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Multi-Robot Active Sensing for Bearing Formations

Nicola De Carli, Paolo Salaris, Paolo Robuffo Giordano

Abstract— This paper proposes a novel distributed active
sensing control strategy for formations of drones measuring
relative bearings. To be able to localize their relative positions
from bearing measurements, the drone formation must satisfy
specific Persistency of Excitation (PE) conditions. We propose a
solution that can meet these PE conditions by maximizing the
information collected from onboard cameras via a distributed
gradient-based algorithm. Additionally, we also consider pres-
ence of a (concurrent) position-based formation control task
using Quadratic Program-based control with Control Lyapunov
Functions (CLFs). The results show that the inclusion of active
sensing in the formation control law significantly enhances the
localization accuracy and, as a consequence, the precision of
reaching the desired formation. The improvement is especially
important when the underlying graphs are not Infinitesimally
Bearing Rigid (IBR), as it can be expected.

I. INTRODUCTION

Cooperative localization from relative sensing is a well-
established topic in the multi-robot community with numerous
contributions focusing on localization under various robot
settings and estimation schemes. [1]-[5]. One specific area of
interest is cooperative localization from bearing measurements
[2]-[5], primarily due to the ease of retrieving relative
bearings using onboard cameras. Much of the previous
work in this domain has been built around the notion of
Infinitesimal Bearing Rigidity (IBR) [2], [3]. IBR characterizes
the conditions, primarily related to graph topology, under
which a group of drones measuring constant relative bearings
can localize themselves up to a global translation and scaling
factor. In case of constant bearings, to resolve the scale
ambiguity, a distance measurement among a pair of robots is
necessary.

Maintaining formation rigidity can be, however, quite
restrictive in terms of motion flexibility, especially when
the presence of edges among robots depends on sensing
constraints such as limited range, occlusions, and limited field
of view (FoV). Recently, in [5], [6] the notion of Bearing
Persistently Exciting (BPE) formations has been introduced,
where at least a subset of the relative bearings is time-varying.
By leveraging the concept of PE, this allows resolving the
scale ambiguity and to relax the IBR assumption. A distributed
observer is also proposed with Uniform Exponential (UE)
convergence under the condition of the formation being BPE.

However, there remains the problem of how to ensure
the BPE of the formation. Although a coordinated rotation
was proposed as a reference trajectory satisfying the BPE
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condition [5], this strategy may not be desirable in practical
applications where more generic motions are needed. An
alternative approach proposed in this work is to instead make
use of an active sensing strategy that enables the optimization
of robot motion for gathering informative measurements about
the system state [7]-[9]. This can be exploited for producing
a group motion that can (i) actively satisfy the necessary
BPE conditions and (i¢) be generic enough for fulfilling at
the same time other tasks of interest related to the particular
mission.

In the past, active sensing has been applied to the
cooperative localization problem, e.g., in [10]-[12]. where
distance measurements together with rigidity and the presence
of multiple anchors (i.e. robots knowing their poses) was
assumed. An active sensing strategy was then used to steer
the formation towards the best geometry from the localization
point of view, without considering any PE condition. In
[13], the authors considered the active information gathering
for ensuring observability of a multi-robot system with two
anchors and range measurements. In our previous work
[14], we considered a formation with relative distance
measurements, and we maximized the observability of the
system over a future prediction horizon. The proposed method
could be made distributed but at the cost of being suboptimal
w.r.t. the centralized one and computationally heavy. In [15],
an active sensing strategy to estimate the scale of an IBR
formation was proposed. In this strategy, an information
measure was assigned to each edge, and the objective was
to maximize the minimum information among these edges.
Most of the previous works mainly consider relative distance
measurements instead of bearings, which are instead quite
interesting from an application point of view (since they
can be easily retrieved from onboard cameras). Some of
these previous works also solely focus on optimizing the
geometric arrangement of the group instead of the robots
trajectories. In addition, the assumption of rigid formations
is also often exploited (which, as explained, can be quite
restrictive in terms of group mobility when considering
sensing constraints).

In this paper, we propose a gradient-based control law
that can address the above shortcomings. We consider maxi-
mization of the group observability by optimizing a global
information measure: the derivative of the minimum nonzero
eigenvalue of the weighted Observability Gramian (OG).
This approach is simpler and computationally cheaper than
receding horizon strategies and it allows maximizing a global
quantity in a distributed way. Additionally, we address the
coupling of the active cooperative localization strategy with
presence of an independent primary task (formation control)
whose performance is however enhanced by the active sensing



action. This is obtained by leveraging distributed Quadratic
Programming (QP)-based Control Lyapunov Functions (CLFs)
[16]. The combination of active sensing and CLFs has
previously been successfully applied to single robot scenarios
employing a receding horizon strategy [9]. We believe that
the approach we propose is a promising direction as it allows
to achieve cooperative tasks while optimizing the trajectories
to enhance the observability of the formation.

The rest of the paper is organized as follows: Section II
introduces the main modeling assumptions and the employed
observer. Section III presents a gradient-based active sensing
controller. Section IV outlines a strategy to integrate active
sensing into a position-based formation control task, accom-
modating not necessarily bearing rigid formations. Section V
presents statistical results on various graph topologies, and
finally, Sect. VI concludes the paper.

II. MULTI-ROBOT SYSTEM MODEL
A. Graph Theory

We consider a group of NV connected drones. The drone
sensing and communication interactions are modeled by a
constant connected and undirected graph G := (V, £), where
V = {1,..,N} is the set of vertices and &€ C V x V is
the set of edges. Two drones ¢ and j are called neighbors
if (i,7) € &£. The set of neighbors of drone 7 is denoted
by N; := {j € V|(,j) € £} and its cardinality is |N;].
With a slight abuse of notation, we may refer to variables
related to the edge ey, := (i,j) with a subscript & or 4. The
incidence matrix for an arbitrary orientation of the graph
is denoted by E, with [E|;z; = 1 if vertex ¢ is the head
of the edge k and [E];, = —1 if it is the tail, [E];x = 0
otherwise. The Laplacian matrix associated to the graph G
can be computed as L = EE”, while a weighted Laplacian
is given by Lyy = EWET, with W > 0 (i.e. positive
semidefinite). The Laplacian matrix is positive semidefinite
with L1y = 0, i.e. it has zero row-sum, and it has positive
diagonal and non-positive off-diagonal entries. The Laplacian
of a graph has eigenvalues 0 = p; < pg < ... < uy with
eigenvectors {lN/\/N, Vo,..,vy} and pe > 0 if and only
if the graph is connected.

B. Formation Model

Each drone state is represented by its position p; € R3
and we refer to the stack of the drones position as
p=[p7 ... p%]" € R3N. The linear velocities of the
drones are expressed in a common inertial frame and the
velocity of drone i is indicated as u; € R3. We refer to the
stack of the drones velocities as u = [uf uf]" e R3V.
The dynamics of each drone is modeled as a simple single
integrator:

pi = w;. (D
Each drone is able to measure the relative bearing with respect
to its neighbors, i.e.:
By=tles? &)
j
where p;; = p; — p; and d;; = ||pij||,. We also define the
@]T € R3N,

stack of bearing measurements 3 = [BlT

C. Localization of Bearing Formations

The matrix-valued Laplacian [17] associated to the classical
position-based formation control is given as L3 := EzEZ
[18], with E5 = E ® I3 where ® is the Kronecker product
and I3 the identity matrix. If the graph is connected, then
rank(Ls) = 3N — 3 and the null-space is AM'(L3) = U,
where U = 15 ® I3 represents a basis for a common 3D
translation of the formation. For bearing formations the bear-
ing Laplacian matrix is defined as Lg := Esdiag(Ils, )ET,
with diag(IIg, ) being the block diagonal matrix with blocks
I, =13 — ,Bkﬁ;‘f > 0, which is an orthogonal projector,
ie. Ilg Ilg, = Ilg, and Ilg, = Hgk. A bearing forma-
tion in R® is defined infinitesimally bearing rigid (IBR)
if rank(Lg) = 3N — 4. IBR is a necessary and sufficient
condition to localize the relative positions of the robots up to
a scale factor from constant bearing measurements. As it was
shown in [5], this condition can be relaxed if the bearings
are time-varying, implying the IBR condition is not anymore
necessary and the scale ambiguity can be resolved. We give
some necessary definitions before proceeding.

Definition II.1. Given a system with state x € R4, state
sensitivity matrix ®(t,to) = =y, output y(t), and output
Jacobian H(t) = gigg, the Observability Gramian (OG) is
defined as follows [7]:

G(t) = G(to)+/:@(T,tO)TH(T)TH(T)é(T,tO)dT 3)

Observability of the system linearized along the nominal
trajectory is characterized by the invertibility of the OG [19],
i.e. the state can be observed from the measured output y(t)
if there exists some € > 0 such that:

t
/ ®(7,t0) TH(r)TH(7)®(7, to) dr > €lg. )
to

In [5], the following definition is given:

Definition II.2. A formation is defined bearing persistently
exciting (BPE) if the graph G is connected and given 7' > 0
and v > 0 the following PE condition holds:

1 t+T
- / Ls(r) dr = ALs ®)
T J:

It should be noted that this condition is less stringent than
the classical PE condition since dim(N(L3)) = 3.

We point out that the previous integral in (5) represents
a weighted Observability Gramian (OG) of the system. In
fact, the state sensitivity matrix for a single integrator is
the identity matrix and the output Jacobian is the so-called
bearing rigidity matrix, i.e.:

I
B:%:diag( 'Bk)E:{. ©)
8]) dk

From this, using the properties of the orthogonal projector, it
follows that the OG of the system can be expressed as:

¢
G(t) = G(to) + [ Eadiag (

to

Hﬁk (T) T
()2 ) E3 dr (@)

where we see the similarity to (5), in which the information
associated to each edge is weighted by the squared distance.



Since the scaling by the positive distances does not affect the
rank of the matrix, it follows that the formation being BPE
is a local observability condition of the subspace orthogonal
to the common translation.

We now introduce the observer presented in [5], which we
use for localizing the drones in a bearing formation. In [5], it
is shown that, if the formation is BPE, the bearings are always
well-defined (i.e. no collisions occur) and the velocities are
bounded, then the following distributed observer achieves UE
convergence to the true state up to a common translation:

p(t) = u(t) — kLs(p())(1) ®

where p is the estimated position vector and k. > 0.

The convergence rate of this observer depends on the BPE
parameter 7y [5]. The aim of the following section is to then
provide a control law that aims at indirectly increasing the
value of « for ensuring a satisfactory observer performance
even for non-rigid bearing formations.

III. ACTIVE SENSING CONTROL

In this section, we propose a gradient-based control law
for actively collecting information about the drone relative
positions. To quantify the amount of information, we adopt
the minimum nonzero eigenvalue, specifically the fourth
eigenvalue denoted as A4, of the weighted OG (5) with an
additional forgetting factor, that is, an OG with dynamics

Gs(t) = —pGa(t) + L (). ©)

The forgetting factor p > 0 is added to ensure that the OG
remains bounded, since otherwise the term Lg = 0(¢), V¢ > 0
would make the OG grow unbounded over time. Notice that
if Gg(to) is a matrix-weighted Laplacian [17] associated to
the graph G, then this also holds for Gg(t), V¢ > 0, that is,
(7) the required definiteness pattern of the matrix weights
(negative semidefinite off-diagonal terms) is preserved:

t
[Gs(8)] (i) = e P [Gg(to)] 4i5) +/t e P Lg (1)) i) dr
0

- 6—P(t—t0)[GB(t0)](ij) - /t e_P(t_T)HBij (r)dr <0

© (10)

where [Gg(to)];j) = 0 is the ij-th block of Gg(ty) and
1, < 0: (ii) U C N(Gy(0):

Gs(t)U = e_p(t_tO)Gg(to)U—&-/t e P Lg(r)Udr = O3n k3N
N an
and; (i) if ij ¢ & then [Gg(t)]u;) = 0 Vt > 0. These
properties are used in the next derivations. In particular, the
preservation of the sparsity pattern allows for a distributed
implementation of the proposed control law.
Consider the state of the full system
¢=[pT vec (GB)T}T, where vec(-) is the vectorization
operator. Then, the system dynamics can be written as:

{(t) = f(¢) +gu

where the system has a cascade structure with f(¢) =

(12)

T
. T
{OgN vec (GB) } and g = [Isy 03N><(3N)2]T. Note that

the first derivative of A4 (our ‘information metric’) depends

on the positions of the drones, so that Ay has relative degree
2 w.r.t. the drone velocities (the available control inputs).
This poses a challenge for direct control since the drone
positions are solely involved in the dynamics of A4 within
the orthogonal projector IIz. However, the derivative of A4
can be more easily controlled. This has expression

A = Lida= (va®@va)T vec(Gﬁ)

== > (vai —va))T[Gp(1)](i5) (Vai — Vaj) 13
(4,7)€€

where L)y = %f(g) and v4 = [va V4N]T is the
eigenvector associated to A4. For convenience, let us define
V4ij := Va; — Va;. The second order derivative of A4 is then
N
.).\4 = Z LgiLf/\4u7; + L?c)\4

=1

N .
! E 9 Gglis (14)
Y Z [Vaij ® V4Z~j]T% u;

i=1 \jEN; P:

+ vec(Gg)THy, vec(Gg) — p(va ® va)T vec(Gg)

2
where H), = ‘M(G%W is the hessian of A4 with

respect to the matrix entries. The important point to note
here is that (14) has a direct (affine) dependence on the
control inputs u;, which can then be exploited for controlling
the quantity A4, for instance by applying the gradient-based
control law

w; =k (Lg, Ly )" . (15)

The control action (15) implements the sought active sensing
since it aims at maximizing )'\4 that, indirectly, maximizes the
eigenvalue A4 itself (which is the metric we care about, but
which is less directly controllable by acting on the control
inputs u;).

We now discuss some properties of the control law (15).

Proposition IIL.1. From an information perspective, it is
intuitive that the gradient of )\, associated to an edge is
orthogonal to the corresponding bearing, i.e.:

Bvec([GB]ij)
opi
Proof. First of all, notice that [Gg];) = —p[Gslaj) — Mg,
and the first term does not depend on p;. Furthermore,
using the properties of the Kronecker product, we have

vec(B;;87;) = B;; © B;;- 1t follows that:

Ovec(Ilg, ;) 0(Bi; ® Byj) 1
op; T opi B a (Hﬁi.i ®Bi; +Bi; ® Hﬁzz)

One can then use the Kronecker product properties and show
that:

(Mg, @ Bi; + Bi; © T, ) By,
- (Hﬁn ®/3’z‘j) (Bi; ©1) + (ﬁij ® Hﬂi-?‘) (1@By) 18
— (10,89 8,,) + (B ©T05,,8,;) = 0.

[Vaij; @ vaij]T Bi; =0 (16)

O

Proposition III.2. Assuming that no collisions happen i.e.
dij > Dmin >0, Vi,j € {1,2,...,N}, then the resulting
input is always bounded.



Proof. w.lo.g. considering k = 2:

1
ul = Z [Vaij ® V4ij]TEj <H5ij ®Bi; +Bi; ® Hﬁij) (19)

JEN;
and
2

lailly € Y Ivais ® vaislll, 5— [Ty, © By

NG Dmin 2

JEBz (20)

< N
min

where we used the subadditivity property of norms, the
facts that [[vaill, < [lvall, = 1L X @ Y|, = [[ X[, - [Yll,,
[TIs)l, = 1 and ||B,;], = 1. O

Finally, the active sensing gradient control (15) requires
each robot 7 to only know quantities which are locally
available or communicated by neighboring robots, i.e.,

e Vvy;: the components of the eigenvector corresponding
to the i-th robot itself, which can be estimated in a
distributed way by suitably modifying the distributed
power iteration method (see e.g. [20], [21]) as done e.g.
in [22];

e v4;Vj € N;: which can be communicated by neighbor-
ing robots; .

e d;j;: for which an estimate d;; can be computed from the
estimated positions; P;, locally available, and p; which
can be communicated by the neighbors

 3;; which is measured.

In the next section, we show how to embed the active
sensing action (15) within a primary task of formation control.

IV. FORMATION CONTROL

We establish a hierarchical framework that prioritizes
position-based formation control over active sensing by using
distributed QP-based Control Lyapunov Functions [16]. We
now formally introduce the definition of Control Lyapunov
Function which will be instrumental for the next develop-
ments.

Definition IV.1. A function o : R>9 — R is of class K if
it is strictly increasing and «(0) =0

Definition IV.2. [23] A smooth positive definite function
V :R% — R is a Control Lyapunov Functions (CLF) for a
given system % = f(x) + g(x)u if it satisfies:

inf {LeV(x)+ LgV (x)u} < —a(V(x))

21
ueR™ ( )

with « of class .

The position-based formation control task considered in this
work is defined based on the error associated with each edge,
denoted as e;; = p; — pi — p;. Here, pf; represents the
desired relative position between robot ¢ and j. We also define
the desired position vector as p? = [(pH)T (p‘f\,)T]T,
which relates to the relative desired position vector p‘é =
stack(pfj) through p¢ = ETp?. It is worth noting that p? is
defined up to a common translation. Then, the position error

ise=p—p?=_[T .. eﬁ]T with dynamics € = u — p?.

We consider the following potential function:

1
Ve =5 3 llei—el. 22)

(i,4)€E
We emphasize that, while this function is only positive
semidefinite i.e. V(w) = 0 for any vector w € span(U)
representing a common translation, it is positive definite with
respect to the desired equilibrium set {€;] = e3 = ... = ey }.
We impose a desired exponential decay of V' (e) by setting as
a constraint in a QP the condition V4aV < 0, where we used
the restriction to the positive semi-axis of a linear function
as class K. Let us define c;(¢) := (Lg, L§Aa)T /|| Lg, Lgal|, if
|Lg; L£Aal|, # 0 and c;(¢) = 0 otherwise (vector c;(¢) is thus
the unit-norm direction of the active sensing control (15)).
The centralized QP, including the active sensing task, is
formulated as:

N
: 1 (AT (w — ke () 12
B 5 2 | (7 kei©)) e
N T
s.t Z Z(ei—e]) u; + Z ||ei—ej\|§§0
=\ (iee
@3)

where TI., = I3 — c;c! is the orthogonal projector onto the
plane perpendicular to c; and 7 > 0.

The first term in the cost function aims at achieving the
same information gain as the one obtained by u; = kc;({)
and, therefore, it represents the active sensing task. The
second (regularization) term in the cost function is meant
to address two issues, namely (7) avoiding excessive inputs
in the direction orthogonal to the active sensing task due to
constraint satisfaction, and (i7) obtaining a strongly convex
cost function. Indeed, the Hessian of the QP is given
by Hgp = diag(HQpﬁi) = diag(Cl'C,LT + 771_.[51/) ~ 0.DEFINITO
HQP,iNP

Our objective now is to transform this problem into
one that is suitable for distributed implementation. Inspired
by [24], we compute the analytical expression for the
solution of the QP. First, we define a=[a7 .. af]"
with a;:=Y .\ (e;—e;), and b = S b, with
bi =% en, llei — ej||§, so that the constraint can be
written as Zi\[:l(aiTui +b;) <0. We point out that, in
absence of input limits, the constraint is always feasible,
i.e. a = 0 implies b = 0, in which case the constraint is
trivially satisfied. The analytical solution to the QP can be
obtained by using the Karush—Kuhn-Tucker (KKT) optimality
conditions. Let us define the Lagrangian of the problem

s

N
2
2= 530 (0T s = kes (€)M wil3] + e )
=1
(€2
with A being the Lagrange multiplier. The resulting KKT
conditions, using * to indicate the optimal solution, are:
. = (uf —ke)Teiel +n(u) e, +Azal =0
S @lu; +b) <0
AL >0
Ap =0 if L@ u]+b) <0

(25)



From the first equation one obtains:

ul =H;!

QP,i(kci — )\Zaz) (26)

from which two cases are possible: 1) the constraint is not
active at the unconstrained solution k:Hé}j .c;"P, hence from
the last condition one has A7 = 0 and u; = kHé};ci; 2) the
constraint is active, hence substituting (26) into the constraint
equation with equality yields

Zf;l(azﬂH&}Dyikci +b;)
N —1 :
2zt azTHQP,iai

Substituting back in (26), one obtains the complete solution
for the two cases as:

A= @7

I‘]:_1 A .

QP

N (lcaTH_1 c; +b;)
u; = kHZ)}D,iCi — max <0, i=1 ¢ QP i >

i az'THaD,iai

(28)
Since Hgp; > 0, a zero denominator implies a; = 0 Vi, that
is, accomplishment of the formation control task. Hence, in
this case the input can be set to zero. Otherwise, the first term
represents the solution to the unconstrained problem. The term
in the numerator Zfil(ka?Hé}p’ici + b;) is negative when
the constraint is satisfied by the solution to the unconstrained
problem. Since the term at denominator is always greater than
zero, then the second term is different from zero only when the
constraint is active and it acts to correct the input in order to
satisfy the constraint. Also, notice that the proposed controller
is piecewise (because of the eigenvalues re-ordering) locally
Lipschitz continuous [25].

The two terms Y., (kalHghc; +b;)
Zi\il aZTHé}D’iai are not locally available but one
can estimate their average through dynamic consensus,
e.g. [26]. Finally notice that the terms a; and b; depend
on the estimated positions of robot ¢ and its neighbors,
which must then be estimated as accurately as possible to
correctly achieve the formation task. This is achieved by the
gradient-based active sensing strategy embedded in the cost
function of (23).

and

V. SIMULATION RESULTS

In this section, we show the effectiveness of our approach
through extensive numerical simulations. We compare the
results obtained applying the proposed control law (28),
which achieves the desired formation while performing
active sensing against a control law which only implements
formation control by satisfying the constraint in (23) while
minimizing the input norm. For convenience, we refer to the
two methods, respectively, as AS and CLF-only. We consider
a group of N = 7 drones and three different graph topologies
with different levels of connectivity. We performed a set
of 50 simulations starting from random initial positions for
each of the following graph topologies (ordered in increasing
connectivity level): line graph, cycle graph and 1-redundantly
bearing rigid graph [4] (Fig. 1). Notice that the first two
graphs are not bearing rigid. As desired formation, we chose
to have the drones equally spaced along a circle lying on a
plane parallel to the z-y plane.

@

(b) Cycle graph (c) 1-Redundantly bear-
ing rigid graph

Fig. 1: Graphs corresponding to the sets of simulations.

(a) Line graph

The minimum convergence rate for the CLF constraint
is the same for the AS and CLF-only cases, i.e., o = 0.4.
Notice that for the CLF-only case the convergence rate of
the formation Lyapunov function will actually be exactly «
(up to estimation errors of the involved quantities), since the
decrease of the formation control error is only due to the
constraint. In the AS case, however, the error evolution may
also be affected by the active sensing task, and therefore in this
case « can only represent a lower bound on the convergence
rate. For this reason a comparison of the convergence rate of
the two control laws is not particularly significant. We instead
focus on the (more relevant) evaluation of the steady state
formation error at convergence, and of the estimation error.
In the simulations, we used the following parameters: the
observer gain is k. = 0.1, the forgetting factor is p = 0.04,
the OG is initialized as a matrix weighted Laplacian with
matrix weights 0.5I3, the active sensing gain is k = 0.2, the
regularization term is n = 0.1

In the plots, we show in Fig. 2 the average and min/max
behaviors of A4(t) for the three considered graph topologies.
As a reminder, A\4(¢) is the minimum non-zero eigenvalue of
the OG. It is therefore a measure of the collected information
and indirectly affects the convergence rate of the employed
localization observer. Then, the estimation and formation
control errors for each graph topology are individually
reported. Specifically, we present the results for the line graph
in Fig.3, the cycle graph in Fig.4, and the 1-redundant bearing
rigid graph in Fig. 5. In each case, the figures are arranged
from left to right to display the average and min/max trajectory
of both the estimation and formation errors. Additionally, on
the rightmost part, we include violin plots of the distribution
of estimation and formation errors at the final time.

The results presented in Fig.2 clearly show that the use
of active sensing leads to higher acquired information and,
thus, a more accurate localization and, as a consequence,
a better performance for the formation control. The use
of active sensing provides significant benefits, particularly
in scenarios where the connectivity is lower, as for the
line and cycle graphs. In these cases, the active sensing
task greatly reduces both the estimation and formation
errors. Conversely, in highly connected and rigid graphs
like the 1-redundantly rigid graph, the improvement margin
is comparatively smaller. Indeed, in this case rigidity of
the graph greatly simplifies the localization task since the
robot group becomes “instantaneously localizable” (up to
a scale factor). This is also evident from Fig.2(c), where
the information growth is considerably high also when
active sensing is not used (CLF-only case). Nonetheless,



the advantages offered by active sensing remain noticeable
also in this scenario.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented a novel distributed
control strategy for bearing formations to maximize the
information gathered for cooperative localization. Our active
sensing strategy is based on the minimum eigenvalue of
the weighted Observability Gramian with a forgetting factor
as an information measure. This active sensing strategy
can be combined with other additional tasks of interest (a
position-based formation control task in our case) by making
use of distributed QP-based control with Control Lyapunov
Functions. This integration enables the execution of higher-
level tasks while concurrently enhancing the minimum level
of “localizability” for the robot group, thereby improving the
overall task execution.

Numerical simulations over graphs with different levels of
connectivity demonstrated the benefits of the approach, in
particular for non-rigid graphs. Future works will focus on
including sensing constraints such as limited range and field
of view, as well as accounting for the drones orientation. By
addressing these factors, we can develop a more comprehen-
sive and practical framework that considers the corresponding
directed time-varying graph. Such advancements will enhance
the applicability and robustness of our proposed strategy in
real-world scenarios.
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