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Optimal Energy Tank Initialization for Minimum Sensitivity to Model
Uncertainties

Andrea Pupa1, Paolo Robuffo Giordano2, Cristian Secchi1

Abstract— Energy tanks have gained popularity inside the
robotics and control communities over the last years, since
they represent a formidable tool to enforce passivity (and, thus,
input/output stability) of a controlled robot, possibly interacting
with uncertain environments. One weak point of passification
strategies based on energy tanks concerns, however, their
initialization. Indeed, a too large initial energy can cause
practical unstable behaviors, while a too low initial energy level
can prevent the correct execution of the task. This shortcoming
becomes even more relevant in presence of uncertainties in the
robot model and/or environment, since it may be hard to predict
in advance the correct (safe) amount of initial tank energy for
a successful task execution. In this paper we then propose a
new strategy for addressing this issue. The recent notion of
closed-loop state sensitivity is exploited to derive precise bounds
(tubes) on the tank energy behavior by assuming parametric
uncertainty in the robot model. These tubes are then exploited
in a novel nonlinear optimization problem aiming at finding
both the best trajectory and the minimal initial tank energy
that allow executing a positioning task for any value of the
uncertain parameters in a given range. The approach is finally
validated via a statistical analysis in simulation and experiments
on real robot hardware.

I. INTRODUCTION

Passivity-based control (PBC) has gained large attention
over the past years, especially in the robotics field. One of
the main reasons behind this great success are related to the
physical interpretability of PBC and to its modularity. Indeed,
the controller and the robotic system are usually equivalent
to a physical system. This is the case of the well-known
mass-spring-damper in impedance/admittance control [1], or
distributed mass-spring system in communication channels
[2]. Thanks to these characteristics, the resulting behavior of
the system is easier to understand and the implementation is
more intuitive. Moreover, coupling a passive system with
another passive system leads to a coupled system that is
still passive, making passivity-based control really modular.
Passivity is a significant property since a passive system is
not only simply stable, but passivity is a necessary and suf-
ficient condition for achieving robust stability [3]. Passivity-
based control has been exploited in many robotic fields, such
as collaborative robotics [4], bilateral teleoperation [5], and
multi-robot system [6].

However, traditional passivity-based control may lack flex-
ibility. By selecting a specific passive dynamics, indeed,
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the behaviour of the system may be limited and too much
constrained. For example, in human-robot collaboration tasks
impedance adaptation is crucial to achieve a good interaction
[7]. Likewise, in teleoperation scenarios it may be necessary
to change the stiffness of the coupling when the environment
changes [8]. Lastly, in case of multi-robot system, it may
be necessary that some of the agents implement a reactive
behaviour which cannot be guaranteed by a fixed coupling
[9].

In all these (and similar) examples, energy tanks [10] have
been introduced for decoupling passivity-based control from
the specific dynamics of the system. Energy tanks are virtual
elements that can store the energy naturally dissipated by the
system. This energy can then be reused for, e.g., implement-
ing a desired behavior in a (guaranteed) passive way. The
main advantage of energy tanks is their intrinsic flexibility,
which can allow to easily enforce passivity and, therefore,
robust stability for virtually any task and robot/environment
of interest.

One of the main open points in the use of energy tanks is
related to their initialization. In fact, even if formally passive,
a system passified via an energy tank can still have practical
unstable behaviors if the initial tank energy is too high [6].
On the other hand, if the tank is initially not loaded with
sufficient energy, the system may not be able to perform
the desired task. In [11], [12] the authors introduced the
concept of Task-energy, which is the energy required for
realizing a force tracking task. By exploiting this method it
is then possible to estimate in a non-heuristic way the initial
energy for the tank. In [13] the concept of frozen energy is
introduced as an extra-energy reservoir to be released into
the tank when necessary for completing the task. In [14],
the tank is initialized with a high amount of energy and
a strategy for incrementally making some energy available
based on and online estimation of the task to be executed is
proposed.

These approaches, however, are not robust to uncertainties
in the robot/environment, in particular in their parameters
such as mass, friction, stiffness and so forth. Therefore,
if the real model parameters differ from the nominal ones
used to estimate the task-energy, the tank may still deplete
(or alternatively one would need to overestimate the initial
tank energy, therefore defeating the purpose of a principled
initialization).

Explicitly considering the role of model uncertainties
in planning/control design is of paramount importance in
robotics. A lot of work has been done in the past literature
to address and overcome uncertainties of the robot model
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and/or the environment. A possible approach is to estimate
online the uncertain parameters for adjusting the control
action during the task execution [15]. However, parameter
estimation often requires some form of ‘persistency of ex-
citation’ in the robot trajectories, which may not always be
practical or attainable for the task at hand. Furthermore, on-
line parameter estimation may lead to undesired behaviours
such as erratic/unpredictable transients. Another popular
possibility is to instead generate feedforward (planned) tra-
jectories for minimizing the effects of uncertainties [16]–
[20]. These works are, however, often either limited to the
open-loop cases (without taking into account the controller),
or require a very specific control design (which may not
always be desirable, computationally feasible or even at-
tainable for non-trivial systems). An alternative approach
has been recently developed in [21]–[24] by introducing
and exploiting the notion of closed-loop state sensitivity for
a robot/controller pair: in short, for any robot/environment
model and control strategy, it is possible to compute the so-
called state sensitivity matrix Π that relates how variations in
the model parameters affect the robot states in closed-loop.
Furthermore, by assuming known ranges for the (otherwise
unknown) uncertain parameters, it is also possible to exploit
Π for evaluating the tubes of perturbed states/inputs along a
future trajectory [23]. These quantities can then be leveraged
for producing motion plans that are intrinsically minimally
sensitive to parametric uncertain, and with a robust and guar-
anteed satisfaction of constraints such as limited actuation or
obstacle avoidance, see [23], [24] for some examples.

Inspired by this line of works, the aim of this paper is to
explicitly consider presence of parametric uncertainties in the
robot/environment model during an interaction task passified
by an energy tank, and to then study how the sensitivity
machinery can be exploited for finding a suitable initial-
ization of the tank energy (despite the model uncertainty).
Summarizing, the main contribution of this work are:

• The definition of the closed-loop sensitivity of the
energy tanks;

• The definition of a new optimization problem that
exploits the sensitivity for optimally initializing the
energy tank, i.e., choosing the lowest initial tank energy
that still ensures realization of the task in presence of
model uncertainties;

• A comprehensive validation of the proposed approach,
both in simulation and in a real scenario.

The paper is organized as follow: in Sec. II the problem
related to the initialization in presence of uncertainties is
detailed, while Sec. III provides the main background related
to the sensitivity. In Sec. IV, instead, the sensitivity notions
are applied to the energy tanks and the sensitivity of the tank
state is derived. This concept is exploited in Sec. V to build
an optimization problem that allows to initialize the tank in
an optimal way. Lastly, in Sec. VI, an extensive validation
carried out both in simulation and in a real scenario is
provided, while future works are addressed in Sec. VII.

II. PROBLEM STATEMENT

Consider a fully-actuated gravity compensated robotic
system modeled in the task space by the following Eu-
ler–Lagrange equation:

M(x)ẍ+C(x, ẋ)ẋ+D(x)ẋ = u+ Fe, (1)

where x, ẋ, ẍ ∈ Rnx are the pose, the velocity and the accel-
eration of the robot, respectively. M(x),D(x) ∈ Rnx×Rnx

and the positive definite inertia matrix and the positive
semidefinite damping matrix respectively. C(x, ẋ), instead,
represents the Coriolis terms.Finally u ∈ Rnx , Fe,∈ Rnx are
the control input and the external force due to the interaction
with the environment and y = ẋ,∈ Rnx is the output of
the system. As well known, see e.g. [25], (1) is passive
with respect to the pair (u+Fe,y) using the kinetic energy
K(t) = 1

2 ẋ
TM(x)ẋ as a storage function.

Consider the task of generating a desired reference tra-
jectory xd(t) ∈ Rnx , with t ∈

[
ti, tf

]
that takes (1) from

an initial configuration x(ti) to a final configuration x(tf )
and consider any desired controller that generates a control
input ud(t) such that e(t) = xd(t)−x(t) → 0 with a desired
transient in case of free motion, i.e. Fe = 0. If the controlled
system is passive, then it is robustly stable [3], [6] and it
would not be destabilized in case of interaction with the
enrvironment, i.e. Fe ̸= 0. Trajectory tracking controllers do
not ensure a passive behavior by design, but passivity can
be implemented using energy tanks [10].

Energy tanks are virtual energy storing elements that can
exchange energy through their input/output port and they are
represented by {

ẋt = ut,

yt =
∂T
∂xt

= xt,
(2)

where xt ∈ R is the state of the tank and (ut, yt) ∈ R × R
is the power port of the tank. The energy stored in the tank
is given by

T =
1

2
x2
t . (3)

and, by combining (2) with (3) it is straightforward to show
that the tank can store/release the energy through its power
port:

Ṫ = utyt. (4)

Energy tanks can be interposed between the plant (1) and
the controller in order to ensure passivity, as shown in Fig. 1
(see, e.g., [6] for more details).

Exploiting the output y of the system and any other mea-
surable signal, the controller generates the desired control
input ud that is exploited for modulating the interconnection
between the tank and (1). The energy tank is joined to (1)
as follows: u = wyt,

ut = −wTy +
D

xt
,

(5)

where w = ud

yt
= ud

xt
, with ud the desired input of the

system, and D = ẋTD(x)ẋ is the amount of energy
dissipated by the system. Using (5), the energy tank stores
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Fig. 1: Control scheme

the energy dissipated by (1) and, through the modulation
gain w, exploits the stored energy for reproducing (in a
passive way) the desired input as long as sufficient energy is
present in the tank. In order to avoid singularity problems it
is necessary to initialize the tank with enough initial energy
and to prevent depletion of the stored energy over time. This
can be achieved by initializing the tank with a non-zero initial
value, i.e. xt(ti) ̸= 0, and by introducing a modular function
σ(t) such that:

σ(t) =

{
1 if T (t) > ε,

0 otherwise,
(6)

where ε is a design lower threshold.
By plugging (6) in (5) it is possible to obtain the modu-

lated power port:{
u = σwyt,

ut = −σwTy + D
xt
,

(7)

As shown in [6], the control scheme in Fig. 1 is passive
with respect to the pair (Fe,y) using the storage function
K(t) + T (t), independently of the value of ud. The desired
input generated by the controller can be implemented only if
sufficient energy in the tank is available and, consequently,
possibility of tracking a trajectory in t ∈

[
ti, tf

]
depends on

the amount of energy stored in the tank.
Initializing the energy tank with a very large amount of

energy would easily solve the problem and would lead to
a theoretically passive but practically unstable behavior [6].
The approaches available in the literature for initializing the
tank consider a specific set of parameters characterizing the
system and the controller and, therefore, its robustness and
practical usability are not optimal. Furthermore, uncertainties
in the robot/environment model are also not explicitly con-
sidered, therefore further reducing the usability in many real
scenarios. The aim of this work is therefore to propose an
integrated and novel optimization problem such that, for any
desired controller/task and by explicitly considering presence
of parametric uncertainties for the robot/environment models,
achieves the following goals:

• generation of an optimized trajectory xd(t) for the
chosen robot/controller pair guaranteed to realize the
task without depletion of the tank energy for any value
of the uncertain parameters in a given range;

• ‘optimal’ initialization of the tank energy, i.e., the
smallest possible initial energy that ensures a correct
task execution despite the uncertain parameters.

III. SUMMARY OF STATE SENSITIVITY NOTIONS

Consider a generic robot/environment model

q̇ = f(q,u,p), (8)

where q ∈ Rnq represents the robot state, u ∈ Rnu is
the control input, and p ∈ Rnp represents the (possibly
uncertain) robot/environment parameters. For instance in
manipulation and interaction tasks one may consider uncer-
tainties in the mass or inertial properties of the manipulated
object, in the stiffness/friction parameters of the environment,
and so forth.

In the context of tracking tasks, let us consider an output
function y(q) ∈ Rny (e.g., the manipulator pose) that needs
to follow a desired reference trajectory yd(t) ∈ Rny , and
an associated trajectory tracking controller with the generic
form {

ξ̇ = g(ξ, q,yd(t),pc,kc, t),

u = h(ξ, q,yd(t),pc,kc, t),
(9)

where ξ ∈ Rξ are the internal states of the controller (e.g. an
integral action), pc ∈ Rnp are the nominal model parameters,
i.e., the nominal value of p used by the controller that may
differ from the real p, and kc ∈ Rkc are the controller gains.

For the closed-loop system (8–9) it is possible to define
the so-called state sensitivity matrix

Π(t) =
∂q(t)

∂p

∣∣∣
p=pc

∈ Rnq×np , (10)

and input sensitivity matrix

Θ(t) =
∂u(t)

∂p

∣∣∣
p=pc

∈ Rnu×np , (11)

which quantify how variations in the parameters p (w.r.t. the
nominal pc) affect the states and inputs during motion. A
closed-form expression for Π(t) and Θ(t) is not available
in the general case, but in [21], [23] it is shown how these
quantities can be easily obtained by forward integrating the
following system of differential equations

Π̇(t) = ∂f
∂qΠ+ ∂f

∂uΘ+ ∂f
∂p , Π(ti) = 0,

Π̇ξ(t) =
∂g
∂qΠ+ ∂g

∂ξΠξ, Πξ(ti) = 0,

Θ(t) = ∂h
∂qΠ+ ∂h

∂ξΠξ,

(12)

where Πξ ∈ Rξ×np is the sensitivity of the controller states.
Matrices Π(t) and Θ(t) can be used for several pur-

poses such as optimization of the reference trajectory yd(t)
for producing minimally sensitive motion plans (by mini-
mizing some combined norm of Π(t) and Θ(t) as done
in [21], [22]). An extension has also been recently proposed
in [23] for evaluating the tubes (or ellipsoids) of uncertain
states/inputs. Assume that each parameter pi can vary in a
given range δpi centered at a nominal pci

pi ∈ [pci − δpi, pci + δpi] (13)



and define the diagonal weight matrix W = diag(δp2i ).
Letting ∆p = p − pc, an ellipsoid in parameter space
centered at pc and with semi-axes δpi has equation

∆pTW−1∆p = 1 (14)

and, as discussed in [23], one can obtain the corresponding
ellipsoids in state space

∆qT (ΠWΠT )−1∆q = 1 (15)

and in input space

∆uT (ΘWΘT )−1∆u = 1. (16)

Here ∆q stands for ∆q = q − qnom where qnom is the
state evolution of (8–9) in the unperturbed case p = pc, and
analogously for ∆u = u− unom.

The state and input space ellipsoids can be used for
different purposes. In particular, in the context of this work,
one can exploit (15–16) for obtaining the tubes of perturbed
trajectories for the individual components of the states and
the inputs. By again referring to [23] for all details, for each
direction of interest in the state space one can obtain the
‘tube radius’ ri(t) such that

qnom,i(t)− ri(t) ≤ qi(t) ≤ qnom,i(t) + ri(t). (17)

where, as usual, qnom,i(t) is the behavior of the state qi(t)
in the unperturbed case p = pc. Equation (17) bounds
from above/below the envelope of perturbed states when
the parameter uncertainty is bounded as in (13), and an
analogous upper/lower bound can also be obtained for the
inputs components ui(t).

IV. SENSITIVITY OF ENERGY TANKS

Exploiting the sensitivity framework detailed in Sec. III, it
is interesting to analyze how uncertainties in the parameters
p would affect the state of the tank. However, the sensitivity
framework is based on the assumption that all the equations
involved in the control are continuous and differentiable,
which is not the case for the standard tank modulation (6).
Therefore, in this paper a new modulation function is intro-
duced:

σ =
1

2
+

1

2
tanh

(
6
εT − ε2

6

)
, (18)

where the step function is approximated with a sigmoid
function.

At this point, it is possible to define the tank sensitivity
as:

Πxt
(t) =

∂xt(t)

∂p

∣∣∣
p=pc

∈ R1×np , (19)

which represents how sensitive the state of the tank is w.r.t.
the variations of the parameters around pc. To improve the
overall behavior of the system, it is possible to analyze how
the uncertainties in the parameters affect the state of the tank
in order to avoid its depletion, i.e. the output of the tank u

will be equal to the desired controller output ud. Following
analogous derivations as in (12), one obtains

Π̇xt(t) =
Πxt

x2
t

(σyTud −D) +
1

xt

∂D

∂x
Πy+

− 1

xt
(σuT

d Πy + yTΘ), Πxt
(ti) = 0,

(20)

where Πy is the row-block of matrix Π associated to the
sensitivity of the system output (the system velocity in our
case).

Equation (20) allows to analyze the behaviour of the tank
from a different perspective, i.e., from the variations of the
parameters. First of all, it is possible to note that also the
tank sensitivity suffers singularities at xt = 0. Thus, the
lower bound of the tank ε affects the sensitivity of the tank,
i.e. small values of ε would make the tank more sensitive
to the variation of the parameters. However, as demonstrated
in [11], it is possible to choose ε at will, since it is only
necessary that the initial difference T (ti) − ε is enough to
execute the task. Secondly, it is possible to note that when the
system dissipates a large amount of energy D the sensitivity
Πxt decreases, i.e. when the i-th component of Πxt is
positive the damping D would reduce its value and when it
is negative the damping would increase its value. Intuitively,
this means that in the presence of an high dissipation, the
state of the tank is more robust to the variations of the
parameters. However, the variation of the damping w.r.t. to
the state x may still “negatively” affect the robustness of the
tank, since it depends on the sign of Πy and ∂D

∂x . It is worth
underlining that the amount of energy injected in the tank D
is defined by construction of (7). Thus it is possible to have
∂D
∂x = 0.

As already done for the other sensitivity matrices in
Sec. III, it is possible to build the kernel matrix of the
ellipsoid for the tank state:

KΠxt
= Πxt

WΠT
xt
, (21)

which in our case is simply a scalar. The radius rxt
(t) of

the tube around the tank state is then:

rxt
(t) =

√
KΠxt

, (22)

which leads to the following tube for the tank state in
presence of parametric uncertainties:

xt,c(t)− rxt
(t) ≤ xt(t) ≤ xt,c(t) + rxt

(t), (23)

where xt,c is, as usual, the evolution of the tank state when
p = pc.

V. OPTIMIZATION PROBLEM

We now show how the tank sensitivity introduced in Sec.
IV can be exploited for optimization purposes. The main goal
is to ensure that, even in presence of parametric uncertainty,
the system will be able to execute the task and the tank will
never deplete. This can be mathematically expressed by the
following inequality:

T (t) > ε. (24)



The tank sensitivity Πxt
, however, refers to the internal state

of the energy tank and not to actual stored energy. To this
aim, it is possible to express the inequality (24) as function
of xt:

xt >
√
2ε, (25)

where only the solution xt > 0 is admitted. Considering
also the uncertainty tube in (23) it is possible to find a lower
bound for the tank state:

xt,c − rxt
>

√
2ε. (26)

Starting from the constraint (26), it is then possible to
define which is the optimal initial tank state xt(ti), i.e. the
lowest initial energy, and the best trajectory xd(t) such that
the system will be able to perform the task with the desired
controller and the energy tank will not deplete for any value
of the uncertain parameters in the assumed range of variation.
This can be obtained by solving the following optimization
problem:

min
a,xt(ti)

1

2
xt(ti)

2

s.t. Aeqa = beq

xt,c(t)− rxt(t) >
√
2ε ∀t ∈

[
ti, tf

]
,

xt,c(t) + rxt(t) <
√
2Tmax ∀t ∈

[
ti, tf

]
,

(27)

where a ∈ Rna is a vector of parameters for shaping
the desired trajectory xd(a, t) (e.g. the coefficients of a
polynomial trajectory), beq ∈ Rnb is the vector of the
boundary conditions while Aeq ∈ Rnb×na is the matrix that
allows matching these conditions.

The first constraint guarantees that the optimized trajectory
is compliant with the desired boundary conditions, e.g.,
initial/final position, velocity and acceleration. The second
constraint ensures that the tank will not deplete despite the
parametric uncertainty. The third constraint is used to ensure
that the energy inside the tank will not exceed an admissible
threshold Tmax. By imposing this threshold, it is possible to
guarantee that the behavior of the robot will remains stable
also in practical cases.

As already mentioned in [21], the concept of sensitivity
and the uncertainty tubes may also be exploited to find
a trajectory that ensures the maximum robustness to the
variations of p. Thus, if necessary, the cost function of
the optimization problem in (27) may also be modified as
follows:

• 1
2∥Πxt

(tf )∥2 for reducing the sensitivity at the end of
the trajectory.

• 1
2

∫ tf
ti

∥Πxt
(τ)∥2dτ for reducing the sensitivity along

the whole trajectory.
Of course, one could also consider optimization of the
sensitivity of the states and/or inputs as done in [21], [22]. It
is worth noting that choosing to reduce sensitivity along the
entire trajectory would bring xt(ti) closer to the upper bound√
2Tmax. This is because, as seen in (20), a high value of

xt reduces the sensitivity.

VI. VALIDATION

The proposed strategy has been validated both in a simu-
lated environment and via real experiments. In the simulated
environment, a 2 DoFs omnidirectional robot has been con-
sidered, and in the real experiments this has been translated
in a UR10e pushing a mass over a table. Indeed, this task
is a representative scenario in the context of automated
warehouses. In fact, when the robot is unable to lift some
package, e.g. because it is too heavy or there is not enough
space, the package has to be pushed to the desired position.
Thus, in the case of a collaborative robot, i.e. a robot that
works in close contact with the human operator, the passivity
of the system is necessary to ensure safety in the work cell.
Therefore, the model of the system can be summarized as:

q̇ =


ẋ1

ẋ2

ẋ3

ẋ4

 =


x3

x4
u1−bx3

m
u2−bx4

m

 , (28)

where p = [m, b] is the vector of the considered uncertain
parameters (the mass and the sliding friction coefficient over
the floor). The chosen control action is a feedforward +
friction compensation + PD force controller:

ud =

(
mcẍ1d +KD

˙̃x1 +KP x̃1 + bcẋ1,

mcẍ2d +KD
˙̃x2 +KP x̃2 + bcẋ2,

)
, (29)

where x̃1 = x1d − x1 and x̃2 = x2d − x2 represent the
two errors in each direction, and mc and bc are the nominal
values for the parameters. The control action is provided as
input to the energy tank as defined in Sec. II:ẋt = − σ

xt
uT
d

(
ẋ1

ẋ2

)
+ bc−δb

xt

(
ẋ1 ẋ2

)(ẋ1

ẋ2

)
,

u = σud.

(30)

The energy dissipated by the system and injected in the tank
is not known a priori, and by using only the nominal value
bc could lead to a loss of passivity in case of an uncertain
b (the tank could store more energy than what is actually
dissipated). However, since the uncertainty of the friction
coefficient is known, it is possible to exploit it to ensure the
passivity, i.e. the energy dissipated by the system will be at

least equal to (bc − δb)
(
ẋ1 ẋ2

)(ẋ1

ẋ2

)
.

All the framework has been implemented and tested on
Matlab exploiting fmincon solver with an Intel Core i7-7700
and parallelizing the computation using the Matlab Parallel
Computing Toolbox. Regarding the real experiment, instead,
the robot is velocity controlled exploiting the Real-Time Data
Exchange library integrated into the ROS Melodic Morenia
meta-operating system at a frequency of 500 Hz.

A. Simulations

The overall procedure has been first validated in sim-
ulation, where it is possible to control all the parameters
and to inject random but known perturbations. The nominal
parameters are equal to mc = 2.0 Kg and bc = 2 kg

s , while



TABLE I

Variable Initial Final
x1 0 1
x2 0 2
ẋ1 0 0
ẋ2 0 0
ẍ1 0 0
ẍ2 0 0
t 0 1

Fig. 2: Evolution of the controller state in the perturbed cases. The red
dashed lines represent the tube around the controller state, while the green
dotted line represents the lower bound of the tank state. The colored lines,
instead, represent the evolution of the tank state for each perturbed case.

the uncertainty is δpi = 10%pci. The lower bound energ
has instead been chosen as ε = 3. This choice has been
done for two main reasons. The first one it is purely for
a computational point of view. Indeed, it has been experi-
mentally observed that lower values of ε introduce higher
nonlinearities, see (18), with a consequent increment of the
required optimization time. The second one is because, as
shown in (20), a small value of xt increments the sensitivity
of the tank and, since the main goal is to minimize xt,
choosing ε not close to 0 automatically helps to reduce the
sensitivity. Lastly, the initial condition and the desired final
condition given to the optimization problem are listed in
Tab.I.

In this simulated scenario, three case studies with different
cost functions have been carried out:

1) Minimize the initial energy: 1
2xt(ti)

2.
2) Minimize the sensitivity of the controller state at the

end: 1
2∥Πxt(tf )∥2.

3) Minimize the sensitivity of the controller state all over
the trajectory: 1

2

∫ tf
ti

∥Πxt(τ)∥2dτ
The results of the first simulation are shown in Figures

2 – 4. Figure 2 shows the evolution of the controller state
and demonstrates that, for every perturbation, the tank state
lies inside the tube as expected. This means that, thanks to
the proposed approach, even in the worst case the energy
tank does not deplete and u = ud, i.e. σ = 1. Figures 3
– 4, instead, show the same results for the position and the
velocity of the robot, respectively.

Focusing on the controller state, Fig. 5 shows the evolution
of the controller state for the other two simulations. It is
worth noting that in Fig. 5a the final tube size is smaller,
while in Fig. 5b the tube is reduced all over the path.
Regarding the initial tank state xt(ti), instead, it is higher
than the one in Fig. 2, since in these two cases it not
minimized and, from a sensitivity point of view, it is better

Fig. 3: Evolution of the system position in the perturbed cases. The red
dashed lines represent the tube around the controller state, while the colored
ones represent the evolution of the position for each perturbed case.

Fig. 4: Evolution of the system velocity in the perturbed cases. The red
dashed lines represent the tube around the controller state, while the colored
ones represent the evolution of the velocity for each perturbed case.

to have xt high, see equation (20).
Lastly, a comparison in the optimization time has been

performed. We generated random initial and final states and
found the optimal solution for all three cost functions. For all
the random comparisons, the final time tf has been set to 1.
This is because, in the optimization process, it is necessary
to integrate (12). Thus, different final times would affect the
required optimization time. The results are summarized in
Fig. 6, where it is possible to note that using 1

2xt(ti)
2 as

cost function required more time. This is due to the fact
that closely to the lower bound, the nonlinearity of σ takes
an important role. This also demonstrates why it has been
chosen ε = 3.

B. Experiment

The setup of the experiment is shown in Fig. 7. In order to
better capture the real scenario, the friction model has been



(a)

(b)

Fig. 5: Resulting evolution for random perturbations of the controller for
the second and third simulations.

Fig. 6: Comparison for the three cost functions.

changed from the viscous friction to the Coulumb friction:

Ffriction = µ ·m · g · sign
(
ẋ1

ẋ2

)
, (31)

where g is the gravity acceleration. The function sign() is
non differentiable in 0, but it can be approximated with a
sigmoid function. This leads to:

q̇ =


ẋ1

ẋ2

ẋ3

ẋ4

 =


x3

x4
u1−µ·m·g·tanh(25ẋ2)

m
u2−µ·m·g·tanh(25ẋ2)

m

 , (32)

where p = [m,µ]. The computation of the control action and
the tank state evolution are analogous to the previous case.

Fig. 7: Setup of the experiment: the UR010e robot with a custom tool that
allows pushing the mass and the ATI mini 45 F/T sensor.

TABLE II

Variable Initial Final
x1 x1,real x1,real + 0.15
x2 x2,real x2,real + 0.15
ẋ1 0 0
ẋ2 0 0
ẍ1 0 0
ẍ2 0 0
t 0 1.5

Fig. 8: Evolution of the controller state in the real experiment.

For the real scenario, the nominal parameters are equal to
mc = 2.04 Kg and µc = 0.15, while the uncertainties of
the mass and the friction coefficient are set to δm = 0.15 kg
and δµ = 0.042, respectively. The initial condition and the
desired final condition for the optimization problem are listed
in Table II.

Similarly to before, two experiments have been performed:

1) Nominal experiment, m = mc, considering the tube
around the tank state.

2) Perturbed experiment, m ̸= mc, considering the tube
around the tank state.

For both cases, the friction coefficient µ has been experimen-
tally estimated moving the mass at constant speed. However,
this estimation is subject to uncertainties in the measurement,
this is why it has been decided to not modify the friction
coefficient, e.g. changing the surface.

In both the first and the second experiments, the robot is

Fig. 9: Evolution of the system position in the real experiment.



Fig. 10: Evolution of the system velocity in the real experiment.

capable of moving the mass along the planned path. Figure 8
shows that, thanks to the optimization problem, the tank state
always lies inside the tube. This means that the controller is
always able to implement the desired action. Figures 9 and
10, instead, demonstrate that also the evolution of the state
remains confined in the tube.

VII. CONCLUSIONS AND FUTURE WORKS

In this work a new method for initializing the energy
tank while being robust to uncertainties in robot/environment
model parameters has been proposed. The strategy relies on
the concept of closed-loop state sensitivity to build tubes
that envelope all the possible deviations of the tank state
w.r.t. its nominal evolution for a given range of parametric
uncertainty. This machinery is used as a starting point to
formulate a nonlinear optimization problem that allows to
compute both the best trajectory for the robot and the lowest
initial tank energy such that the system will implement
exactly the desired behaviour without depleting the tank
energy for any value of the uncertain parameters.

Future works will focus on a more complex experimental
validation, e.g., focusing on the uncertainties of the dynamic
modeling of a robotic manipulator, or in the grasping pose.
Furthermore, the overall approach may be extended and
generalized for all the Port-Hamiltonian systems and not only
the case of energy tanks. Lastly, it may be interesting to
analyze the robustness of the approach in the presence of
external inputs, e.g. an operator interacting with the robot.
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