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Controller and Trajectory Optimization
for a Quadrotor UAV with Parametric Uncertainty

Ali Srour1, Antonio Franchi2,3,4, Paolo Robuffo Giordano1

Abstract— In this work, we exploit the recent notion of
closed-loop state sensitivity to critically compare three typical
controllers for a quadrotor UAV with the goal of evaluating
the impact of controller choice, gain tuning and shape of the
reference trajectory in minimizing the sensitivity of the closed-
loop system against uncertainties in the model parameters. To
this end, we propose a novel optimization problem that takes
into account both the shape of the reference trajectory and
the controller gains. We then run a large statistical campaign
for comparing the performance of the three controllers which
provides some interesting insight for the goal of increasing
closed-loop robustness against parametric uncertainties.

I. INTRODUCTION

The requirement for autonomous/intelligent systems such
as robots to operate in unpredictable and/or uncertain real-
world conditions is one of the biggest challenges in our
community. In fact, whether directly or indirectly, robot
decisions and control actions are based on a model of the
“world”, which is oftentimes only a rough representation of
the physical reality. When considering motion tasks, one of
the common sources of uncertainty is in the robot model
parameters that can be hard to measure or also vary at
runtime. Adaptive [1] or robust control [2] techniques are
typical ways to deal with parametric uncertainty by either
trying to estimate the parameters online, or by trading off
performance for robustness vs. parametric uncertainty. Also,
Model Predictive Control [3], [4] predicts system behavior
and optimizes a cost function over a finite time horizon
using a dynamic model of the system and its environment.
However, real-time rescheduling for optimization at each
time step can result in significant computational overhead.
Another recent approach to deal with these issues has been
proposed in [5]–[10] where several metrics based on the
notion of closed-loop state/input sensitivity have been intro-
duced. These metrics are able to quantify how uncertainties
in the parameters of a robot model can affect the evolution of
the robot states and inputs in closed-loop and as a function
of the reference trajectory being tracked (i.e., the ‘motion
task’). One can then attempt to increase robustness against
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Fig. 1. Drone trajectory tracking under parametric uncertainties (green)
to reach a target sd(tf ) (light blue sphere). Non-optimized (INIT , top
left) and optimized (OPTak , top right) trajectories are compared. The size
of the uncertainty ellipses are compared in the bottom left, where the blue
and red ellipses correspond to INIT and OPTak , respectively. A video
demonstration is available at: https://youtu.be/VBRL8XDiJ5c.

uncertain parameters by planning a suitable feedforward (or
desired) trajectory that minimizes the sensitivity metrics,
thereby generating an intrinsically-robust and control-aware
motion plan. These ideas have also been extended to the
problem of combining state observabilty with parametric
robustness in [11], and in [12] a recent extension is proposed
for obtaining the ‘tubes’ of perturbed trajectories given a
known range of parametric deviation.

All these previous works have shown very promising
results by focusing on the optimization of the reference
trajectory to be tracked by the robot under suitable state
and input constraints. However, one may also consider the
concurrent optimization of the gains of the chosen control
strategy (besides the reference trajectory) for the purpose
of minimizing a sensitivity metric. In this paper we then
consider this latter possibility applied, as case study, to
a tracking task for a quadrotor UAV under three popular
control strategies: a near-hovering (or linear) controller, a
nonlinear geometric controller, and a sliding-mode con-
troller. We present and discuss the results of a thorough
statistical analysis aimed at comparing the three controllers
in different conditions (non-optimized, by only optimizing
for the reference trajectory, by optimizing for the control
gains only and by optimizing for both the trajectory and
the control gains). The aim is twofold: (i) to show how
gain optimization (or tuning) can be done while taking into
account a concrete robustness metric (the state sensitivity
vs. parametric uncertainties) and (ii) to get statistical insights

https://youtu.be/VBRL8XDiJ5c


into the behavior, performance and robustness of the three
controllers in different conditions.

The rest of the paper is structured as follows: in Sect. II we
recall the main notions related to the closed-loop state sensi-
tivity. Then in Sect. III we present the optimization problems
considered in this work, and we detail the quadrotor model
and the three tracking controller. Section IV discusses the
results of the statistical analysis on the controller perfor-
mance, and Sect. V concludes the paper and draws some
future perspectives.

II. PRELIMINARIES
In this section we briefly summarize for the reader’s

convenience the main notions related to the closed-loop
state sensitivity introduced in [5], [6] and recently extended
in [12]. We consider a robot model

ẋ = f(x, u, p) (1)

where x ∈ Rnq is the state, u ∈ Rnu the control inputs and
p ∈ Rnp a vector of (possibly uncertain) model parameters.
We assume some quantity of interest s(x) ∈ Rns (e.g.,
the position of the robot center) needs to track a desired
trajectory sd(t, a) defined for t ∈ [t0, tf ] and function of
a finite set of parameters a ∈ Rna . For this task a tracking
controller is used{

ξ̇ = g (ξ, x, a, pc, kc, t)

u = h (ξ, x, a, pc, kc, t)
, (2)

which is evaluated at a nominal value pc for the uncertain
parameters p. The vector ξ ∈ Rnξ represents the possible
internal controller states (e.g., an integral action) and kc ∈
Rnk is the vector of control gains.

The state sensitivity for the closed-loop system (1–2) is
defined as

Π(t) =
∂x(t)

∂p

∣∣∣∣
p=pc

(3)

and the input sensitivity

Θ(t) =
∂u(t)

∂p

∣∣∣∣
p=pc

. (4)

Matrix Π(t) quantifies how variations in the parameters p
around a nominal value pc will affect the evolution of the
states x (in closed-loop). Analogously, matrix Θ(t) relates
variations in p to variations in the inputs u. A closed-
form expression for matrixes Π(t) and Θ(t) is in general
not available, but in [5], [6] it is shown how these two
quantities can be easily evaluated via forward integration of
a differential equation along the system trajectories.

Matrixes Π(t) and Θ(t) can be used for several purposes
such as optimization of the reference trajectory sd(t, a) for
producing minimally sensitive motion plans (by minimizing
some combined norm of Π(t) and Θ(t) as done in [5],
[6]). An extension of these ideas has been recently proposed
in [12] where a suitable weighted norm for the state sensitiv-
ity Π(t) is introduced. Assume that each parameter pi can
vary in a given range δpi centered at a nominal pci

pi ∈ [pci − δpi, pci + δpi] (5)

and define the diagonal weight matrix W = diag(δp2i ).
Letting ∆p = p − pc, an ellipsoid in parameter space
centered at pc and with semi-axes δpi has equation

∆pTW−1∆p = 1. (6)

From (6) and (3–4) one can obtain the corresponding
ellipsoids in state space

∆xT (ΠWΠT )−1∆x = 1 (7)

and in input space

∆uT (ΘWΘT )−1∆u = 1, (8)

see [12]. Here ∆x stands for ∆x = x−xnom where xnom is
the state evolution of (1–2) in the unperturbed case p = pc,
and analogously for ∆u = u− unom.

The state and input space ellipsoids can be used for
different purposes. First of all, one can define a ‘weighted
sensitivity norm’ by considering the eigenvalues λi of the
kernel matrix ΠWΠT in (7). In particular, in [12] and in
this work we consider the following matrix norm

∥Π∥W = max(λi(ΠWΠT )) (9)

which represents the largest (worst-case) deviation of the
states x assuming a parametric uncertainty as in (5). Fur-
thermore, one can also exploit (7–8) for obtaining the tubes
of perturbed trajectories for the individual components of
the states and the inputs. By again referring to [12] for all
details, for each direction of interest in the state space one
can obtain the ‘tube radius’ ri(t) such that

qnom,i(t)− ri(t) ≤ qi(t) ≤ qnom,i(t) + ri(t). (10)

where, as usual, qnom,i(t) is the behavior of the state qi(t)
in the unperturbed case p = pc. Equation (10) bounds
from above/below the envelope of perturbed states when
the parameter uncertainty is bounded as in (5), and an
analogous upper/lower bound can also be obtained for the
inputs components ui(t).

III. OPTIMIZATION PROBLEM

As explained in Sect. I, in this work we are interested
in comparing the performance of three typical trajectory
tracking controllers for a quadrotor UAV in the context of
minimally sensitive trajectory optimization. To this end, and
considering the various quantities introduced in Sect. II, we
consider a first trajectory optimization problem

a∗ = argmin
a

∥Π(tf )∥W
s.t. Ma = b

Umin,i ≤ unom,i(t)− ri(t) ∀i∀t ∈ [t0, tf ]

unom,i(t) + ri(t) ≤ Umax,i ∀i ∀t ∈ [t0, tf ]. (11)

We seek to find the optimal value a∗ for the shape parameter
a of the reference trajectory sd(a, , t) for minimizing the
weighted norm (9) at the final time tf . The constraints consist
of given initial/final conditions for sd(a, , t), represented by
the linear constraints Ma = b, and constraints that bound
the envelope of perturbed inputs within actuation limits



Umin,i ≤ Umax,i, ensuring that the tracking of the optimized
reference trajectory will be feasible for any value of the
uncertain parameters p in the range (5). These constraints
leverage the ‘tubes’ as in (10) but are evaluated for the inputs.
Variants of this problem have already been considered in [5],
[6], [12] but by always focusing on a single control strategy.

We also consider a second optimization problem

k∗
c = argmin

kc
∥Π(tf )∥W

s.t. Ma = b

Kmin,i ≤ kci ≤ Kmax,i

Umin,i ≤ unom,i(t)− ri(t) ∀i ∀t ∈ [t0, tf ]

unom,i(t) + ri(t) ≤ Umax,i ∀i ∀t ∈ [t0, tf ] (12)

where we optimize w.r.t. the control gains kc inside suitable
bounds 0 < Kmin,i ≤ Kmax,i. We then consider a third op-
timization problem that optimizes both the shape parameter
a and the control gains kc subject to the same constraints
as in equation (12).

(a∗, k∗
c ) = arg min

a,kc
∥Π(tf )∥W

s.t. Ma = b

Kmin,i ≤ kci ≤ Kmax,i

Umin,i ≤ unom,i(t)− ri(t) ∀i ∀t ∈ [t0, tf ]

unom,i(t) + ri(t) ≤ Umax,i ∀i ∀t ∈ [t0, tf ] (13)

We note that in the previous problems we focus on the
minimization of the state sensitivity norm at the final time
tf . In other words, we look for the combination of reference
trajectory and/or control gains that will result in the largest
tracking accuracy at the final time (for, e.g., reaching at
best a target location). Of course, different choices are
also possible such as minimization of (the integral) of the
sensitivity norm along the whole trajectory (for increasing
the average tracking accuracy during motion). Note also that
additional constraints, such as obstacle avoidance, could be
easily added to the optimization problem by exploiting the
tubes on the states, see [13] for an example in this sense. One
can also optimize the sensitivity at specific waypoints along
the trajectory where, for instance, the effects of uncertainties
in high speed regimes can be minimized.

A. Quadrotor Model
Let x = (r, v, q, ω) ∈ R6 × S3 × R3 be the quadrotor

state vector consisting of the world-frame position r =
(rx, ry, rz) and velocity v = (vx, vy, vz), the rotation
from body to world frame represented by a unit quaternion
q = (qw, qx, qy, qz) and the body-frame angular velocity
ω = (ωx, ωy, ωz). The quadrotor model is

ṙ = v

v̇ =
f

m

2(qwqy + qxqz)
2(qyqz − qwqx)
1− 2(q2x + q2y)

− g

q̇ =
1

2

[
0
w

]
⊗ q

ẇ = I−1(τ −w × Iw)

(14)

In this model, f and τ denote the total thrust and body-
frame moment, g = (0, 0, g) is the gravity vector in
world frame, and m and I represent the mass and body-
frame inertia. Although quaternions are used to represent
the quadrotor orientation in model (14), the conversion of
quaternions to the roll ϕ, pitch θ, and yaw ψ angles is also
considered in two of the control strategies.

Let wi be the squared velocity of the i-th propeller and
define the quadrotor control input u = (w1, , . . . , , w4). An
allocation matrix is used to relate the inputs u (i.e., the
squared propeller speeds) to the thrust/torques (f, , τ ).

[
f
τ

]
= kf

 1 1 1 1
−gy L− gy −gy −(L+ gy)

−(L− gx) gx L+ gx gx
kt −kt kt −kt

u =

= Tu
(15)

The aerodynamic coefficients of the propellers are denoted
by kf and kt, the x and y coordinates of the barycenter
in the body frame are denoted by gx and gy , and the
length of the propeller arms is denoted by L (see [14] for
a more detailed derivation). These coefficients are difficult
to measure reliably and may change at runtime depending
on the flight regime. Therefore, the vector of uncertain
parameters considered in this work is p = (kf , kt, gx, gy).

B. Near-Hovering Controller (NH)

The first control strategy considered is the near-hovering
or linear controller, commonly used for its ease of imple-
mentation and tuning. However, it only performs well and
maintains stability near a hovering state with small roll/pitch
angles [15]. Tracking is done using a 4D reference trajectory
sd(t) = (rd(t), ψd(t)), which includes the quadrotor 3D
position rd(t) = (xd(t), yd(t), zd(t)) and yaw angle ψd(t).
The final control equations are

ẍr = r̈dx + kdx(ṙdx − ẋ) + kpx(rdx − x)

+kix

∫
(rdx − x)dt

ÿr = r̈dy + kdy (ṙdy − ẏ) + kpy (rdy − y)

+kiy

∫
(rdy − y)dt

ϕd = − arcsin

(
m

f
(− sin(ψ)ẍr + cos(ψ)ÿr)

)
θd = arcsin

(
m

f cos(ϕ)
(cos(ψ)ẍr + sin(ψ)ÿr)

)
f =

m

cos(ϕ) cos(θ)
(g + r̈dz + kdz (ṙdz − ż) + kpz (rdz − z)

+kiz

∫
(rdz − z)dt

)
τx = −kdϕωx + kpϕ(ϕd − ϕ)

τy = −kdθωy + kpθ (θd − θ)

τz = −kdψωz + kpψ (ψd − ψ)

.

(16)
Finally, the quadrotor inputs are computed as

u = T |−1
pc

[
f
τ

]
(17)



where the the allocation matrix T from (15) is evaluated at
the nominal parameters pc.

The vector of control gains kc considered in problem (12–
13) for this controller consists of all the 15 gains in (16), that
is, the three gains (kp• , kd• , ki•) for the x, y and z channels,
and the two gains (kp• , kd•) for the ϕ, θ and ψ channels.

C. 3D Geometric Controller (LEE)

The 3D Geometric controller [16] is a popular control
strategy that differs from the near-hovering controller by
not relying on approximations of the quadrotor dynamics
and providing almost global stability. However, it is more
challenging to tune than the near-hovering controller.

Let R(q) ∈ SO(3) be the rotation matrix associated to the
quaternion q, and let e3 = (0, 0, 1). The idea behind this
control strategy is to design a desired thrust vector fRde3
for stabilizing the translational dynamics (i.e., tracking the
reference rd(t)) while the torques τ try to align the quadrotor
z axis Re3 with the desired one and also track the reference
signal for the yaw angle ψd(t). The final controller equations
are (see [16])

er = rd − r, ev = ṙd − v

b3d =
Krer +Kvev +Ki

∫
erdt+mge3 +mr̈d

∥Krer +Kvev +Ki

∫
erdt+mge3 +mr̈d∥

b1d = (cosψd, sinψd, 0), b2d = (b3d × b1d)/∥b3d × b1d∥
Rd = [b2d × b3d b2d b3d]

eR =
1

2
(RT

d R−RTRd)
∨, eω = ω −RTRdωd

f =

(
Krer +Kvev +Ki

∫
erdt+mge3 +mr̈d

)T

Re3

τ = −KReR −Kωeω

.

(18)
where ()∨ is the usual ‘vee’ map taking a skew-symmetric
matrix into the associated 3D vector, and Kr, Kv , Ki, KR,
Kω are 3× 3 diagonal control gain matrixes.

We note that, compared to the original [16], the moment
equation (last row of (18)) neglects the compensation for
the gyroscopic term as customary in actual implementations
of this controller. Note also that, as in the previous near-
hovering case, the actual quadrotor inputs u are retrieved
by plugging in (17) the thrust/torques (f, τ ) computed
from (18).

The vector of control gains kc considered in problem (12–
13) for this controller consists of all the 15 gains in (18) (the
diagonal entries of Kr, Kv , Ki, KR, Kω).

D. Sliding Mode Controller (SMC)

The last controller considered in this work is based on
sliding mode, which is a control technique known to gen-
erally deal well with model uncertain parameters [17]–[19].
The controller is built by following the typical steps of the
sliding mode design. We start by considering the vertical z
dynamics and define the error ez = rdz − z and the sliding
surface σz = ėz +λzez where λz > 0 is a control gain. The
Lyapunov candidate Vz = 1/2 σ2

z has time derivative along
the system trajectories

V̇z = σzσ̇z = σz

(
r̈dz −

f

m
cos(ϕ) cos(θ) + g + λz ėz

)
.

(19)
We then choose the thrust f as

f =
m

(cos(ϕ) cos(θ))
(g+ r̈dz +k1z tanh(σz)+k2zσz) (20)

where the tanh(·) provides a smooth approximation of the
classical sign(·) used in sliding mode. Following analogous
arguments, one can define the torque commands as

τx = k1ϕ tanh(σϕ) + k2ϕσϕ

τy = k1θ tanh(σθ) + k2θσθ

τz = k1ψ tanh(σψ) + k2ψσψ

(21)

where σϕ = ėϕ+λϕeϕ, σθ = ėθ+λθeθ and σψ = ėψ+λψeψ
are the sliding surfaces, and eϕ = ϕd − ϕ, eθ = θd − θ and
eψ = ψd − ψ. The desired roll/pitch angles are defined as
in (16) but with{

ẍr = r̈dx + k1x tanhσx + k2xσx
ÿr = r̈dy + k1y tanhσy + k2yσy

(22)

Here, again σx = ėx + λxex and ex = rdx − rx, and
analogously for σy .

The vector of control gains kc considered in problem (12–
13) consists of all the 18 gains in (20–22), that is, the
‘sliding’ gains λ• and the two gains (k1• , k2•) for the x,
y, z, ϕ, θ, and ψ channels.

IV. STATISTICAL ANALYSIS
We now report the results of a statistical analysis for

the three controllers of Sect. III when considering the three
optimization problems (11–13). For the analysis we generate
Ntraj = 25 initial trajectories sd(a, t) starting at the origin
and coping with the initial/final state constraints and input
saturations as in (11–13). These initial trajectories are rest-
to-rest motions (from a hovering state to a hovering state)
with a final position randomly generated inside a spherical
shell of 4 to 6 m centered at the origin, and a final yaw
angle randomly generated in the interval [−π/2, π/2]. The
trajectories sd(a, t) are implemented as piecewise Bezier
curves as already done in [5], [6], [20] with the goal of
achieving a smooth curvature with little snap, as in [21],
[22]. The framework is implemented in Python and utilizes
the COBYLA [23] nonlinear optimizer from the nlopt tool-
box, along with the symbolic toolbox SymEngine to repre-
sent the system symbolically. Additionally, the Jitcode [24]
framework is employed for in-time compilation of ordinary
differential equations. In the given framework, the NH and
LEE controllers have optimization timeframes of 2-3 minutes
for each trajectory type, while the SMC controller requires
3-4 minutes per trajectory type.

For the sake of exposition, in the following we will let
INIT represent an initial (non-optimized) trajectory, OPTa
the corresponding optimized trajectory solution of (11),
OPTk the corresponding optimized trajectory solution
of (12) and OPTak the corresponding optimized trajectory
solution of (13). We thus obtain a total of 4Ntraj trajectories:
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Fig. 2. Trajectory tracking results for NH, LEE, and SMC controllers
are shown in the left, center, and right columns respectively, for the INIT ,
OPTa, OPTk , and OPTak cases. Each run has Nsim trajectories (green),
starting from the origin and ending at the same target location, with the
parameters p being randomly drawn from (6). The final positions r(tf )
of the perturbed trajectories are denoted by small red spheres at t = tf ,
forming a point cloud that constitutes the empirical variance ellipsoid
centered at rd(tf ).
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calculated from the combined trajectories of all three controllers, thus
reflecting the impact of the optimizations in reducing the ellipsoid size.

the Ntraj initial ones and the 3Ntraj optimized ones. Each
of these 4Ntraj trajectories is then provided as reference
to the three quadrotor controllers in Nsim = 30 simulation
runs where in each run the uncertain parameters p are
uniformly sampled to lie inside volume of the ellipsoid (6).
The uncertainty ranges δpi for building matrix W are set at
15% of the nominal parameter values pc. The control gain
bounds in (12–13) are set to be 50% and 200% of the initial
values used for the INIT case. Therefore problems (11–
13) will aim at minimizing the sensitivity of the quadrotor
position r(tf ) at the final time tf against variations in the
parameters kf , kt, gx, gy .

For a fist assessment, in Fig. 2 we report the Nsim
‘perturbed runs’ for one INIT trajectory (1st row) and the

Param\State x y z
kf 2.46% 1.03% 98.36%
kt 0.00 0.00 0.00
gx 39.28% 58.91% 0.69%
gy 58.27% 40.06% 0.95%

Average Percentage Contribution of each Parameter pi on the sensitivity of the states qi

TABLE I
PERCENTAGE CONTRIBUTION OF EACH PARAMETER IN p ON THE FINAL

SENSITIVITY OF THE STATES r(tf )
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t[s]
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bounds P = Pc tube P 6= Pc

Motor Speed u0(t)

Fig. 4. (Red) behavior of one control input with the nominal parameters
(p = pc) in the OPTak case. The corresponding uncertainty tube is shown
in blue, and the green lines represent the perturbed inputs when p ̸= pc for
Nsim runs. The allowable input range is depicted by (dashed black) lines.

three corresponding OPTa (2nd row), OPTk (3rd row) and
OPTak (4th row) when considering the three controllers of
the previous section on every column. The plots reports
different target reach r(tf ) after each perturbed simulation
(in green) forming the empirical variance ellipsoid (in red)
of the final quadrotor position r(tf ) centered at the desired
rd(tf ). By referring to Fig. 2 and Fig. 3, one can note how
the ellipsoids are reduced in the OPTa, OPTk cases and
even further in the OPTak cases w.r.t. the INIT cases as
expected. The largest radius of the state ellipsoid is decreased
on average for the OPTa and OPTk from (12 cm) to (9 and
7.5 cm) respectively but further decreases in the OPTak to (3
cm). This then confirms that the sensitivity cost minimized
in (11–13) captures well how variations in the parameters
affect deviations in the considered states.

Furthermore, one may note that in the optimized cases
OPTa and OPTak where the shape parameter a of the
reference trajectory is optimized, the optimal trajectory per-
forms an initial maneuver for then arriving at the target
location with an almost vertical straight line motion (see
Fig. 1 and the attached video for more details). This trend
has been empirically verified in almost all the simulation
runs and is shared by all the employed controllers. A
likely explanation is that a final (almost) vertical motion
allows to better minimize the effects of the uncertainties
in the considered parameters since the rotational dynamics
is not excited during this phase, contrarily to the INIT
trajectory where the quadrotor needs instead to perform a
non-negligible tilting for reaching rd(tf ) at rest. This insight
can then be helpful for designing more robust hover-to-hover
motions also in different conditions. This trend can also be
deduced from Table. I that shows the percentage contribution
of each parameter (Np = 4) in p on the sensitivity of the
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Fig. 5. Violin plots displaying the target reach (defined as ∥rd(tf ) − r(tf )∥) in [m] for the different trajectory types using the three controllers NH,
LEE and SMC. These results corresponds to the statistical campaign of trajectories (Ntraj = 25) and perturbed simulations (Nsim = 30).

states r(tf ) defined by Ci,j% in (23) (see [25]). This analysis
can effectively assess the impact of each parameter variation
on the final target reach error at time tf

Ci,j% =
Π2
ij(tf )δ

2
pj∑Np

j=1 Π
2
ij(tf )δ

2
pj

× 100 (23)

Table. I shows that changes in the parameters gx and gy
have the most significant impact on the sensitivity of states
x and y, while state z is predominantly influenced by kf .
Consequently, when attempting to reach the final target, a
vertical motion is primarily affected only by uncertainties
in kf , while the other three parameters affect the states in
non-vertical motions. Furthermore, based on Table I, a 15%
uncertainty in kt does not affect the states r(tf ) and can
then be disregarded.

Figure 4 reports the actuator speeds (in revolutions per
minute) for the OPTak case. The red line represents the
nominal actuator speed, while the green lines represent the
actuation speeds in the Nsim perturbed runs. The dashed
black lines denote the limit bounds of the actuator, and the
blue line represents the input bound tubes, which ensures
actuation feasibility when p varies in the ellipsoid (6).

Fig. 5 reports the so-called violin plots of the norm
of the final target reach (defined as ∥rd(tf ) − r(tf )∥)
for the complete statistical campaign considering the three
controllers and all the 4Ntraj trajectories in the Nsim runs.
The interquartile range is indicated by the thick black bar
at the center, the median of the samples is shown by the
white dot at the center, and the remaining portions of the
distribution are indicated by the thin black line. Greater
probabilities of the population adopting the specified value
are represented by wider areas of the violin plot. In order
to obtain a fair comparison of all controllers, we tuned their
initial gains so as to have a comparable median in the INIT
case, which is around 8 cm as can be seen in Fig. 5.

Observations show that all controllers demonstrate an
enhanced average target reach in the OPTa, OPTk, and
OPTak cases. In the OPTa case, the NH and LEE con-
trollers achieve similar results, with an average target reach
of around 5.5 to 6 cm, while the SMC controller improve-
ment is comparatively lower. This suggests that the desired
trajectory shape is less critical for the SMC performance,
but more relevant for the LEE and NH controllers. In the

OPTk case the NH controller average target reach is 7 cm,
the LEE controller improvement is about 5 cm, and the SMC
controller exhibits the most significant improvement of 4 cm.
These results imply that the LEE and SMC controllers are
more susceptible to controller gain tuning compared to the
NH controller. Moreover, in the OPTak case, all controllers
show significant improvement in both the average target
reach and its variance. The median of the NH, LEE, and
SMC controllers drops from about 8 cm in the INIT case
to around 2 cm for OPTak case (400% improvement), with
a better distribution around the median.

Therefore, from this analysis we can conclude that the
SMC controller is not particularly sensitive to the shape of
the reference trajectory, but it is quite sensitive to the control
gains which, if tuned well, can lead to good performance.
The NH and LEE controllers are instead more affected by
the trajectory shape in addition to the control gains. Finally,
we can note that the NH and LEE controllers perform quite
similarly when optimized. Our most likely explanation is that
the controllers are evaluated in terms of the target reach
∥rd(tf ) − r(tf )∥ at the final time, and not in terms of
how well they are tracking the reference trajectory during
motion. The LEE controller should be better at dealing with
maneuvers involving, e.g., large tilting or accelerations, but
it can have a comparable performance to the NH one when
it comes to reach a final hovering state.

V. CONCLUSIONS

In this work we have proposed a novel optimization
problem in which the effect of parametric uncertainties in
a robot model (quantified by the notion of state sensitivity)
can be minimized by acting on the reference trajectory to
be tracked and/or on the control gains. A tracking task
for a quadrotor UAV has been chosen as case study, by
employing three popular tracking controllers widely used in
the community. The results of a large statistical analysis have
shown the effectiveness of the proposed joint optimization of
the reference trajectory and gains in minimizing the effects
of uncertainties in selected quadrotor parameters. In addition
to identifying the most influential parameters on the system
states, we can also gain valuable insights into controller per-
formance and gain tuning robustness concerning parametric
uncertainty.



We are now working on an experimental validation of
these findings and, on a more methodological side, we are
also interested in finding more principled ways to impose
bounds on the control gains in problems (12-13) besides
simple ‘box constraints’ (e.g., by explicitly considering the
stability of the closed-loop via a Lyapunov function).
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