sobolev space of order 1/2 along the boundary Σ,
and by tΣ : H1(Ω)4 → H1/2(Σ)4 the classical trace operator.

Definition 1.1. Let Ω be a bounded domain in R3 with a boundary Σ = ∂Ω. Let (η, τ) ∈ R2.
Then, Dη,τ = Dm +Bη,τδΣ := Dm + (ηI4 + τβ)δΣ acting in L2(R3)4 and defined as follows:

Dη,τf = Dmf+ ⊕Dmf−, for all f ∈ dom(Dη,τ ) := {f = f+ ⊕ f− ∈ H1(Ω)4 ⊕H1(R3 \ Ω)4 :
the transmission condition (T.C) below holds in H1/2(Σ)4}.

Transmission condition : iα · ν(tΣf+ − tΣf−) +
1

2
(η I4 + τβ)(tΣf+ + tΣf−) = 0, (1.4)

where ν is the outward pointing normal to Ω. □

Recall that for η2 − τ 2 ̸= 0, 4, the Dirac operator (Dη,τ , dom(Dη,τ )) is self-adjoint and ver-
ifies the following assertions (see, e.g., [4, Theorem 3.4, 4.1])

(i) Spess(Dη,τ ) = (−∞,m] ∪ [m,+∞).
(ii) Spdis(Dη,τ ) is finite.

Organization of the paper. The present paper is structured as follows. We start with Section
2, where we define the model to be studied in our paper by introducing the family {Eη,τ,ε}ε,
which is the approximate Dirac operator family of operators Dη,τ . We also discuss our main
results by establishing Theorem 2.1. Moreover, in this section we give some geometric aspects
characterizing the surface Σ, as well as some spectral properties of the Dirac operator coupled
with the δ-shell interaction presented in Lemma 2.1. Section 3 is devoted to the proof of
Theorem 2.1, which approximates the Dirac operators with δ-shell interaction by sequences of
Dirac operators with regular potentials at the appropriate scale in the sense of strong resolvent.
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2. MODEL AND MAIN RESULTS

For a smooth bounded domain Ω ⊂ R3, we consider an interaction supported on the bound-
ary Σ := ∂Ω of Ω. The surface Σ divides the Euclidean space into disjoint union R3 =
Ω+ ∪ Σ ∪ Ω−, where Ω+ := Ω is a bounded domain and Ω− = R3 \ Ω+. We denote by ν and
dS the unit outward pointing normal to Ω and the surface measure on Σ, respectively. We also
denote by f± := f ⇂ Ω± be the restriction of f in Ω±, for all C2–valued function f defined on
R3. Then, we define the distribution δΣf by

⟨δΣf, g⟩ :=
1

2

∫
Σ

(tΣf+ + tΣf−) g dS, for any test function g ∈ C∞
0 (R3)4,

where tΣf± is the classical trace operator defined below in Definition 1.1. Now, we explic-
itly construct regular symmetric potentials Vη,τ,ε ∈ L∞(R3;C4×4) supported on a tubular ε-
neighbourhood of Σ and such that

Vη,τ,ε −−→
ε→0

(η I4 + τβ)δΣ in the sense of distributions.

To explicitly describe the approximate potentials Vη,τ,ε, we will introduce an additional nota-
tion. For γ > 0, we define Σγ := {x ∈ R3, dist(x,Σ) < γ} a tubular neighborhood of Σ with
width γ. For γ > 0 small enough, Σγ is parametrized as

Σγ = {xΣ + pν(xΣ), xΣ ∈ Σ and p ∈ (−γ, γ)}. (2.1)

For 0 < ε < γ, let hε(p) :=
1

ε
h
(p
ε

)
, for all p ∈ R, with the function h verifies the following

h ∈ L∞(R,R), supph ⊂ (−1, 1) and
∫ 1

−1

h(t) dt = 1.

Thus, we have:

supphε ⊂ (−ε, ε),
∫ ε

−ε

hε(t) dt = 1, and lim
ε→0

hε = δ0 in the sense of the distributions,

(2.2)

where δ0 is the Dirac δ-function supported at the origin. Finally, for any ε ∈ (0, γ), we define
the symmetric approximate potentials Vη,τ,ε ∈ L∞(R3,C4×4), as follows:

Vη,τ,ε(x) :=

{
Bη,τhε(p), if x = xΣ + pν(xΣ) ∈ Σγ,

0, if x ∈ R3 \ Σγ.
(2.3)

It is easy to see that limε→0 Vη,τ,ε = Bη,τδΣ, in D′
(R3)4. For 0 < ε < γ, we define the family

of Dirac operator {Eη,τ,ε}ε as follows:

dom(Eη,τ,ε) := dom(Dm) = H1(R3)4,

Eη,τ,εψ = Dmψ + Vη,τ,εψ, for all ψ ∈ dom(Eη,τ,ε).
(2.4)

The main purpose of the present paper is to study the strong resolvent limit of Eη,τ,ε at ε → 0.
To do this, we will introduce some notations and geometrical aspects which we will use in the
rest of the paper.
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2.1. Notations and geometric aspects. Let Σ be parametrized by the family {ϕj, Uj, Vj, }j∈J
with J a finite set, Uj ⊂ R2, Vj ⊂ R3, Σ ⊂

⋃
j∈J Vj and ϕj(Uj) = Vj ∩ Σ ⊂ Σ ⊂ R3 for all

j ∈ J. We set s = ϕ−1
j (xΣ) for any xΣ ∈ Σ.

Definition 2.1 (Weingarten map). For xΣ = ϕj(s) ∈ Σ ∩ Vj with s ∈ Uj, one defines the
Weingarten map (arising from the second fundamental form) as the following linear operator

WxΣ
:= W (xΣ) : TxΣ

→ TxΣ

∂iϕj(s) 7→ W (xΣ)[∂iϕj](s) := −∂iν(ϕj(s)),
(2.5)

where TxΣ
denotes the tangent space of Σ on xΣ and {∂iϕj(s)}i=1,2 is a basis vector of TxΣ

.

Proposition 2.1. [16, Chapter 9 (Theorem 2), 12 (Theorem 2)]. Let Σ be an n−surface in
Rn+1, oriented by the unit normal vector field ν, and let x ∈ Σ. Then, the Weingarten map
verifies the following properties:

(i) Symmetric with respect to the inner product induced by the first fundamental form.
(ii) Self-adjoint; that is Wx(v) · w = v ·Wx(w), for all v, w ∈ Tx.

(iii) The eigenvalues k1(x), ...., kn(x) of the Weingarten map Wx are called principal cur-
vatures of Σ at x. Moreover, k1(x), ...., kn(x) uniformly bounded on Σ.

(iv) The quadratic form associated with the Weingarten map at a point x is called the second
fundamental form of Σ at x.

The following theorem is the main result of this paper.

Theorem 2.1. Let (η, τ) ∈ R2, and denote by d = η2 − τ 2. Let (η̂, τ̂) ∈ R2 be defined as
follows:

• if d < 0, then (η̂, τ̂) =
tanh(

√
−d/2)

(
√
−d/2)

(η, τ),

• if d = 0, then (η̂, τ̂) = (η, τ),

• if d > 0 such that d ̸= (2k + 1)2π2, k ∈ N ∪ {0}, then (η̂, τ̂) =
tan(

√
d/2)

(
√
d/2)

(η, τ).

(2.6)

Now, let Eη,τ,ε be defined as in (2.4) and Dη̂,τ̂ as in Definition 1.1. Then,

Eη,τ,ε −−→
ε→0

Dη̂,τ̂ in the strong resolvent sense. (2.7)

Remark 2.1. We mention that in this work we find approximations by regular potentials in the
strong resolvent sense for the Dirac operator with δ-shell potentials Eη,τ,ε in the non-critical
case (i.e., when d ̸= 4) and non-confining case, (i.e., when d ̸= −4) everywhere on Σ. This is
what we shall prove in the proof of Theorem 2.1.

2.1.1. Tubular neighborhood of Σ. Recall that for Ω ⊂ R3 a bounded domain with smooth
boundary Σ parametrized by ϕ = {ϕj}j∈J , we set νϕ = ν ◦ ϕ : Σ −→ R3 the unit normal vec-
tor field which points outwards of Ω, is independent of the particular choice of the positively
oriented arc-length parametrization ϕ.

For γ > 0, Σγ (2.1) is a tubular neighborhood of Σ of width γ. We define the diffeomor-
phism Φϕ by:

Φϕ : UxΣ
× (−γ, γ) −→ R3

(s, p) 7−→ Φϕ(s, p) = ϕ(s) + pν(ϕ(s)).
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For γ be small enough, Φϕ is a smooth parametrization of Σγ . Moreover, the matrix of the
differential dΦϕ of Φϕ in the canonical basis of R3 is

dΦϕ(s, p) =
(
∂1ϕ(s) + p dν(∂1ϕ)(s) ∂2ϕ(s) + p dν(∂2ϕ)(s) νϕ(s)

)
. (2.8)

Thus, the differential on UxΣ
and the differential on (−γ, γ) of Φϕ are respectively given by

dsΦϕ(s, p) = ∂iϕj(s)− pW (xΣ)∂iϕj(s) for i = 1, 2 and xΣ ∈ Σ,

dpΦϕ(s, p) = νϕ(s),
(2.9)

where ∂iϕ, νϕ should be understood as column vectors, and W (xΣ) is the Weingarten map
defined as in Definition 2.1. Next, we define

Pϕ :=
(
Φ−1

ϕ

)
1
: Σγ −→ UxΣ

⊂ R2; Pϕ

(
ϕ(s) + pν(ϕ(s))

)
= s ∈ R2, xΣ = ϕ(s),

P⊥ :=
(
Φ−1

ϕ

)
2
: Σγ −→ (−γ, γ); P⊥

(
ϕ(s) + pν(ϕ(s))

)
= p.

(2.10)
Using the inverse function theorem and thanks to (2.8), then we have for x = ϕ(s)+pν(ϕ(s)) ∈
Σγ the following differential

∇Pϕ(x) =
(
1− pW (s)

)−1
tϕ(s) and ∇P⊥(x) = νϕ(s), (2.11)

with tϕ(s) = ∂iϕ(s), i = 1, 2.

2.2. Preparations for proof. Before presenting the tools for the proof of Theorem 2.1, let us
state some properties verified by the operator Dη,τ .

Lemma 2.1. Let (η, τ) ∈ R2, and let Dη,τ be as in Definition 1.1. Then, the following hold:
(i) If η2 − τ 2 ̸= −4, then there exists an invertible matrix Rη,τ such that a function f =

f+⊕f− ∈ H1(Ω+)
4⊕H1(Ω−)

4 belongs to dom(Dη,τ ) if and only if tΣf+ = Rη,τ tΣf−,
with Rη,τ given by

Rη,τ :=
(
I4 −

iα · ν
2

(η I4 + τβ)
)−1(

I4 +
iα · ν
2

(η I4 + τβ)
)
. (2.12)

(ii) If η2 − τ 2 = −4, then a function f = f+ ⊕ f− ∈ H1(Ω+)
4 ⊕ H1(Ω−)

4 belongs to
dom(Dη,τ ) if and only if(
I4 −

iα · ν
2

(η I4 + βτ)
)
tΣf+ = 0 and

(
I4 +

iα · ν
2

(η I4 + βτ)
)
tΣf− = 0.

Proof. Using the transmission condition introduced in (1.4), then for assertion (i): for all
f = f+ ⊕ f− ∈ dom(Dη,τ ), we have that(

iα · ν + 1

2
(ηI4 + τβ)

)
tΣf+ =

(
iα · ν − 1

2
(ηI4 + τβ)

)
tΣf−.

Thanks to properties in (1.3) and the fact that (iα · ν)−1 = −iα · ν, we get that(
I4 −M

)
tΣf+ =

(
I4 +M

)
tΣf−, (2.13)

with M a 4× 4 matrix has the following form

M =
iα · ν
2

(η I4 + βτ),

thus (2.12) is established.

Furthermore, as d := η2 − τ 2 ̸= −4 and M2 = −d
4
I4, (I4 −M)(I4 +M) =

4 + d

4
I4, then
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(I4−M) is invertible and (I4−M)−1 =
4

4 + d
(I4+M). Consequently, using (2.13) we obtain

that tΣf+ = Rη,τ tΣf− which Rη,τ has the following explicit form

Rη,τ =
4

4 + d

(
4− d

4
I4 + iα · ν(ηI4 + τβ)

)
. (2.14)

For assertion (ii), one just has to multiply (2.13) by (I4 ±M) we get

(I4 +M)2tΣf− = 0 and (I4 −M)2tΣf+ = 0.

This achieves the proof of Lemma 2.1. □

3. PROOF OF THEOREM 2.1

Let {Eη,τ,ε}ε∈(0,γ) and Dη̂,τ̂ be as defined in (2.4) and Definition 1.1, respectively. Since the
singular interaction Vη,τ,ε are bounded and symmetric, then by the Kato-Rellich theorem, the
operators Eη,τ,ε are self-adjoint in L2(R3)4. Moreover, we know that Dη̂,τ̂ are self-adjoint and
dom(Dη̂,τ̂ ) ⊂ H1(R3 \ Σ)4. Although the limiting operators and the limit operator are self-
adjoint, it has been shown in [13, Theorem VIII.26] that {Eη,τ,ε}ε∈(0,γ) converges in the strong
resolvent sense to Dη̂,τ̂ as ε → 0 if and only if it converges in the strong graph limit sense.
The latter means that, for all ψ ∈ dom(Dη̂,τ̂ ), there exists a family of vectors {ψε}ε∈(0,γ) ⊂
dom(Eη,τ,ε) such that

(a) lim
ε→0

ψε = ψ and (b) lim
ε→0

Eη,τ,εψε = Dη̂,τ̂ψ in L2(R3)4. (3.1)

Let ψ ≡ ψ+ ⊕ ψ− ∈ dom(Dη̂,τ̂ ). From (2.6), we have that

d̂ = η̂2 − τ̂ 2 = −4tanh2(
√
−d/2), if d < 0,

d̂ = η̂2 − τ̂ 2 = 4tan2(
√
d/2), if d > 0,

d̂ = η̂2 − τ̂ 2 = 0, if d = 0.

In all cases, we have that d̂ > −4 (in particular d̂ ̸= −4). Then, by Lemma 2.1 (i),

tΣψ+ = Rη̂,τ̂ tΣψ−, (3.2)

where Rη̂,τ̂ are given in (2.14).

Using the Definition 1.1, we get that tΣψ± ∈ H1/2(Σ)4.

• Show that

eiα·νBη,τ = Rη̂,τ̂ . (3.3)

Recall the definition of the family Eη,τ,ε and Vη,τ,ε defined in (2.4) and (2.3), respectively. We
have that

(iα · νBη,τ )
2 = (iα · ν(ηI4 + τβ))2 = −(η2 − τ 2) =: D2, with D =

√
−(η2 − τ 2) =

√
−d.

Using this equality, we can write: eiα·νBη,τ = e−DΠ− + eDΠ+, with ±D the eigenvalues of
iα · νBη,τ ; and Π± the eigenprojections are given by:

Π± :=
1

2

(
I4 ±

iα · νBη,τ

D

)
.
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Therefore,

e(iα·νBη,τ ) =

(
eD + e−D

2

)
I4 +

iα · νBη,τ

D

(
eD − e−D

2

)

= cosh(D)I4 +
sinh(D)

D
(iα · ν(ηI4 + τβ)).

Now, the idea is to show (3.3), i.e., it remains to show

4

4 + d̂

(
4− d̂

4
I4 + iα · ν(η̂I4 + τ̂β)

)
− cosh(D)I4 −

sinh(D)

D
(iα · ν(ηI4 + τβ)) = 0. (3.4)

To this end, set U =
4− d̂

4 + d̂
− cosh(D) and V =

4

4 + d̂
− sinh(D)

D
. If we apply (3.4) to the unit

vector e1 = (1 0 0 0)t, then we get that U = V = 0. Hence, (3.4) makes sense if and only if

cosh(D) =
4− d̂

4 + d̂
and

sinh(D)

D
(η, τ) =

4

4 + d̂
(η̂, τ̂).

Consequently, we have Rη̂,τ̂ = eiα·νBη,τ .

Moreover, dividing
sinh(D)

D
by (1 + cosh(D)) we get that

(η̂, τ̂) =
sinh(D)

1 + cosh(D)

1

D/2
(η, τ).

Now, applying the elementary identity tanh(
θ

2
) =

sinh(θ)

1 + cosh(θ)
, for all θ ∈ C\{i(2k+1)π, k ∈

Z}. We conclude that

tanh(
√
−d/2)√

−d/2
(η, τ) = (η̂, τ̂), if d < 0,

and so, for d > 0 we apply the elementary identity −itanh(iθ) = tan(θ) for all θ ∈ C\{π(k+
1

2
), k ∈ Z}, then we get that

tanh(
√
−d/2)√

−d/2
=

tan(
√
d/2)√

d/2
.

Hence, we obtain that
tan(

√
d/2)√

d/2
(η, τ) = (η̂, τ̂) if d > 0 such that d ̸= (2k + 1)2π2. Conse-

quently, the equality eiα·νBη,τ = Rη̂,τ̂ is shown such that the following parameters verify:

• tanh(
√
−d/2)√

−d/2
(η, τ) = (η̂, τ̂), if d < 0,

• tan(
√
d/2)√

d/2
(η, τ) = (η̂, τ̂), if d > 0,

• (η, τ) = (η̂, τ̂), if d = 0.

(3.5)
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Moreover, the fact that
∫ ε

−ε
hε(t)dt = 1 (see, (2.2)) with the statement (3.3) make it possible to

write

exp

[(
− i

∫ 0

−ε

hε(t) dt
)
(α · νBη,τ )

]
tΣψ+ = exp

[(
i

∫ ε

0

hε(t) dt
)
(α · νBη,τ )

]
tΣψ−. (3.6)

• Construction of the family {ψε}ε∈(0,γ). For all 0 < ε < γ, we define the function Hε :
R \ {0} → R such that

Hε(p) :=



∫ ε

p

hε(t) dt, if 0 < p < ε,

−
∫ p

−ε

hε(t) dt, if − ε < p < 0,

0, if |p| ≥ ε.

(3.7)

Clearly, Hε ∈ L∞(R) and supported in (−ε, ε). The fact that ||Hε||L∞ ≤ ||h||L1 , we get
{Hε}ε is bounded uniformly in ε. For all ε ∈ (0, γ), the restrictions of Hε to R± are uniformly
continuous, so finite limits at p = 0 exist, and differentiable a.e., with derivative being bounded,
since hε ∈ L∞(R,R). Using these function, we set the matrix functions Uε : R3 \ Σ → C4×4

such that

Uε(x) :=

{
e(iα·ν)Bη,τHε(P⊥(x)), if x ∈ Σε \ Σ,
I4, if x ∈ R3 \ Σε,

∈ L∞(R3,C4×4), (3.8)

where the mappings P⊥ is defined as in (2.10). As the functions Uε are bounded, uniformly
in ε, and uniformly continuous in Ω±, with a jump discontinuity across Σ, then ∀xΣ ∈ Σ and
y± ∈ Ω±, we get

Uε(x
−
Σ) := lim

y−→xΣ

Uε(y−) = exp
[
i
(∫ ε

0

hε(t) dt
)
(α · ν(xΣ))Bη,τ

]
,

Uε(x
+
Σ) := lim

y+→xΣ

Uε(y+) = exp
[
− i
(∫ 0

−ε

hε(t) dt
)
(α · ν(xΣ))Bη,τ

]
.

(3.9)

Thus, we construct ψε by ψε = ψε,+ ⊕ ψε,− := Uεψ ∈ L2(R3)4.

Since Uε are bounded, uniformly in ε, using the construction of ψε we get that ψε−ψ := (Uε−
I4)ψ. Then, by the dominated convergence theorem and the fact that supp (Uε − I4) ⊂ |Σε|
with |Σε| → 0 as ε→ 0, it is easy to show that

ψε −−→
ε→0

ψ in L2(R3)4. (3.10)

This achieves assertion (a).

• Show that ψε ∈ dom(E η,τ,ε) = H1(R3)4. This means that we must show, for all
0 < ε < γ,

(i)ψε,± ∈ H1(Ω±)
4 and (ii) tΣψε,+ = tΣψε,− ∈ H1/2(Σ)4.

Let us show point (i). By construction of ψε, we have ψε ∈ L2(R3)4. It remains to have
∂jUε ∈ L2(R3)4, for j = 1, 2, 3. To do so, recall the parametrization ϕ : U → Σ ⊂ R3 of Σ
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defined at the beginning of part (2.1) and letA a 4×4 matrix such thatA(s) := iα·ν(ϕ(s))Bη,τ ,
for s = (s1, s2) ∈ U ⊂ R2. Thus, the matrix functions Uε in (3.8) can be written

Uε(x) =

{
eA(Pϕ(x))Hε(P⊥(x)), if x ∈ Σε \ Σ,
I4, if x ∈ R3 \ Σε,

∈ L∞(R3,C4×4), (3.11)

where Pϕ is defined as in (2.10).

For j = 1, 2, 3, supp ∂jUε ⊂ Σε. Furthermore, it was mentioned in [18, Eq.(4.1)] that for
all x ∈ Σε \ Σ, ∂jUε can be written as follows

∂jUε(x) =

∫ 1

0

[
exp
(
zA(Pϕ(x))Hε(P⊥(x))

)
∂j

(
A(Pϕ(x))Hε(P⊥(x))

)
×

exp
(
(1− z)A(Pϕ(x))Hε(P⊥(x))

)]
dz.

(3.12)

Let x = ϕ(s) + pν(ϕ(s)) ∈ Σγ, and recall the definition of the mappings Pϕ(x) and P⊥(x)
introduced in (2.10). Based on the quantities (2.11) (with s = Pϕ(x) and p = P⊥(x)), we get
that

∂j

(
A(Pϕ(x))Hε(P⊥(x))

)
= ∂sA(s)(1− pW (s))−1(tϕ(s))jHε(p)− A(s)hε(p)(νϕ(s))j.

(3.13)

Therefore, ∂jUε has the following form

∂jUε(x) = −A(s)hε(p)(νϕ(s))jUε(x)

+

∫ 1

0

ezA(s)Hε(p)
[
∂sA(s)(1− pW (s))−1(tϕ(s))jHε(p)

]
e(1−z)A(s)Hε(p) dz.

(3.14)

Set by Eε,j the second term of the right part of equality (3.14), i.e.,

Eε,j =

∫ 1

0

ezA(s)Hε(p)
[
∂sA(s)(1− pW (s))−1(tϕ(s))jHε(p)

]
e(1−z)A(s)Hε(p) dz. (3.15)

Then, thanks to the third property of the Proposition 2.1 verified by the Weingarten map, the
matrix-valued functions Eε,j are bounded, uniformly for 0 < ε < γ, and suppEε,j ⊂ Σε.
Moreover, we have Uε and ∂jUε ∈ L∞(Ω±,C4×4). Hence, for all ψ± ∈ H1(Ω±)

4 we have that
ψε,± = Uεψ± ∈ H1(Ω±)

4 and statement (i) is proved.

Now, we show point (ii). As ψε,± ∈ H1(Ω±)
4, we get that tΣψε,± ∈ H1/2(Σ)4. On the other

hand, it have been showed in [11, Chapter 4 (p.133)], for a.e., xΣ ∈ Σ and r > 0, that

tΣψε,±(xΣ) = lim
r→0

1

|B(xΣ, r)|

∫
Ω±∩B(xΣ,r)

ψε(y) dy = lim
r→0

1

|B(xΣ, r)|

∫
Ω±∩B(xΣ,r)

Uε(y)ψ(y) dy,

and so, similarly,

Uε(x
±
Σ)tΣψ±(xΣ) = lim

r→0

1

|B(xΣ, r)|

∫
Ω±∩B(xΣ,r)

Uε(x
±
Σ)ψ(y) dy.

As Uε is continuous in Ω±, we get tΣψε,±(xΣ) = Uε(x
±
Σ)tΣψ±(xΣ). Consequently, (3.6) with

(3.9) give us that tΣψε,+ = tΣψε,− ∈ H1/2(Σ)4. With this, (ii) is valid and ψε ∈ dom(Eη,τ,ε).
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To complete the proof of Theorem 2.1, it remains to show the property (b), mentioned in (3.1).
Since (Eη,τ,εψε −Dη̂,τ̂ψ) belongs to L2(R3)4, it suffices to prove the following:

Eη,τ,εψε,± −Dη̂,τ̂ψ± −−→
ε→0

0 in L2(Ω±)
4. (3.16)

To do this, let ψ ≡ ψ+ ⊕ ψ− ∈ dom(Dη̂,τ̂ ) and ψε ≡ ψε,+ ⊕ ψε,− ∈ dom(Eη,τ,ε). We have

Eη,τ,εψε,± −Dη̂,τ̂ψ± = −iα · ∇ψε,± +mβψε,± + Vη,τ,εψε,± + iα · ∇ψ± −mβψ±

= −iα · ∇(Uεψ±) + iα · ∇ψ± +mβ(Uε − I4)ψ± + Vη,τ,εψε,±

= −i
3∑

j=1

αj

[
(∂jUε)ψ± + (Uε − I4)∂jψ±

]
+mβ(Uε − I4)ψ± + Vη,τ,εψε,±.

(3.17)
Using the form of ∂jUε given in (3.14), the quantity −i

∑3
j=1 αj(∂jUε)ψ± yields

−i
3∑

j=1

αj(∂jUε)ψ± = −i
3∑

j=1

αj

[
− iα · νVη,τ,ενjUεψ± + Eε,jψ±

]
= −(α · ν)2Vη,τ,εψε,± − i

3∑
j=1

αjEε,jψ±

= −Vη,τ,εψε,± + Rεψ±,

where Eε,j is given in (3.15) and Rε = −i
∑3

j=1 αjEε,j, a matrix-valued functions inL∞(R3,C4×4),
verifies the same property of Eε,j given in (3.15), for ε ∈ (0, γ). Thus, (3.17) becomes

Eη,τ,εψε,± −Dη̂,τ̂ψ± = −i
3∑

j=1

αj

[
(Uε − I4)∂jψ±

]
+mβ(Uε − I4)ψ± + Rεψ.

Since ψ± ∈ H1(Ω±)
4, (Uε − I4) and Rε are bounded, uniformly in ε ∈ (0, γ) and supported in

Σε, and |Σε| tends to 0 as ε→ 0. By the dominated convergence theorem, we conclude that

Eη,τ,εψε,± −Dη̂,τ̂ψ± −−→
ε→0

0, holds in L2(Ω±)
4, (3.18)

and this achieves the assertion (3.16).

Thus, the two conditions mentioned in (3.1) (i.e., (a) and (b)) of the convergence in the strong
graph limit sense are proved (see, (3.10) and (3.18)). Also, note that the latter remains stable
with respect to bounded symmetric perturbations (in our case mβ(Uε − I4) with m > 0, so we
can assume m = 0). Hence, the family {Eε}ε∈(0,γ) converges in the strong resolvent sense to
Dη̂,τ̂ as ε→ 0. The proof of the Theorem 2.1 is complete. □
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