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We prove the Lie ring equivalent of the Cherlin-Zilber conjecture • in characteristic 0, for any rank and • in characteristic ‰ 2, 3, for rank ď 4. Both are open in the group case. § 1. Introduction - § 2. Generalities - § 3. Proofs - § 4. Questions

Abstract Lie rings

 § 25 and notably § 25.4] brought into Lie algebras the idea of functoriality, with all its power and might. Let Φ be a simple root system, and fix a Chevalley basis of Φ; this gives rise to the Lie ring G Φ pZq. (G is upper-case fraktur g.) Now for R an associative ring with identity, let

The construction G Φ could be called a (simple) Lie-Chevalley functor; our terminology may evolve in the future. It generates phrases such as 'Lie rings of Lie-Chevalley type', for images of Lie-Chevalley functors, in Chevalley's notation A n , . . . , G 2 . (Experts call 'Lie-Chevalley type' the classical algebras. This clashes with group-theoretic terminology, for which classical only means A n , B n , C n , D n , while E 6 , E 7 , E 8 , F 4 , G 2 are refered to as exceptional.)

The Lie-Chevalley functors, familiar in algebraic geometry, contrast sharply with other constructions yielding simple Lie algebras, usually called 'of Cartan type': Witt W pm; 1q, special Spm; 1q p1q , Hamiltonian Hpm; 1q p2q , contact Kpm; 1q p1q . We prefer 'of Lie-Cartan type' to prevent confusion with Cartan's maximal toral subalgebras.

While infinite-dimensional in general, simple Lie algebras of Lie-Cartan type become finite-dimensional in positive characteristic. Thus finite-dimensional, simple Lie algebras over algebraically closed fields of positive characteristics do not all fall into Chevalley's families. Finite-dimensional, simple Lie algebras over algebraically closed fields. A key fact is the Block-(Premet-Strade)-Wilson [BW88; PS06] positive answer to the Kostrikin-Shavarevitch conjecture [KS69], with the following consequence.

Fact. Let g be a finite-dimensional, simple Lie algebra over an algebraically closed field of characteristic ě 5. Then :

• either g is of Lie-Chevalley type,

• or g is of Lie-Cartan type,

.

 Introduction]. No understanding of the proof nor of the result itself is needed here, as the only simple Lie algebra encountered in the present work is sl 2 .

Introduction

For first glance, our main result is here; an explanation will follow. Just consider Morley rank as a form of abstract dimension not related to any linear structure.

Theorem. Let g be a simple Lie ring of finite Morley rank.

• If the characteristic is 0, then g is a Lie algebra over a definable field (and one of Lie-Chevalley type).

• If the characteristic is ‰ 2, 3, then g does not have Morley rank 4.

The first ad should be considered folklore; as a matter of fact, it was announced without a proof in [START_REF] Iossifovitch | Uncountably categorical nilpotent groups and Lie algebras[END_REF]Theorem 2]. Later [START_REF] Nesin | Nonassociative rings of finite Morley rank[END_REF] did not explicitly prove nor state it, but he certainly knew it. This is classical model theoretic-algebra, and not the core of the present work. Like the unpublished [START_REF] Rosengarten | Aleph-zero stable Lie algebras[END_REF] we shall focus on positive characteristic, where the topic is more algebraic and can be appreciated without knowing mathematical logic. Experts in modular Lie algebras should understand our results, our methods, and most of our final questions.

The second ad is a partial analogue in model theory of [START_REF] Strade | Lie algebras of small dimension[END_REF]Theorem 2.2]. We emphasize that one starts with a Lie ring devoid of any linear structure or gradation, which highly complicates matters: paradoxically, Lie rings bear extremely little geometric information. Therefore our proof does not proceed through Cartan subalgebras, but through Borel subalgebras, with obvious influences from group-theoretic 'local analysis'. Finally we mention that the equivalent for simple groups of finite Morley rank is notoriously open and challenging.

Returning to simple Lie rings of finite Morley rank, one conjectures that classifying them would be to the Block-Premet-Strade-Wilson theorem (see § 1.1), what the theory of groups of finite Morley rank is to the classification of the finite simple groups: an abstract, simpler sketch (see § 1.2). This will deserve future work.

Lie rings in model theory

The present work aims at showing that some simple Lie rings provided by model theory are finite-dimensional Lie algebras. We restrict our study to finite Morley rank.

Morley rank (for non-logicians). When doing model-theoretic algebra, Morley rank is best construed as a dimension on definable sets; see for instance [START_REF] Borovik | Groups of finite Morley rank[END_REF]chapters 2,3,4]. Alternative discussions are [START_REF] Poizat | Mathematical Surveys and Monographs[END_REF]Introduction] or [ABC08, § A.I.2].

Let pg; `, r¨sq be a Lie ring. A subset X Ď g n is definable if there is a first-order formula, viz. one using the algebraic operations, elements of g as parameters, equations, negations, conjunctions, quantification on elements, and giving X as a solution set. (This is the natural generalisation of constructible when losing the Chevalley-Tarski theorem that the constructible class is closed under projections.) For good measure and up to abusing terminology, allow quotients of definable sets by definable equivalence relations. Now g has finite Morley rank if there is a dimension function assigning to each non-empty definable set an integer, and satisfying the following:

• for definable X, dim X ě n `1 iff there are infinitely many, pairwise disjoint Y i Ď X with dim Y i ě n;

• for definable f : X Ñ Y and integer k, the set Y k " ty P Y : dim f ´1ptyuq " ku is definable;

• as above, if Y " Y k , then dim X " dim Y `k;

• as above, there is an integer m such that Y 0 " ty P Y : card f ´1ptyuq ď mu.

The definition (actually the Borovik-Poizat axiomatisation of groups of finite Morley rank) was given for self-containedness. In practice, there is a dimension provided by mathematical logic, which obeys algebraically predictable rules. For example, 'finite non-empty' is equivalent to '0-dimensional'. If g is a K-Lie algebra and K is definable and infinite, then dim g " dim K ¨ldim K pgq, where ldim K denotes the Klinear dimension. If K is finite but g is not, the formula makes no sense as 0 ¨8 is not defined. If K is not definable, the formula makes no sense at all since only definable sets bear a dimension.

Lie rings of finite Morley rank. So far they received unsufficient attention. Nesin's seminal [START_REF] Nesin | Nonassociative rings of finite Morley rank[END_REF], from which the first author learnt a lot, and Rosengarten's thesis [START_REF] Rosengarten | Aleph-zero stable Lie algebras[END_REF], are not widely cited. However Baudisch's groups (non-algebraic, nilpotent groups of Morley rank 2) are built from Lie rings [START_REF] Baudisch | A new uncountably categorical group[END_REF], so interactions between Lie rings and model theory are not to be despised. As a matter of fact, an ambitious model-theoretic study of nilpotent Lie algebras and the Lazard(-Malcev) correspondence with nilpotent groups is in preparation [START_REF] Christian | Model-theoretic properties of nilpotent groups and Lie algebras[END_REF] under neo-stability assumptions. But we focus on model-theoretic algebra of finite Morley rank and the following.

Conjecture ('log CZ'; implicit in [START_REF] Rosengarten | Aleph-zero stable Lie algebras[END_REF]). Let g be an infinite simple Lie ring of finite Morley rank. Suppose the characteristic is sufficiently large. Then g is a simple Lie algebra over an algebraically closed field.

Remarks.

• Applying the Block-Premet-Strade-Wilson theorem, one would even know the isomorphism type of g.

• It remains to explain 'sufficiently large'. The lazy version is: characteristic 0, which we establish in Theorem 0. The modest version is: ą f pdq where d is the Morley rank, and f would be determined while working on the conjecture. The optimistic version is: ą 3. There is an intermediate version in characteristic ą d, where one would also prove that g is of Lie-Chevalley type.

Relations to groups and to Lie algebras.

1. Relation to the Cherlin-Zilber conjecture. The conjecture is a clear analogue of the Cherlin-Zilber conjecture on infinite simple groups of finite Morley rank [START_REF] Altınel | Simple groups of finite Morley rank[END_REF]. We do not believe there is a general method for obtaining a Lie ring and an adjoint action from an abstract group of finite Morley rank. Conversely, we do not believe there is a general method for retrieving a definable group acting on an abstract Lie ring of finite Morley rank. In short we do not believe in a 'Lie-Chevalley correspondence' at this level of generality, so the two lines of thought should remain independent. We do not know whether adding a Zariski geometry [START_REF] Hrushovski | Zariski geometries[END_REF] would favorably change the landscape but this is worth asking. See final questions in § 4. These statements are discussed further in § § 3.1-3.3.

Our results. We prove the following.

Theorem. Let g be a simple Lie ring of finite Morley rank.

• If the characteristic is 0, then g is a Lie algebra over a definable field (and one of Lie-Chevalley type).

• If the characteristic is ‰ 2, 3, then g does not have Morley rank 4.

Group theorists will deem these results merely inspirational insofar as they should have no impact on the Cherlin-Zilber conjecture, other than a renewed challenge. However seen from the legitimate Lie-theoretic perspective we do believe the connection with the Block-Premet-Strade-Wilson theorem deserves serious investigations in model-theoretic algebra.

Notation, facts, lemmas

This section contains general notation and terminology ( § 2.1), some facts from the theory of groups of finite Morley rank ( § 2.2), and then a couple of lemmas on Lie rings of finite Morley rank ( §2.3).

Notation; Borel and Cartan subrings

• We occasionally combine bracket and product notations, as in Jacobi's identity: ra, bcs " rab, cs `rb, acs.

• To distinguish between mere additive subgroups, subrings, and ideals, we reserve: ď for subgroups, Ď for subrings, IJ for ideals. Throughout, ' is used at the group-theoretic level.

• If g is a Lie ring and x P g, we denote by ad x the derivation y Þ Ñ rx, ys.

• We use capital B for 'bracket', not for 'Borel'. If g is a Lie ring and x P g, we let B x " rx, gs " im ad x ď g, a mere subgroup. If g is connected (see § 2.2), so is B x . (Notation generalised below.)

• For Borel subrings we favour b Ď g. By definition, a Borel subring is one definable, connected, soluble, and maximal as such.

• We use capital C for 'centraliser', not for 'Cartan'. If g is a Lie ring with connected components (see § 2.2) and x P g, we let C x " C g pxq " ty P g : rx, ys " 0u ˝Ď g, a subring. (Notation generalised below.)

• For Cartan subrings we favour c Ď g. By definition, a Cartan subring is one definable, connected, nilpotent, and quasi-self-normalising, viz. of finite index in its normaliser.

• For n an integer and x P g we let:

B n x " im ad n x ď g and C n x " ker ˝ad n x ď g. Be careful that for n ą 1, C n x need not be a subring. If g is connected, these are series of definable, connected subgroups (however see Lemma A); the latter is increasing while the former is decreasing. When one series stabilises, so does the other.

• If x P g and k is an integer (modulo the characteristic of g), we let E k pxq " ty P g : rx, ys " kyu ˝" ker ˝pad x ´k Idq. It is a subgroup, and rE k pxq, E ℓ pxqs ď E k`ℓ pxq. Often x will remain implicit. For fixed x, the various E k are in direct sum, being well-understood that indices are integers modulo the characteristic.

Facts from the theory of groups of finite Morley rank

We need only basic results, used with no reference.

Fact. Work inside a group of finite Morley rank.

• Every descending chain of definable subgroups is stationary [START_REF] Borovik | Groups of finite Morley rank[END_REF]§ 5.1]. • The image of a definable, connected group under a definable group morphism remains definable and connected.

• The sum of two definable, connected subgroups remains definable and connected; the sum of infinitely many such reduces to a finite sum.

• (Strong) Cherlin-Macintyre-Shelah property: infinite definable skew-fields are algebraically closed fields [START_REF] Borovik | Groups of finite Morley rank[END_REF]Theorem 8.10].

Remark (more on fields). Augmented fields abound in model theory, even in universes of finite Morley rank. The existence of fields of finite Morley rank with nonminimal multiplicative group (at least in characteristic 0, [START_REF] Baudisch | Die böse Farbe[END_REF]) complicates considerably the study of groups of finite Morley rank. They play no role here. However, fields of finite Morley rank with non-minimal additive groups (which exist only in positive characteristic, [START_REF] Baudisch | Red fields[END_REF]) make matters non-trivial. See Steps 3.1.2, 4.4.3.

We turn to Lie rings of finite Morley rank. The following are straightforward adaptations of their group counterparts. More details can be found in [Ros91, § 3.3].

Fact. Let g be a Lie ring of finite Morley rank.

• For x P g, one has dim g " dim B x `dim C x .

In particular, if g is connected, soluble and infinite, then all centralisers are infinite; otherwise g " B x ď g 1 , a contradiction. Without solubility there are some challenging open problems; see the questions in § 4.

• If g is connected, then the ideal g 1 IJ g generated by commutators is definable and connected.

(This is actually trivial, as abelianity completely bypasses the Chevalley-Zilber 'indecomposable generation' lemma of [START_REF] Borovik | Groups of finite Morley rank[END_REF]§ 5.4]. We take it as an indication that all the strength of finite Morley rank may not be required. See the final questions in § 4.) We move to modules, linearisation principles, and their consequences. For V an abelian group, we let DefEndpV q be the Lie ring of definable endomorphisms. Be careful that DefEndpV q itself need not be definable. The bracket is the usual one:

• If g is connected
f 1 , f 2 " f 1 ˝f2 ´f2 ˝f1 .
Definition. A definable Lie ring action is a triple pg, V, ¨q where:

• g is a definable Lie ring,
• V is a definable, connected abelian group,

• ¨: g ˆV Ñ V is a definable map inducing a Lie morphism ρ : g Ñ DefEndpV q.
When the context is clear we simply say definable module.

A definable module is faithful if ker ρ " t0u, and g-irreducible if V has no definable, connected, infinite, proper 0 ă W ă V which is g-invariant. (Also called 'gminimal'.)

The following fact extends Zilber's original 'definabilisation' of the Schur covariance field.

Fact (consequence of [START_REF] Deloro | Zilber's skew-field theorem[END_REF]). Let pg, V q be a definable, faithful, g-irreducible module in a finite-dimensional universe. Suppose that g and C DefEndpV q pgq are infinite. Then there is a definable field K such that V is a finite-dimensional K-vector space and g acts K-linearly.

General lemmas

We first discuss iterated centralisers.

Lemma A. Let g be a Lie ring of finite Morley rank and h P g. Let n be an integer such that C n h is abelian. Then C n`1 h is a subring.

Proof. Let δ " ad h , so that C n " ker ˝δn . Let x, y P C n`1 . Then:

δ n`1 prx, ysq " n`1 ÿ k"0 ˆn k ˙rδ k x, δ n`1´k ys " n ÿ k"1 ˆn k ˙rδ k x, δ n`1´k ys. Now for 1 ď k ď n, one has δ k x P C n`1´k ď C n and δ n`1´k y P C k ď C n .
By abelianity, all brackets vanish, so rx, ys P ker δ n`1 . Since

rC n`1 h , C n`1 h s is connected, it is contained in ker ˝δn`1 " C n`1 h .
There is a form of converse. Proof. Compute modulo ra, gs. For any a P a and x, y P g one has:

Lemma B ([Ros91

0 " ra, rx, yss " rax, ys `rx, ays, whence rax, ys " ´rx, ays. Let f be a product of n a-derivations, say f " ad a1 ˝¨¨¨a d an with the a i all in a. By abelianity, the order does not matter. Then rf pxq, ys " p´1q n rx, f pyqs. If f 1 is another product, of say n 1 a-derivations, then keeping abelianity in mind: rf pxq, f 1 pxqs " p´1q n rx, f f 1 pxqs " p´1q n rx, f 1 f pxqs " p´1q n`n 1 rf 1 pxq, f pxqs " p´1q n`n 1 `1rf pxq, f 1 pxqs.

Hence if n `n1 is even then 2rf pxq, f 1 pxqs " 0 and rf pxq, f 1 pxqs " 0. This is the case when n 1 " n, implying rA n , A n s ď ra, gs.

The following extremely useful principle is simply additivity of dim.

Lemma D ('lifting the eigenspace'). Let g be a Lie ring of finite Morley rank and X be a subquotient module, viz. X " V {V 1 where V 1 ď V ď g are g-submodules. If for some h P g and some integer k modulo the characteristic, E X k phq " tx P X : rh, xs " xu ˝is non-trivial, then E g k phq ď g is non-trivial. Proof. Let ϕpxq " rh, xs ´kx, which stabilises both V and V 1 . Let π : V Ñ X be the quotient map and ϕ : X Ñ X be induced by ϕ. Notice E X k " ker ˝ϕ. Let W " pπ ´1pker ˝ϕqq ˝ą V 1 . Then ϕpW q ď V 1 , so ker ˝ϕ ą 0.

We now turn to the action of a definable subring on the quotient group.

Lemma E. Let g be a simple Lie ring of finite Morley rank and h Ă g be a definable, connected, proper subring. Then I " C h pg{hq is nilpotent.

Proof. Of course I IJ h. Let I rns be the descending nilpotence series, so that I rns IJ h.

We claim that for n ě 0, one has rI rn`1s , gs ď I rns . Indeed when n " 0, one has: rI r1s , gs " rII, gs ď rI, Igs ď rI, hs ď I, and then by induction: rI rn`2s , gs " rII rn`1s , gs ď rI, I rn1`s gs `rI rn`1s , Igs ď rI, I rns s `rI rn`1s , hs ď I rn`1s .

By the descending chain condition, there is n such that I rn`1s " I rns . Then rI rns , gs ď I rns so I rns IJ g. Since I rns ă g, we get I rns " 0 by simplicity.

To our own surprise we could easily obtain a self-normalisation criterion.

Lemma F. Let g be a definable, connected Lie ring and h Ă g be a definable, connected subring of codimension 1. Then either h Ÿ g is an ideal, or N g phq " h.

Proof. Let I " C g pg{hq. If I " h then h is an ideal of g; so suppose not. Then h{I acts non-trivially on g{h. Linearising in dimension 1 (see § 3.1), the action is scalar; hence free.

Let h P hzI. Let n P N g phq. Then rh, ns " ´rn, hs P h, so the non-trivial, scalar action of h on g{h sends the image of n to 0. By freeness, n P h already.

Last is an important observation on definable derivations.

Lemma G. An infinite field of finite Morley rank has no non-trivial definable derivation.

Proof. Recall that the Cherlin-Macintyre-Shelah property holds: K, or any infinite definable subfield, is algebraically closed.

Let δ : K Ñ K be a definable derivation, and K 0 be the field of constants. Suppose the characteristic is not 2. Let x P K 0 , and let y P K such that y 2 " x. Then 0 " δpxq " 2yδpyq, so y P K 0 . So K 0 is closed under taking square roots: hence infinite. In characteristic 2, it is however closed under taking cubic roots: hence infinite as well. So in either case, K 0 is infinite and definable: this proves K 0 " K, viz. δ " 0.

The same holds in o-minimal universes, but seems unclear in the general finitedimensional case. It however appears like a desirable property for a more systematic investigation of Lie rings in model theory.

3 The proofs § 3.0 handles characteristic 0; Theorem 0 will not surprise people familiar with Zilber's early work. Turning to positive characteristic, § § 3.1, 3.2, 3.3, 3.4 deal with increasing dimensions, and theorems are numbered accordingly. Since we do not reprove Rosengarten's rank 1 analysis, we call it Fact 1; Corollary 1 should be folklore. Theorems 2 is already in [START_REF] Rosengarten | Aleph-zero stable Lie algebras[END_REF], but the too partial (though important) Corollary 2 is new. Theorem 3 too is already in [START_REF] Rosengarten | Aleph-zero stable Lie algebras[END_REF]; its simple Corollary 3 is not. Theorem 4 is definitely new.

Characteristic 0

The following entirely settles matters in characteristic 0. It is essentially Zilber's definability of the Schur covariance field and was known to Zilber [Zil82, Theorem 2]. We learnt about this paper from Belegradek, whom we quote (personal correspondence). This is one-page paper containing only formulations of results and some hints of proofs. It was submitted in 1979 but published only in 1982. The rule of that journaI was that they could publish a short paper containing no proofs in case if the author also submitted a manuscript with detailed proofs; the referee wrote a report based on the short paper and manuscript together. I don't know whether that manuscript is still available. But I think it makes sense for people working on groups of finite Morley rank to rediscover the proofs of the paper, and to advertise the paper (which seems not well-known even though its author is the famous Zilber; maybe this is because that second rate Russian journal was not translated into English, and the paper was not reviewed in MR).

Although we found no further trace of the topic in the literature, the result must also have been known to Nesin [START_REF] Nesin | Nonassociative rings of finite Morley rank[END_REF] among others. Why Rosengarten does not discuss it, is a mystery to us.

Theorem 0. Work in a theory of finite Morley rank.

(i) Let pg, V, ¨q be a definable Lie ring action with g infinite. Suppose it is irreducible and faithful. Suppose further that V does not have bounded exponent. Then the configuration is linear: there is a definable field K such that V is a K-vector space and g is a K-Lie subalgebra of gl K pV q.

(ii) If in addition g is a Lie algebra over some algebraically closed field L, then L » K definably.

(iii) If g is a simple Lie ring of finite Morley rank and characteristic 0, then there is a definable field K such that g is the ring of K-points of one of the Lie-Chevalley functors A n , . . . , G 2 .

Proof.

(i) The action of g commutes to Z Id V , so we may linearise (see § 2.2). There is a definable field K such that V a finite-dimensional vector space over K and g ãÑ gl K pV q, a mere embedding of Lie rings. Of course char K " 0. It suffices to show that g is a vector subspace of gl K pV q. Indeed N " tλ P K : p@x P gqpλ ¨x P gqu is an infinite, definable subring of K, hence equal to K by the Cherlin-Macintyre-Shelah property.

(ii) Let ( denote interpretability. The above and definability of linear structures over a pure field imply pK; `, ¨q ( pg, V ; `, r¨, ¨s, ¨q. Now using the adjoint action of a Cartan subalgebra, one has pg; `, r¨, ¨sq ( pL; `, ¨q. It follows pK; `, ¨q ( pL; `, ¨q and one may conclude by Poizat's monosomy theorem [Poi01, Theorem 4.15] that K » L, even K-definably.

(iii) Let g act on V " pg; `q by the adjoint representation: the module is faithful and irreducible. By (i), g is a Lie algebra over some algebraically closed field K.

It remains simple as such. Since K has characteristic 0, the isomorphism type of g is given by the classification into Chevalley families.

Nothing similar is possible in positive characteristic-and one should also expect objects of Lie-Cartan type.

Dimension 1

We state Rosengarten's 'minimal' result (which we do not reprove), and then a number of consequences in Corollary 1. Fact 1 (Rosengarten; [Ros91, Theorem 4.1.1]). Let g be an infinite Lie ring of finite Morley rank and characteristic ‰ 2, 3. Then g contains an infinite, definable, connected, abelian subring. This is the analogue of Reineke's theorem on 'definably minimal' groups [START_REF] Reineke | Minimale Gruppen[END_REF]. The existing proof is non-trivial and relies on results in the finite case. (Moreover the problem is open in characteristic 3). See the section on open questions, § 4.

We prove a couple of consequences, some already mentioned in § 2. In general they will be used without mention.

Corollary 1. Let g ‰ 0 be a connected Lie ring of finite Morley rank and characteristic ‰ 2, 3.

(i) Borel subrings are infinite and quasi-self-normalising.

(ii) Let V be a definable, faithful module. Suppose that V is definably minimal as a group (viz. t0u-irreducible). Then dim g ď dim V .

(iii) Let V be a faithful 1-dimensional g-module. Then there is a field

K with V » K ànd g » K Id V .
In particular, there is h P g acting like Id V .

We call the last ad 'linearising in dimension 1'.

Proof.

(i) By Fact 1, there exist infinite definable abelian subrings, so Borel subrings are non-trivial. Let b Ď g be one such. If N g pbq{b is infinite, then it contains an infinite definable abelian subring a. Lifting and taking the connected component, the soluble subring π ´1paq ˝ą b contradicts the definition of b.

(ii) Let V be a faithful g-module which is t0u-irreducible. Let v P V zt0u and h " C g pvq. Suppose that h is infinite. By Fact 1, it contains an infinite, definable, connected, abelian a Ď h. Now V remains faithful as an a-module, and is a-irreducible. Linearising the abelian action (see end of § 2.2), V is a vector space over a definable field K, and the action of a is by scalars, hence free. But a acts trivially on v ‰ 0: a contradiction. So h is finite. In particular, dimpg ¨vq " dim g ď dim V .

(iii) Let V be a 1-dimensional, faithful g-module. By (ii), dim g " 1. By Fact 1, g is abelian and we may linearise. Clearly V » K `and g » K Id V .

Dimension 2

We reprove Rosengarten's dimension 2 analysis (Theorem 2), and derive an important, though too partial, form of Lie's theorem in dimension 2 (Corollary 2). The following is already in [START_REF] Rosengarten | Aleph-zero stable Lie algebras[END_REF]; our proof is as short but more conceptual.

Theorem 2 (Rosengarten; [Ros91, Theorem 4.2.1]). Let g be a connected Lie ring of Morley rank 2 and characteristic ‰ 2, 3. Then:

(i) g is soluble;

(ii) if g is non-nilpotent, then:

• there is a Cartan subring c Ď g with g " c ' g 1 ;

• there is h P c with pad h q |g 1 " Id g 1 (in particular, Zpgq ď c);

• Zpgq is finite and there is a definable field K with g{Zpgq » ga 1 pKq.

Proof.

(i) Let h Ď g be an infinite, definable, connected subring of minimal dim. By Fact 1, h is abelian, so we may assume it is proper; dim h " 1. Consider the action of h on V " g{h. If it is trivial, then h Ÿ g is an ideal, so g is soluble and we are done. So we suppose that said action is non-trivial. Linearising in dimension 1, there is h P h acting on V as Id V . Lifting the eigenspace with LemmaD, E 1 phq ‰ 0. Now h is abelian so h ď E 0 phq. Since dim g " 2, we get g " E 0 ' E 1 ; finally rE 1 , E 1 s ď E 2 " 0 so E 1 is an ideal of g and we are done.

(ii) Suppose g is non-nilpotent. Then g 1 has dimension 1, so it is abelian by Fact 1. By non-nilpotence, the action of g on g 1 is non-trivial. Linearising in dimension 1, there is h P g acting on g 1 like Id g 1 ; hence E 1 ‰ 0. Since g is soluble, one has E 0 ‰ 0. So we find g " E 0 ' E 1 and E 1 " g 1 . Always by non-nilpotence, E 1 is the only 1-dimensional, connected ideal of g. It follows that c " E 0 is abelian, and has finite index in its normaliser: it is a Cartan subring. Clearly Zpgq ď E 0 . Last, Zpgq is finite, so g{Zpgq is centreless. We now suppose g centreless. The action of E 0 on E 1 is then faithful, so linearisation directly gives the required isomorphism.

Remark.

A finite centre is unavoidable, as the following example shows. Let:

g " $ & % ¨x 0 0 0 αpxq y 0 0 0 ': px, yq P K 2 , .
-, for any additive α : K `Ñ K `, such as for instance x Þ Ñ x p . Then Zpgq is isomorphic to ker α.

The following is very unsatisfactory and one should generalise it to dim V less than the characteristic, with no mention of dim b. It plays an important role in the proof of Theorem 4.

Corollary 2. Work in finite Morley rank. Let b be a non-nilpotent, connected Lie ring of characteristic

‰ 2, 3. Let V be an irreducible b-module. Suppose dim b " dim V " 2. Then b 1 centralises V .
Proof. By Theorem 2, a " b 1 ą 0; moreover there is a Cartan subring t ă b such that b " t ' a and a " rt, as.

Let ∆ " DefEndpV q, which is an associative ring with induced Lie bracket f, g " f g ´gf . Let ρ : b Ñ ∆, a Lie morphism. We avoid it from notation mostly, with exceptions for enhanced clarity. To prove that a ď ker ρ, we suppose otherwise. Notice that C V paq is b-invariant, so we may suppose C V paq " 0.

Step 2.1. V is not a-irreducible.

Proof. Suppose it is. Linearising the abelian action, K " C DefEndpV q pρpaqq is a definable field containing ρpaq. We claim that t acts by definable derivations of K. Indeed, let λ P K and a P a. Also let h P t and a 1 " rh, as. Then: ρphq, λ , ρpaq " pρphqλ ´λρphqqρpaq ´ρpaqpρphqλ ´λρphqq " ρphqρpaqλ ´λρphqρpaq ´ρpaqρphqλ `λρpaqρphq " ρphq, ρpaq λ ´λ ρphq, ρpaq " ρprh, aqsλ ´λρprh, asq

" ρpa 1 q, λ " 0,
proving that ρphq does act on K. The action is clearly that of a derivation. By Lemma G, ρptq must act trivially; in particular ρptq centralises ρpaq ď K. So a " rt, as ď ker ρ, as wanted.

Step

2.2. V is a-irreducible.
Proof. Otherwise let W ă V be a 1-dimensional a-submodule. If a acts trivially on W , then C V paq ‰ 0, a contradiction. So a acts non-trivially on W . Linearising, K " C DefEndpW q paq is a definable field containing ρpaq. We fix h P t ad-acting on a like Id a , viz. rh, as " a for a P a.

We claim hW ‰ 0 and pW X hW q ˝" 0, so that V " W `hW . Suppose w 1 " hw 2 for some w 1 , w 2 P W . Then applying an arbitrary a P a:

aw 1 " ahw 2 " haw 2 ´aw 2 , so haw 2 " apw 1 `w2 q P W . But if w 2 R C V paq
, then aw 2 " W , which proves hW " W . So h acts on W , and as before on K as well. Now it induces a derivation of K ě a, although it acts non-trivially on a; against Lemma G. So w 2 P C V paq, which is finite. So w 1 " hw 2 has finitely many solutions, which proves all claims.

We derive a contradiction. Let w P W . Then there are w 1 , w 2 P W such that h 2 w " w 1 `hw 2 . Let a P a act on W like Id W (this is the element going to 1 K ). Remember rh, as " a; in particular ah 2 " h 2 a ´2ha `a. Applying to w one finds:

ah 2 w " aw 1 `ahw 2 " w 1 `haw 2 ´aw 2 " w 1 ´w2 `hw 2
" ph 2 a ´2ha `aqw " h 2 w ´2hw `w " w 1 `w `hpw 2 ´2wq. This proves hw P W X hW which is finite, so by connectedness hW " 0, a contradiction. This completes the proof of Corollary 2.

Dimension 3

Theorem 3 (Rosengarten; [Ros91, Theorem 4.4.1]). Let g be a simple Lie ring of Morley rank 3 and characteristic ‰ 2, 3. Then g » sl 2 pKq.

Our three reasons to give a proof are: 1. Rosengarten's own argument was never published; 2. ours is sufficiently different from Rosengarten's, and more conceptual; 3. parts of it make sense in the group setting; 4. some key ideas reappear in the dimension 4 argument of § 3.4.

The proof first removes nilpotent Borel subrings (Proposition 3.1), then explicitly identifies g (Proposition 3.2). Proposition 3.1. No Borel subring is nilpotent.

Proof. Let b Ď g be a nilpotent Borel subring. Let Z " Z ˝pbq ą 0. First we prove that b acts trivially on subquotients of rank 1 (Step 3.1.1), and has rank 1 itself. Then we find a field L with rank 2, such that b embeds properly into L `(Step 3.1.2). Then we derive a contradiction (Step 3.1.3).

Step 3.1.1. Let X be a 1-dimensional subquotient b-module. Then b centralises X.

Proof. Suppose not. Linearising in dimension 1, there is h P b acting on X like Id X . Lifting the eigenspace,

E 1 " E 1 phq ď g is non-trivial. It is proper since E 0 ě Z ą 0.
For each integer k ı 0 one has E k X b " 0. Indeed, if a P E k X b, then a " 1 k rh, as P b 1 , and for every integer n one has a P b rns , the descending nilpotent series. Hence a " 0. We claim dim b " 1. Otherwise dim b " 2 and g " b ' E 1 . But then E 2 " 0, so E 1 is an abelian subring. Now Z ď E 0 normalises E 1 . If the action is trivial, then E 1 ď C g pZq " b, a contradiction. So the action of Z on E 1 is non-trivial. Hence we may assume h P Z; in that case, E 0 " b normalises E 1 , which is an ideal of g. This is a contradiction; hence dim b " 1.

It follows that b is abelian and 

E 0 " b. If E 2 ‰ 0 then g " E 0 ' E 1 ' E 2 and E 2 Ÿ g; a contradiction. So E 2 " 0 and E 1 is an abelian subring. But then E 0 ' E 1 is a subring properly containing E 0 " b.
C 2 a ą C a . However, C a " b is abelian, so by Lemma A, C 2 a is a subring. But dim C 2 a ď 2 dim C a " 2 dim b ă dim g, so C 2 a is a definable, connected, proper subring containing C a " b. Hence C 2 a " b " C a , a contradiction proving b ę B b . B b is b-irreducible. Otherwise there is a 1-dimensional b-submodule V 1 ă B b . By Step 3.1.1, b centralises V 1 , so V 1 ď C g pbq " b. Always by Step 3.1.1, b centralises B b {b, so B b ď N g pbq " b, a contradiction.
The action of b on B b is faithful. Otherwise there is a P bzt0u with B b ď C a " b, a contradiction again.

Linearising the abelian action, there is a definable field L with B b » L `and b ãÑ L Id B b .

Step

Contradiction.

Proof. Fix any a 0 P bzt0u and x 0 P B b zt0u.

Because the action of b on B b is by scalars, dimra 0 , rb, x 0 ss " dimrb, x 0 s " 1 (the subgroups ned not be equal). We claim that dimrb, rb, x 0 ss " 1. Let A 2 " rb, rb,

x 0 ss ď B b . By Lemma C, rA 2 , A 2 s ď B b . If dim A 2 " 2 then dimensions match and A 2 " B b . Now rB b , B b s ď B b , so B b is a subring. It also is b-invariant, but b ę B b by Step 3.1.2. So B b Ÿ g, a contradiction. Hence dim A 2 " 1.
Thus dimra 0 , rb, x 0 ss " dimrb, rb, x 0 ss; the groups are equal. So for a 1 , a 2 P b, there is a 3 P b with ra 0 , ra 3 , x 0 ss " ra 1 , ra 2 , x 0 ss. Returning to the field L, this means a 0 a 3 " a 1 a 2 as elements of L. So the image of b in L is closed under the map pa 1 , a 2 q Þ Ñ a1a2 a0 . Let R " tλ P L : λb ď bu, a definable subring. We just proved 1 a0 b ď R, so R is infinite. By the Cherlin-Macintyre-Shelah property, every infinite definable domain is an algebraically closed field. So R " L and b ‰ 0 is an ideal of L. Hence b " L but dimensions do not match. This eliminates nilpotent Borel subrings in a 3-dimensional, simple Lie ring: Proposition 3.1 is proved. (The argument will be extended to the 4-dimensional case in Proposition 4.4.) By Theorem 2, the structure of Borel subrings of g is well-understood. Proposition 3.2. g » sl 2 pKq.

Proof. The proof starts by some local analysis, viz. the study of intersections of Borel subrings (Step 3.2.1). Then we find the desired weight space decomposition (Step 3.2.2), which allows final coordinatisation (Step 3.2.3).

Step 3.2.1. If b 1 ‰ b 2 are distinct Borel subrings, then c " pb 1 X b 2 q ˝is a Cartan subring of both.

Proof. Clearly dim c " 1. By Proposition 3.1, b 1 and b 2 are non-nilpotent; it is enough to prove that c is normal in neither. Suppose it is, say in b 1 ; then c " b 1 1 ď b 2 . Considering N g pcq ă g, the ring c is not normal in b 2 , so it is a Cartan subring of b 2 .

Let t be a Cartan subring of b 1 . Let t P t act on b 1 1 " c like the identity. Now let h P c act on b 1 2 like the identity. Notice that rt, hs " b 1 1 " c, and rh, b 1 2 s " b 1 2 , so B h ě c `b1

2 " b 2 . Equality follows since C h ě b 1 1 ą 0. Now for f P b 1 2 one has: rt, f s " rt, rh, f ss " rth, f s `rh, tf s " rh, f s `rh, tf s.

The right-hand is in B h " b 2 . Therefore rt, f s P b 2 , and the right-hand is in b 1 2 . Therefore rt, f s P b 1 2 , implying rh, tf s " rt, f s. So there remains rh, f s " 0, a contradiction.

Step

3.2.2.

Weight decomposition: there is h 1 P g such that g " E ´2 ' E 0 ' E 2 , and rE ´2, E 2 s " E 0 . Moreover, for e P E 2 zt0u one has C g peq " E 2 .

Proof. Let b Ď g be a Borel suring. By Proposition 3.1, it is non-nilpotent. In particular, by Theorem 2, there is a definable field such that b{Zpbq » ga 1 pKq. Let We now claim that E ´1 " E ´1ph 1 q ‰ 0. For suppose E ´1 " 0. The additive morphism ϕpxq " rh 1 , xs `x then has a finite kernel, and is surjective. Therefore: im ad h1 ad e " im ad e p1 `ad h1 q " im ad e " B e " b.

But im ad h1 ad e " rh 1 , B e s " rh 1 , bs ă b, a contradiction proving E ´1 ‰ 0.

It follows g " E ´1 ' E 0 ' E 1 , and c " E 0 normalises each term. Also, b "

E 0 ' E 1 and b 1 " E 1 . If rE ´1, E 1 s " 0, then E ´1 ' E 1 is a subring, hence a Borel subring. However it intersects b in E 1 " b 1 , against Step 3.2.1. So rE ´1, E 1 s " E 0 .
There remains to prove that for any e P E 1 zt0u, one has C g peq " E 1 (notice the absence of a connected component). Since g " E ´1 ' E 0 ' E 1 , it is enough to prove C E0 peq " C E´1 peq " 0.

• Let h P E 0 centralise e; then it centralises E 0 and rE 0 , es " E 1 . But also, for y P E ´1, one has re, ys P E 0 ď C h , so: re, rh, yss " reh, ys `rh, eys " 0.

Therefore rh, E ´1s ď C e " E 1 . However rh, E ´1s ď E ´1, proving h P Zpgq " 0.

• Now let f P E ´1 centralise e. Then it normalises C e " E 1 and N g pE 1 q " E 0 `E1 . In particular, rf, h

1 s P E 0 `E1 , but rf, h 1 s " ´rh 1 , f s " f P E ´1 so f " 0.
This shows C g peq " E 1 . We finally rescale and replace h 1 by 1 2 h 1 .

Step

Coordinatisation.

Proof. Let c " E 0 , u `" E 2 , and u

´" E ´2. By Step 3.2.2, there are e 1 P u `and f 1 P u ´with re 1 , f 1 s " h 1 . We simultaneously coordinatise c and u `as follows. Linearising in dimension 1, there is a definable field K such that c » K Id acts by doubled scalars on u `» K `, viz. rh λ , e µ s " 2e λµ . Notice that h 1 was defined consistently. Since the multiplicative unit is not fixed, we choose it to be e 1 and consistently write u `" te λ : λ P Ku. Now we let f λ " ´1 2 rh λ , f 1 s, so u ´" tf λ : λ P Ku. Notice that f 1 was defined consistently.

We prove g » sl 2 pKq. It suffices to check a couple of identities. First, by definition, rh λ , e µ s " 1 2 rh λ , rh µ , e 1 ss " rh µ , e λ s; and rh λ , f µ s " rh µ , f λ s likewise. Then re µ , f 1 s " h µ , because: rre µ , f 1 s, e 1 s " re µ e 1 , f 1 s `re µ , f 1 e 1 s " rh 1 , e µ s " 2e µ " rh µ , e 1 s, meaning that re µ , f 1 s ´hµ P C c pe 1 q " 0 by Step 3.2.2.

It follows re µ , f ν s " h µν . Indeed,

´2re µ , f ν s " re µ , rh ν , f 1 ss " re µ h ν , f 1 s `rh ν , e µ f 1 s " ´2re µν , f 1 s " ´2h µν .
Last, rh µ , f ν s " ´2f µν since:

rrh µ , f ν s, e 1 s " rh µ e 1 , f ν s `rh µ , f ν e 1 s " 2re µ , f ν s " 2h µν " ´2rf µν , e 1 s, implying rh µ , f ν s `2f µν P C u´p e 1 q " 0 by Step 3.2.2 again. The isomorphism g » sl 2 pKq is now obvious.

This completes the recognition and proves Theorem 3.

The extension problem is easy, although not considered by Rosengarten.

Corollary 3. Let g be a connected, non-soluble Lie ring of Morley rank 3 and characteristic ‰ 2, 3. Then g » sl 2 pKq for some definable field K.

Proof. It is enough to show simplicity of g, which we shall derive from the isomorphism type of g{Zpgq. Let Z " Zpgq, a definable ideal of g, and g " g{Z.

We first prove that g is simple. It is enough to prove that it is definable simple (see § 2.2). Let I Ÿ g be any proper definable ideal; then I ˝Ÿ g as well. If I ˝ą 0 then by Theorem 2 both I ˝and g{I ˝are soluble, against the assumption. Therefore I is finite. By connectedness, rI, gs " 0 so I is central. This shows that the largest proper definable ideal of g is Z. In particular, g is definably simple; being non-abelian, it is simple.

We now conclude Z " 0. By Theorem 3, g » sl 2 pKq for some definable field K. So there is η P g such that g " E ´1pηq ' E 0 pηq ' E 1 pηq. Lift η to h P g; lifting eigenspaces, one has g " E ´1phq ' E 0 phq ' E 1 phq, and each has dimension 1. It now follows that Z ď E 0 phq. Moreover, rE ´1phq, E 1 phqs " E 0 phq. Let z P Z. Then there are a ´1 P E ´1 and a 1 P E 1 with z " ra ´1, a 1 s. Let α i " pa i mod Zq P E i pηq. Then rα ´1, α 1 s " 0 in sl 2 pKq, so at least one α i is zero. Thus a i P E i X Z " 0 and z " 0. This proves Z " 0 and g » g.

Dimension 4

Theorem 4. There is no simple Lie ring of Morley rank 4 and characteristic ‰ 2, 3.

The main idea is elementary: use Borel subrings as flintstones. We need at least two, and at least one of them should be large enough. It is unreasonable to have more upper-triangular matrices than lower-triangular ones, and this is the contradictory picture. For this we need two Borel subrings of distinct dimensions intersecting over a 1-dimensional, 'diagonal' subring, creating friction between unbalanced dimensions.

So we shall produce a 3-dimensional Borel subring b 1 , and another Borel subring b 2 . With rudimentary proxies for 'a toral subring' and 'the nilpotent radical', b 1 and b 2 will intersect in a 1-dimensional, toral subring c, and have disjoint nilpotent radicals I 1 ‰ I 2 ; also we shall see dim I 1 " 2. Then rI 1 , I 2 s will be too large to fit into c. This creates centralisation phenomena between nilpotent radicals in a tight configuration, where nilpotence is not for sharing: a contradiction.

Of course the above strategy has to be implemented without weight theory, since there is no linear structure to begin with. So we are left with basic means inspired by the group-theoretic analysis of PGL 2 pKq in terms of Borel subgroups and unipotent radicals [CJ04; Del07; DJ16]. In short the proof does not proceed by picking a Cartan subring and studying the root decomposition. To do this one would need a number of tools yet dubious; see final questions in § 4.

The proof starts. Let g be a simple Lie ring of Morley rank 4. There are three main stages. We first prove minimal simplicity of g in Proposition 4.1. We derive that g cannot be a sum of integral weight spaces in Proposition 4.2; Proposition 4.3 is an important consequence. Changing topic, we remove nilpotent Borel subrings in Proposition 4.4; Proposition 4.5 then allows us to find a 3-dimensional Borel subring, whose fine structure is described in Proposition 4.6. Proposition 4.7 gives the final contradiction.

Proposition 4.1. g is minimal simple, viz. every definable, connected, proper subring is soluble.

Proof. Let h Ă g be a definable, connected, proper subring. By Theorem 2, we may assume dim h " 3. Let I " C h pg{hq, an ideal of h. Notice I ă h since otherwise h Ÿ g, a contradiction. In particular I ˝is soluble by Theorem 2. Linearising in dimension 1 forces abelianity of h{I. Thus h is soluble.

Much later, Proposition 4.6 will return to the analysis of 3-dimensional subrings.

Lack of weights.

We shall now forbid g to be a sum of integral weight spaces. While mostly trivial, the proof needs attention as we also allow for characteristic 5. There, dimension 4 comes extremely close to 'Witt-type' root distribution and requires some care. Moreover, the final case of two Borel subrings intersecting over a 2-dimensional Cartan subring (Step 4.2.3) is a key configuration to eliminate. Proposition 4.2. Let h ‰ 0. Then g is not a sum of eigenspaces, viz.

ř iPFp E i phq ă g.

Proof. Unless otherwise indicated, all eigenspaces in this proof are with respect to h. Let p be the characteristic; by assumption p ‰ 2, 3, but 5 is allowed. Suppose ř iPFp E i " g. Bear in mind that the sum is direct.

Step 4.2.1. One has h P E 0 . Allowing trivial terms, we may suppose g " E ´1 ' E 0 ' E 1 ' E k for some k R t´1, 0, 1u.

Proof. A priori, and up to allowing trivial terms, g " E i ' E j ' E k ' E ℓ for i, j, k, ℓ distinct integers modulo p.

We claim h P E 0 ‰ 0 and g " E 0 'E i 'E j 'E k . Indeed, write h " e i `ej `ek `eℓ in obvious notation; we may assume e ℓ ‰ 0. Applying ad h , we find ie i `je j `ke k `ℓe ℓ " 0. In particular, ℓe ℓ " 0 and therefore ℓ " 0. Since the integers were distinct, e i " e j " e k " 0 and h " e ℓ P E ℓ " E 0 .

We may assume E i , E j , E k all non-trivial and proper. Properness is since h P E 0 . Now if E i " 0, then let h 1 " 1 j h. Notice how E ℓ ph 1 q " E jℓ phq, so g " E 0 ph 1 q ' E 1 ph 1 q ' E j ´1 k ph 1 q. Up to considering h 1 instead of h (which we call up to dividing) we have the desired form.

We may assume i `j, i `k, j `k all non-zero. Indeed if j " ´i, then up to dividing we have the desired form.

We may assume i `j ‰ k and i `k ‰ j. Indeed if i `j ´k " i `k ´j " 0, then 2i " 0 and i " 0; a contradiction. So at most one the three equalities of type i `j " k holds.

We may assume 2i P tj, ku. Indeed since i `j ‰ 0 and i `j ‰ k, we have i `j R t0, i, j, ku, so rE i , E j s ď E i`j " 0. By our assumptions, rE i , E k s " 0 likewise. So 0 ă E i ă g is normalised by E 0 `Ej `Ek . Since E i is no ideal of g, we therefore have rE i , E i s ‰ 0 and 2i P t0, i, j, ku. But 2i R t0, iu since i ‰ 0.

We have 2j P ti, ku and 2k P ti, ju. For suppose j `k " i. With 2i " j this gives i `k " 0, a contradiction; the case 2i " k is similarly excluded. So j `k ‰ i, and the previous paragraph also gives 2j P ti, ku and 2k P ti, ju.

Conclusion. We may assume 2i " j; the other case is similar. If 2j " i then 4 " 1, against p ‰ 3. So 2j " k. Similarly, 2k " i. Therefore 8 " 1 and p " 7. Up to dividing for readability, we now have g "

E 0 ' E 1 ' E 2 ' E 4 . But now E 3 " E 5 " E 6 " 0 and E 8 " E 1 , so E 1 ' E 2 ' E 4 Ÿ g, a contradiction.
Step 4.2.2. We may assume g " E ´1 'E 0 'E 1 . Moreover E ´1, E 0 , E 1 are non-trivial and proper.

Proof. By Step 4.2.1 we may assume g " E ´1 ' E 0 ' E 1 ' E k for some k R t´1, 0, 1u.

We first show that we may assume k " 2. If k " ´2, then up to considering ´h, we have the desired form. Therefore suppose k ‰ ˘2, so that k R t0, ˘1, ˘2u.

In particular E ´2 " E 2 " 0, implying that E ´1 and E 1 are abelian subrings. Let h " E ´1 `E0 `E1 , a definable, connected subring of g. If h " g, then up to taking k " 2 as a dummy we have the desired form. So we may assume h ă g. By minimal simplicity (Proposition 4.1), h is soluble. By Step 4.2.1, h P E 0 ď h, so E 1 " rh, E 1 s ď h 1 , and

E ´1 ď h 1 likewise. By solubility, h 1 ă h, implying rE ´1, E 1 s ă E 0 . If dim E 0 " 2 then since h ă g is proper, at least one of E ´1, E 1 is trivial; hence rE ´1, E 1 s " 0. If dim E 0 " 1 then rE ´1, E 1 s " 0. So rE ´1, E 1 s " 0 in either case.
Moreover k ˘1 R t´1, 0, 1, ku, so E ´1 and E 1 are ideals of g. Since E 0 ‰ 0 they are proper, hence trivial. There remains g " E 0 ' E k and E k is a proper ideal of g, hence trivial. Finally g " E 0 , so h P Zpgq " 0, a contradiction. So we may assume k " 2. Hence g

" E ´1 ' E 0 ' E 1 ' E 2 .
We prove that E ´1, E 0 , E 1 are non-trivial and proper.

• We already know 0 ă E 0 ă g.

• If E ´1 " 0 then (even when p " 5) E 2 is an ideal of g; hence trivial. Then E 1 is an ideal of g; hence trivial as well, and this is a contradiction.

• If E 1 " 0 then rE ´1, E 2 s " 0 so (even when p " 5) E ´1 is an ideal of g; hence trivial, a contradiction.

It remains to show that E 2 " 0. Suppose not. Then g " E ´1 ' E 0 ' E 1 , and each has dimension 1.

We claim rE ´1, E 1 s " E 0 , rE 1 , E 1 s " E 2 , and rE ´1, E 2 s " E 1 .

• If rE ´1, E 1 s " 0 then (even when p " 5) E ´1 `E1 `E2 is an ideal of g, a contradiction.

• If rE 1 , E 1 s " 0, then h " E ´1 `E0 `E1 is a proper subring, hence soluble by Proposition 4.1. But h P E 0 so h 1 ě E ´1 `E1 `rE ´1, E 1 s " h, a contradiction.

• Suppose rE ´1, E 2 s " 0. Write h P E 0 " rE ´1, E 1 s as h " re ´1, e 1 s; let e 2 P E 2 . Then:

2e 2 " rh, e 2 s " rre ´1, e 1 s, e 2 s " re ´1e 2 , e 1 s `re ´1, e 1 e 2 s " 0, a contradiction. (If the characteristic is not 5 there is a shorter argument: E 2 is an ideal of g, a contradiction.)

We claim that for any x 0 P E 0 there is y 2 P E 2 zt0u such that rx 0 , y 2 s " 0. Let e ´1 P E ´1 be such that re ´1, E 1 s " E 0 and re ´1, E 2 s " E 1 ; there is one such since otherwise C E´1 pE 1 q Y C E´1 pE 2 q " E ´1, a contradiction. Let x 0 P E 0 . Then there is y 1 P E 1 with ry 1 , e ´1s " x 0 . Now there is y 2 P E 2 with re ´1, y 2 s " y 1 . On the other hand, rE 1 , E 2 s " 0. Altogether, one has: rx 0 , y 2 s " rry 1 , e ´1s, y 2 s " ry 1 y 2 , e ´1s `ry 1 , e ´1y 2 s " r0, e ´1s `ry 1 , y 1 s " 0.

Conclusion. Since h P E 0 , the action of E 0 on E 2 is non-trivial. Linearising in dimension 1, there is a finite ideal F Ÿ E 0 such that E 0 {F acts by scalars, hence freely, on E 2 . This contradicts the last claim.

Step

Contradiction.

Proof. By Step 4.2.2, exactly one of E ´1, E 0 , E 1 has dimension 2; moreover E ˘1 are abelian. For the end of the argument, bear in mind that E ´1 does not normalise E 1 nor vice-versa, since the normalised one would be an ideal of g. There are essentially two cases.

• Suppose dim E 1 " 2. Let a P E ´1. Since ad a takes E 1 to E 0 , the subgroup X a " C E1 paq is infinite; since E 1 is abelian, X a is actually a subring. Notice that both a and h normalise X a . Moreover C g pX a q ě E 1 . If C g pX a q ą E 1 , then it is a 3-dimensional Borel subring. In that case, by Lemma F, h P C g pX a q, a contradiction as the action of h X a is non-trivial. Hence C g pX a q " E 1 is normalised by a. This shows that E ´1 normalises E 1 , a contradiction.

This rules out dim E ´1 " 2 as well, by considering ´h.

• Suppose dim E 0 " 2. (It is unclear whether E 0 is abelian.) Since E 0 contains h, it is trivial neither on E 1 nor on E ´1. Linearising in dimension 1, both t 1 " C E0 pE 1 q and t ´1 " C E0 pE ´1q are subrings of dimension 1. In particular they are abelian.

We show t 1 ‰ t ´1. Otherwise denote it by t ˘1 and let h " C g pt ˘1q, a proper subring of g. By assumption, h ě E ´1 `E1 `t˘1 ; so equality holds. In particular rE ´1, E 1 s ď ph X E 0 q ˝" t ˘1. Now h normalises E ´1, E 1 , and their bracket t ˘1; so h normalises h. By Lemma F, one gets h P h " E ´1 ' E h 0 ' E 1 , and finally h P E h 0 " t ˘1, a contradiction. Let c " rE ´1, E 1 s ‰ 0. Since E 0 normalises c, this is a subring. We prove t 1 ę c; suppose inclusion holds. Then t 1 ‰ t ´1 acts non-trivially on E ´1, so linearising in dimension 1, there is t 1 P t 1 acting on E ´1 as 1; by definition it acts trivially on E 1 . Then by assumption, t 1 P c " rE ´1, E 1 s. At most two elements e ´1, e 1 ´1 P E ´1 suffice to write c " ad e´1 pE 1 q `ad e 1 ´1 pE 1 q. So there are e 1 , e 1

1 P E 1 with t 1 " re ´1, e 1 s `re 1 ´1, e 1 1 s. But then:

0 " rt 1 , t 1 s " rt 1 , re ´1, e 1 ss `rt 1 , re 1 ´1, e 1 1 ss " rt 1 e ´1, e 1 s `re ´1, t 1 e 1 s `rt 1 e 1 ´1, e 1 1 s `re 1 ´1, t 1 e 1 1 s " re ´1, e 1 s `re 1 ´1, e 1 1 s " t 1 , a contradiction. Notice t ´1 ę c for the same reasons.

Conclusion. This implies dim c " 1. Indeed, dim c " 2 would contradict t 1 ę c. Finally let h " E ´1 `c `E1 , a subring. If c centralises E 1 , then c " t 1 , a contradiction. For the same reason, c does not centralise E ´1. So h 1 " h, against Proposition 4.1. This proves Proposition 4.2.

As a consequence we derive a severe control on sizes of weight spaces.

Proposition 4.3. Suppose h P g is such that E 0 phq ‰ 0 and E 1 phq ‰ 0. Then dim E 0 phq " dim E 1 phq " 1 and E 2 phq " 0.

Proof. All eigenspaces in this proof are with respect to h. Let b " E 0 `E1 `E2 , a priori a definable, connected subgroup. By Proposition 4.2, E 3 " E 4 " 0, so b is actually a proper subring. We must prove dim b " 2 and suppose not; then b is a 3-dimensional Borel subring. By Lemma F, it is self-normalising in g. Therefore h P N g pbq " b.

Since h P b, for i P t1, 2u one has

E i " rh, E i s ď b 1 . It follows b 1 " E 1 `E2 `Eb 1 0
, where each of the last two terms is allowed to be trivial. Then rh, b 1 s ď E 1 `E2 .

Consider the action of b on g{b. Linearising in dimension 1, b 1 centralises g{b. So for i P t1, 2u and e P E i one has B e ď b. By Proposition 4.2 again, E ´i " 0, so ad h `i is surjective and: rh, B e s " im ad h ad e " im ad e pad h `iq " im ad e " B e .

Since B e ď b and h P b one has B e " rh, B e s ď b 1 . Now B e " rh, B e s ď rh, b 1 s ď E 1 `E2 . Summing over e P E i and i P t1, 2u, for a P E 1 `E2 one has B a ď E 1 `E2 . Hence E 1 `E2 Ÿ g. But E 0 ‰ 0 and E 1 ‰ 0: a contradiction to simplicity.

A first analysis of Borel subrings. We now change thread and study abstract Borel subrings.

Proposition 4.4 (see Proposition 3.1). No Borel subring is nilpotent.

Remark. Some of the ideas in the following proof could be pushed further. One suspects that if g is minimal simple, then no Borel subring has dimension 1.

Proof. Towards a contradiction, let b be one such. Let Z " Z ˝pbq ą 0. It is a possibility that Z " b. For z P Zzt0u, one has b Ď C z ; by minimal simplicity, equality holds.

Step 4.4.1 (see Step 3.1.1). Let X be a 1-dimensional subquotient b-module. Then b centralises X. In particular, dim b ď 2.

Proof. The former claim implies the latter. Indeed, if dim b " 3 then b acts trivially on g{b, so rb, gs ď b and b is an ideal of g, a contradiction. So we deal with the former claim.

We first prove that if Y is a 1-dimensional subquotient Z-module, then Z centralises Y . (Both the conclusion and assumption are weaker.) Suppose not. Linearising in dimension 1, there is z P Z acting on Y like Id Y . In the present paragraph, eigenspaces are with respect to z. Lifting the eigenspace, E 1 ď g is non-trivial. Since p ě 5, the multiplicative order of 2 P F p is at least 3; on the other hand E 0 ą 0. So there is ℓ P F p such that E ℓ ‰ 0 but E 2ℓ " 0. Then E 0 `Eℓ is a subring properly containing E 0 " C z " b. It follows g " E 0 `Eℓ and E ℓ Ÿ g, a contradiction. So the claim about 1-dimensional Z-subquotient modules holds. (We lost z.)

To prove our full claim, we may suppose that b is non-abelian, implying dim b ě 2, and that b does not act trivially on X. Linearising in dimension 1, there is h P b acting on X as the identity. From now on, all eigenspaces are with respect to h. Lifting the eigenspace, there is h P b with E 1 ď g non-trivial. We aim for a contradiction.

We claim that g " b ' E 1 where dim b " dim E 1 " 2, and g{b » E 1 as Z-modules. (Not 'as b-modules', since b need not normalise E 1 .) First, bXE 1 " 0. This is because b X E 1 is contained in each term of the descending nilpotence series, which vanishes by nilpotence of b. Second, dim E 1 ě 2. Otherwise dim E 1 " 1 and the action of Z on E 1 is trivial, so E 1 ď C g pZq " b, a contradiction. In particular, dim b " dim E 1 " 2. Now g " b ' E 1 and E 1 » g{b as Z-modules.

We show that Z acts freely and irreducibly on g{b.

If E 1 is not Z-irreducible, there is a 1-dimensional Z-module Y ă E 1 . Now Z acts trivially on Y so Y ď C g pZq " b and Y ď E 1 X b, a contradiction again. Hence E 1 is Z-irreducible.
If some z P Zzt0u acts trivially then E 1 ď C z " b, a contradiction. Linearising the abelian action, there is a field K with E 1 » K `and Z ãÑ K Id E1 . Therefore Z acts freely on g{b » E 1 .

We finish the proof by turning to the action of b on g{b. Let I " C b pg{bq. Since Z acts freely on g{b, one has I X Z " 0. In particular dim I ă 2. If dim I " 1 then b " I `Z is a sum of two abelian ideals, hence abelian itself: a contradiction. Therefore dim I " 0. Notice that g{b is b-irreducible as it was Z-irreducible. Now ZI{I is infinite, and can be used to linearise the action of b{I (see § 2.2). Hence b{I is a linear nilpotent Lie ring, and g{b is b-irreducible. This forces the linear dimension to be 1, and therefore b{I is abelian. But then b 1 is finite and connected: b is abelian, a contradiction. Let W " g{b, a b-module, and I " C b pW q, an ideal of b. The proof of Proposition 3.1 cannot be followed literally but some ideas will look familiar.

Step 4.4.2. dim b " 1; in particular, b is abelian.

Proof. Suppose dim b " 2.
We claim that W is b-irreducible. Otherwise there is a 3-dimensional b-module V 3 with b ă V 3 ă g. By Step 4.4.1, b acts trivially on V 3 {b, so V 3 ď N g pbq: a contradiction. Now we show dim I " 1 and I ˝ď Z. The former implies the latter. Indeed if b is abelian, we are done; while if b is not, then its only 1-dimensional, connected ideal is Z, so I ˝" Z. So we focus on proving dim I " 1. If dim I " 2 then b is an ideal of g: a contradiction. We suppose dim I " 0 and give a contradiction. First, b{I can be linearised thanks to ZI{I ą 0. Since b is nilpotent and W is b-irreducible, this forces the linear dimension to be 1 and b to be abelian. Moreover there is a field structure with b{I » K Id W and W » K `. In particular there is h P b acting on g{b as the identity. We lift the eigenspace; thus E 1 ą 0, but also E 0 " b by abelianity. We prove dim E 1 ě 2 as follows (covering properties are unclear to us; dim E g{b 1 phq " 2 does not seem to be a sufficient argument). Let z P Zzt0u; for x P g there is b P b such that rh, xs " x `b, so: rh, rz, xss " rhz, xs `rz, hxs " rz, x `bs " rz, xs.

Therefore ad z : g Ñ E 1 . However ker ˝ad z " C z " b, so dim E 1 ě dim g ´dim b " 2, as wished. Equality follows as b X E 1 " 0 by abelianity. So g " b ' E 1 and b " E 0 normalises E 1 , an ideal of g; this is a contradiction. The claim is proved.

It follows N g pbq " b. Indeed, b{I is abelian so we may linearise the action of b{I on g{b: it is by scalars, hence free. Now if n P N g pbq and b P bzI, then rb, ns P b implies n P b. (This is the argument of Lemma F, which we cannot invoke as stated.)

We derive a contradiction. Let z P I ˝ď Z be non-trivial. Since C z " b, one has dim B z " 2. By definition of I, one also has B z ď b, so equality follows. Hence there is x P g with z " rx, zs. For arbitrary b P b one has: rrb, xs, zs " rbz, xs `rb, xzs " rb, zs " 0, so rb, xs ď C z " b. Hence x P N g pbq " b, and z " rx, zs " 0, a contradiction.

Step We claim that n " ϕpA n q. These definable, connected subgroups of K `need not form an ascending series but their dimensions do. Let n be such that dim A 1 n " dim A 1 n`1 . If h P b and q P A 1 n , say q " ϕpyq with y P A n , then:
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C 2 h " C h " b and B 2 h " B b . Indeed C h " b is abelian, so by Lemma A, C 2 h is a subring of g. But dim C 2 h ď 2 dim C h ă dim g, so C 2 h is a proper subring containing C h " b. Hence C 2 h " b " C h and therefore B 2 h " B h " b.
χphq ¨q " ϕprh, ysq P A 1 n`1 .
But dimensions match, so χphqA 1 n " A 1 n`1 as subgroups of K `. So fix h 0 P bzt0u. For arbitrary h 1 P b, one has 1 χph0q χph 1 q P N K pA 1 n q " tλ P K : λA 1 n ď A 1 n u. The latter is therefore an infinite definable subring, implying N K pA 1 n q " K. Hence A 1 n is a non-trivial ideal of a field, and A 1 n " K. rh, as " rh, rη, ass " rhη, as `rη, has " rη, as `rh, as " a `rh, as. e " b. We now consider eigenspaces with respect to h and show g " E ´2 `E´1 `E0 `E1 . Let us turn to the adjoint action of h. First, E 0 ‰ 0 since h P b which is soluble. By construction, b 1 ď E 1 . Suppose E ´1 " 0. Then by surjectivity of ad h `1 one gets: B e " im ad e " im ad e pad h `1q " im ad h ad e " rh, B e s.

However B e ě B 2 e " b intersects C h by solubility, a contradiction. We apply just the same argument to prove E ´2 ‰ 0; otherwise:

B 2
e " im ad 2 e pad h `2q " im ad h ad 2 e " rh, B 2 e s, but B 2 e " b, a contradiction. Thus g " E ´2 `E´1 `E0 `E1 , against Proposition 4.2.

The analysis of 3-dimensional Borel subrings. We now combine the two main threads (weights, and large Borel subrings) into the analysis of 3-dimensional Borel subrings.

Proposition 4.6. Let b Ă g be a 3-dimensional Borel subring. Then:

(i) I " C b pg{bq Ÿ b is a 2-dimensional, nilpotent ideal of b containing b 1 ; (ii) if J ď I is a 1-dimensional subring, then J ď ZpIq; (iii) if h P b is such that I is a sum of eigenspaces, then either I ď E 0 or I " E k ' E ´k is a sum of 1-dimensional subrings, with k ‰ 0;
(iv) Z ˝pbq " 0;

(v) b is the only Borel subring containing I;

(vi) I is abelian; for i P IzZpbq one has C i " I.

Be however careful that until (vi) is proved, a subgroup of I need not be a subring.

Proof.

(i) By Lemma E, I is nilpotent; it is proper in b since b is no ideal of g. Consider the action of b on g{b. Linearising in dimension 1, dimpb{Iq ď 1 and equality holds.

(ii) By nilpotence, Z ˝pI q ‰ 0. If J ę Z ˝pI q then I " J `Z˝p Iq and I is abelian, a contradiction.

(iii) All eigenspaces in this proof are with respect to h. Suppose I ę E 0 , so there is k ‰ 0 with E I k ‰ 0. Since E b 0 ‰ 0 by solubility, Proposition 4.3 implies dim E 0 " dim E k " 1. Therefore write I " E k ' E ℓ ; possibly ℓ " 0, but even so dim E ℓ " 1.

We may assume E ´k ‰ 0. Indeed, suppose E ´k " 0. Fix e P E k " E b k ď I. Notice B e ď b. Now E ´k " 0 implies rh, B e s " im ad h ad e " im ad e pad h `kq " im ad e " B e . Therefore B e ď b 1 ď I. If ℓ " 0 then B e ď rh, Is " E k , and summing over e P E k we obtain E k Ÿ g, a contradiction. Hence ℓ ‰ 0. If E ´ℓ " 0, then for e P E ℓ we also have B e ď I; summing over e P E k Y E ℓ we obtain I Ÿ g, a contradiction. Hence ℓ ‰ 0 and E ´ℓ ‰ 0. Up to exchanging, we may assume E ´k ‰ 0.

Let h " E ´k `E0 `Ek . By Proposition 4.3, each term has dimension 1. By Proposition 4.2, E ˘2k " 0, so h is a 3-dimensional subring, therefore selfnormalising by Lemma F. In particular, h P h; hence E ´k `Ek ď h 1 . But h is soluble by Proposition 4.1, so rE ´k, E k s " 0. However I ď C g pE k q by (ii). If I ă C g pE k q, then the latter is a 3-dimensional subring, hence self-normalising; then h P C g pE k q, a contradiction. So I " C g pC k q ě E ´k, and the claim is proved.

(iv) Let Z " Z ˝pbq and suppose Z ‰ 0. Since b is not nilpotent by Proposition 4.4, dim Z " 1 and b{Z is non-nilpotent. In particular Z ď I. By Theorem 2, there is η P b{Z acting on pb{Zq 1 like the identity. We lift to h P b with the same action, and now lift the eigenspace. All eigenspaces in this proof are with respect to h.

Thus E b 1 ‰ 0. By Proposition 4.3, one has dim E 0 " dim E 1 " 1, so E 0 " E b 0 " Z ď I; of course E 1 " E b 1 ď I as well, contradicting (iii). (v) Let b 2 ‰
b be another Borel subring containing I. Clearly dim b 2 " 3, so our earlier analysis applies. Let I 2 " C b2 pg{b 2 q. Since I 2 Ÿ b 2 one has I 2 ‰ I. So X " pI X I 2 q ˝has dimension exactly 1. Now X is a subring of both I and I 2 , so by (ii) one has C g pXq ě I `I2 and therefore C g pXq is a 3-dimensional Borel subring with an infinite centre, against (iv).

(vi) Suppose not. Then J " I 1 Ÿ b is a 1-dimensional ideal of b.

There is h P b with J " E 1 phq. Indeed, by (iv), the action of b on J is nontrivial. Linearising in dimension 1, there is h P b acting on J like the identity.

All eigenspaces are now with respect to h. We may assume E ´1 ‰ 0. If not then for j P J " E 1 one has rh, B j s " B j and quickly B j ď I. Since J ď ZpIq by (ii), one also has C j ě I. Now by (v), b is the only Borel subring containing I and j R Zpbq because of the action of h, so C j " I. It follows B j " I " C j . By Lemma B, B j " I is abelian and we are done.

Let h " E ´1 `E0 `E1 , which by Proposition 4.2 is a 3-dimensional Borel subring. By Lemma F, h P h. In particular E ´1 `E1 ď h 1 ă h, implying rE ´1, E 1 s " 0. However I ď C g pE 1 q by (ii), and equality must hold since otherwise h P C g pE 1 q by Lemma F. So E ´1 ď C g pE 1 q " I and I " E ´1 `E1 , hence abelian.

It remains to take i P IzZpbq and prove C i " I. One inclusion is clear. If C i ą I then by (v), C i " b and i P Zpbq, a contradiction.

The final contradiction.

Proposition 4.7. The configuration is inconsistent.

Proof. Let b Ă g be a 3-dimensional Borel subring, given by Proposition 4.5. Since b is no ideal of g, the action of b on g{b is non-trivial. Linearising in dimension 1, there is h P b acting on g{b like the identity. All eigenspaces in this proof are with respect to h. Lifting the eigenspace, E 1 ‰ 0. By solubility, E 0 ‰ 0. By Proposition 4.3, dim E 0 " dim E 1 " 1 and E 2 " 0, so E 1 is a 1-dimensional, abelian subring. As in Proposition 4.6, which will be used heavily, we let I " C b pg{bq.

Step 4.7.1. We may assume h P E 0 .

Proof. Consider the action of E 0 on g{b. Suppose E 0 centralises g{b, viz. E 0 ď I. By Proposition 4.3, one has dim E 0 " dim E 1 " 1. If E 1 ď b, then I " E 0 `E1 where neither is trivial, against Proposition 4.6 (iii). Hence E 1 ę b and pE 1 X bq ˝" 0. However E 0 ď I, so rE 0 , E 1 s ď pb X E 1 q ˝" 0 and E 0 centralises E 1 . Then E 1 ď C g pE 0 q. The latter contains I; by Proposition 4.6 (v), it equals either I or b. This is a contradiction in either case.

Therefore E 0 ę I, and b " E 0 `I. Write h " e 0 `i in obvious notation. Then e 0 also acts on g{b like the identity; hence E 1 pe 0 q ‰ 0. Moreover E 0 " E 0 phq ď E 0 pe 0 q by abelianity. By Proposition 4.3, one has dim E 0 pe 0 q " 1, so E 0 pe 0 q " E 0 phq contains e 0 . Up to considering e 0 we are done.

Step

4.7.2. E 1 ę b. Proof. Suppose E 1 ď b. Let f " ad h ´1, an additive endomorphism of g. Let K 1 " ker ˝f " E 1 and K 2 " ker ˝pf 2 q ě K 1 . By definition of h, one has im f ď b. Since dim ker f " 1, one has im f " b, viz. f : g ։ b is surjective. Since K 1 " E 1 ď b, the restriction of f : K 2 Ñ K 1 remains surjective. Therefore dim K 2 " 2 dim K 1 " 2.
We claim K 2 " I. Let k 2 P K 2 , k 1 " f pk 2 q P K 1 , and e P E 1 . Then: rh, re, k 2 ss " rhe, k 2 s `re, hk 2 s " re, k 2 s `re, k 2 `k1 s " 2re, k 2 s `re, k 1 s.

However e, k 1 P E 1 " K 1 while E 2 " 0, so re, k 1 s " 0. There remains re, k 2 s P E 2 " 0, whence K 2 ď C g pE 1 q. Now E 1 Ă I so I ď C g pE 1 q. If the latter has dimension 3, then it is a 3-dimensional Borel subring normalised by h. By Lemma F, h P C g pE 1 q, a contradiction. Therefore C g pE 1 q " I " K 2 . In particular, B k2 ď b. In the notation above, also let x P g. By definition of h, there is b P b with rh, xs " x `b. Therefore: rh, rk 2 , xss " rhk 2 , xs `rk 2 , hxs " rk 2 `k1 , xs `rk 2 , x `bs " 2rk 2 , xs `rk 1 , xs `rk 2 , bs.

The left-hand is in b 1 . So is rk 2 , bs. If E ´1 " 0 then rh, B k1 s " B k1 so B k1 ď b 1 . In that case, rk 2 , xs P b 1 ď I, and therefore K 2 " I is an ideal of g, a contradiction. So E ´1 ‰ 0. Let h " E ´1 `E0 `E1 , which must be soluble. Hence E ´1 ď C g pE 1 q " I and b " E 0 `E´1 `E1 . But then for e ´1 P E ´1 ď I " K 2 , one has f pe ´1q " ´2e ´1 P E 1 , whence e ´1 " 0, a contradiction.

This proves E 1 ę b. Let

a " E 1 ; by Step 4.7.2 one has g " a `b. Let b 2 " a `E0 , a soluble subring. By Step 4.7.1 we could assume h P E 0 ; so one has b 1 " rE 0 , as " a. Let b 2 ă V ď g be a b 2 -irreducible module; V need not be a subring. Linearising in dimension 1 or by Corollary 2, rb 1 2 , V s ď b 2 . Let Y " pI X V q ˝, an E 0 -module. Since I is abelian by Proposition 4.6 (vi), Y is actually a subring. A priori, 0 ă Y ď I. Notice ra, Y s ď pb X b 2 q ˝" E 0 . We also claim rE 0 , Y s " Y since otherwise h centralises Y , so Y ď E 0 and equality holds, forcing h P I, a contradiction.

If dim Y " 2 then Y " I. Then for a P a, the map ad a takes I to E 0 . But by Proposition 4.6 (iv) one has dim Zpbq " 0, so there is i P IzZpbq with ra, is " 0. By Proposition 4.6 (vi), a normalises C i " I and therefore a normalises N g pIq " b. Hence a P b by Lemma F. This proves a ď b, against Step 4.7.2. Therefore dim Y " 1.

Let h " a`E 0 `Y , a 3-dimensional subring. By Proposition 4.1, h is soluble. Since rE 0 , Y s " Y and rE 0 , as " a, solubility implies ra, Y s " 0. So a ď C g pY q " I ď b by Proposition 4.6 (v), a final contradiction.

It would be interesting to push this line further and try to classify minimal simple (or better: N ˝-)Lie rings of finite Morley rank. Care will be needed since there is no clear indication what unipotence theory will become in this context, and since the Witt algebra is N ˝.

Appendix: questions

We list a number of questions, some already in [START_REF] Deloro | Un regard élémentaire sur les groupes algébriques[END_REF].

Extending the result

Question 1. What happens to our theorem in characteristic 3? This is likely to be a question for pure algebraists, and a challenging one. Fact 1 is open in characteristic 3.

Question 9.

• Is there a more model-theoretic proof of Fact 1 (viz. one not using Block-Premet-Strade-Wilson)?

• Let g ą 0 be a connected Lie ring of finite Morley rank and x P g. Is C x infinite?

[See [START_REF] Borovik | Involutions in groups of finite Morley rank of degenerate type[END_REF]Proposition 1.1].]

• When is x P C x ? [One should be careful with such questions, the Baudisch algebras could be counter-examples.]

At the soluble level, we have reasonable expectations.

Question 10. Develop a theory of soluble Lie rings of finite Morley rank: Fitting theory and Cartan subring theory. [See [START_REF] Frécon | Sous-groupes anormaux dans les groupes de rang de Morley fini résolubles[END_REF].]

Of course we do not aim for 'conjugacy' (if at all meaningful since there is no group around; fails anyway in Witt's algebra)-but existence and self-normalisation. Notice that existence could be hoped without the solubility assumption [see [START_REF] Frécon | The existence of Carter subgroups in groups of finite Morley ank[END_REF]], though we currently see no way to attack this.

Then of course, what matters is the simple case.

Let K be an algebraically closed field of characteristic p. Then Witt's algebra W K p1; 1q is a p-dimensional, simple Lie algebra over K, hence definable in the pure field. Moreover, it has a subalgebra of codimension 1. Mind the assumption on the characteristic in the following.

Question 11. Let g be a simple Lie ring of finite Morley rank d and characteristic p ą d. Suppose g has a definable subring of corank 1. Then g » sl 2 pKq. [See [START_REF] Hrushovski | Almost orthogonal regular types[END_REF].] Last but not least in this direction, is of course the question of finding a strategy for the 'log CZ' conjecture. For CZ itself, the positive solution in so-called 'even type' [START_REF] Altınel | Simple groups of finite Morley rank[END_REF] was a form of the classification of the finite simple groups (cfsg) seen from the reducing lens of model-theoretic arguments for the tame infinite. At the high end of the classification, viz. in high Lie rank, are 'generic identification results'.

Question 12. Devise generic identification methods for simple Lie rings of finite Morley rank. [See Question 3, see [BB11].]

As said in the introduction, we are curious whether model theory may provide a reduced sketch of the Block-Premet-Strade-Wilson theorem, like it did for the cfsg.

Model theory

We see two questions here; one aims at broadening the model-theoretic frame of study of Lie rings, and the other at tightening connections between groups and Lie rings, presumably under new assumptions.

First, it is unclear to us whether the full strength of finite Morley rank was used; dimensionality could suffice, but this may depend on the behaviour of differential fields, if any. Second, by Lie-Chevalley correspondence, we mean the ability to attach to some groups a Lie ring. We do not believe in one for abstract groups of finite Morley rank, as categorical nature allows no infinitesimal methods. (This contrasts sharply with o-minimal nature, where infinitesimals are provided by elementary extensions; in the tame ordered case, model-theoretic functoriality proves geometrically sufficient.) One could add a stronger model-theoretic assumption with geometric flavour.

Question 14. Is there a Lie-Chevalley correspondence for groups definable in Zariski geometries [HZ96]?

To our understanding, the Cherlin-Zilber conjecture is still open for groups definable in Zariski geometries. A positive answer to Question 14 would certainly give a natural proof.

2.

  Relation to the Block-Premet-Strade-Wilson theorem. Work on the Cherlin-Zilber conjecture is supposed to provide a simplified skeleton of the classification of the finite simple groups. Though the latter is settled but not the former, short versions are always interesting to have. Likewise, we ask experts whether work on 'log CZ' could give a blueprint of the Block-Premet-Strade-Wilson classification [Str04; Str09; Str13]. Rosengarten's work. The 'log CZ' conjecture implicitly motivated Rosengarten's early and unpublished (and in our opinion, underrated) study [Ros91] of Lie rings of Morley rank ď 3. Directed by Cherlin, Rosengarten proved the following in characteristic ‰ 2, 3: • a connected Lie ring of Morley rank 1 is abelian [Ros91, Corollary 4.1.1]; • a connected Lie ring of Morley rank 2 is soluble; if non-nilpotent, it covers ga 1 pKq [Ros91, Theorem 4.2.1]; • a connected, non-soluble Lie ring of Morley rank 3 covers sl 2 pKq [Ros91, Theorem 4.4.1].

  By definition of a Borel subring, g " E 0 ' E 1 , which contains E 1 as an ideal: a contradiction. Įt follows dim b " 1. Otherwise dim b " 2 and dim g{b " 1. By Step 3.1.1, b centralises g{b, meaning b Ÿ g, a contradiction. Hence dim b " 1 and in particular b is abelian. It follows that for a P bzt0u one has C a " b. Let B b " rb, gs. Step 3.1.2. g " b `Bb . There is a definable field L of dimensional 2 such that B b » L `and b ãÑ L Id B b . Proof. First, dim B b " 2. Indeed, let a, a 1 P b be non-zero. Clearly dim B a " 2; by abelianity, B a is b-invariant. By Step 3.1.1, b centralises g{B a . In particular B a 1 ď B a and equality follows. So B b " B a for any a P bzt0u, which proves dim B b " 2. Suppose b ď B b . Then for a P bzt0u one has C a " b ď B b " B a . In particular B 2 a ă B a , and

  a temporary h 1 P b act on b 1 like Id b 1 . (It will be rescaled at the end of the proof of the Step.) Of course E 0 " E 0 ph 1 q " C h1 ą 0 and E 1 ě b 1 ą 0. Let e P b 1 zt0u. We claim that C e " b 1 and B e " b. Clearly C e ě b 1 . If equality does not hold, then dim C e " 2. Now C e is a Borel subring distinct from b since e R Zpbq. But C e ě b 1 which is not Cartan in b, against Step 3.2.1. So C e " b 1 and dim B e " 2. Now consider the action of b on g{b. Linearising in dimension 1, b 1 acts trivially so B e ď b and equality holds.

  We deduce that g " b `Bb and the action of b on B b is faithful. Otherwise b ď Bb ; hence C h ď B h , which forces B 2 h ă B h , a contradiction. Moreover, if h P b centralises B b , it also centralises b `Bb " g and is therefore zero. We now contend that B b is b-irreducible. Suppose it is not. If there is a 1dimensional b-submodule V 1 ă B b , then by Step 4.4.1 one has V 1 ď C g pbq " b, so b " V 1 ď B b , a contradiction.If there is a 2-dimensional b-submodule V 2 ă B b , then by Step 4.4.1 again, one has rb, B b s ď V 2 , so B 2 b ă B b , a contradiction. We may thus linearise the action of b on B b ; there is a field K such that B b » K ànd b acts by scalars on B b . Let us fix some notation: there are ϕ : B b » K `and χ : b ãÑ K `such that, for h P b and x P B b : ϕprh, xsq " χphq ¨ϕpxq. Fix arbitrary x P B b and let A n " rb, . . . , rb, xs...s. Also let A 1

  Going back through ϕ, we have A n " B b . But rA n , A n s ď B b by Lemma C. So B b is a subring. As it is normalised by b and g " b `Bb , we have a final contradiction. This completes the proof of Proposition 4.4. Using non-nilpotence of Borel subrings (Proposition 4.4) and the impossibility of a global weight decomposition (Proposition 4.2), we derive the existence of a 3dimensional Borel subring. Proposition 4.5. There is a 3-dimensional Borel subring. Proof. Suppose not. The proof has something common with the weight decomposition of Proposition 3.2, Step 3.2.2. Let b be a Borel subring; by Proposition 4.4, dim b " 2 and b is non-nilpotent. Using Theorem 2 we let h P b act on b 1 as Id b 1 . Let e P b 1 zt0u.We claim thatC e " b 1 . Otherwise b 1 Ă C e Ă g, so C e is a 2-dimensional Borel subring; it is non-nilpotent by Proposition 4.4. Now C e ‰ b " N g pb 1 q so b 1 ‰ C 1 e .By Theorem 2, b 1 is a Cartan subring of C e . Moreover h normalises C e since for c P C e one has: rrh, cs, es " rhe, cs `rh, ces " re, cs " 0. Hence h also normalises C 1 e . Since b 1 is a Cartan subring of the non-nilpotent, 2dimensional ring C e , Theorem 2 gives η P b 1 acting on C 1 e as Id C 1 e . Then for any a P C 1 e one has rh, as P C e and therefore:

  So a " 0, a contradiction.We derive B 2 e " b.Indeed C e " b 1 is abelian. By Lemma A, C 2 e is a subring of g; since dim C 2 e ď 2 dim C e " 2,it is proper. Now b Ď C 2 e so equality holds. Hence b 1 " C e Ă C 2 e " b. In particular, dim B 2 e " 2. We turn to the action of b on g{b. If g{b is b-irreducible, then by Corollary 2, b 1 centralises g{b; in particular B 2 e ď B e ď b. If g{b is b-reducible, we still get B 2 e ď b by linearising in dimension 1 twice. In either case, B 2

  (It is unclear to us whether non-trivial differential fields would give counterexamples to the dimensional version of our results. Reasoning by loose analogy, fields with non-minimal G m have not provided counter-examples to the Cherlin-Zilber conjecture, at least not yet.) Question 13. Determine in which model-theoretic setting the present paper took place.

  By assumption, B a ď C a . Now let b 1 , b 2 P B a , say b i " ra, x i s. Then:rb 1 , b 2 s " rb 1 , ra, x 2 ss " rb 1 a, x 2 s `ra, b 1 x 2 s" ra, b 1 x 2 s " ra, ra, x 1 sx 2 s " ra, xs P B a and c P C a , then rb, cs " rra, xs, cs " rac, xs `ra, xcs " ra, xcs P B a , meaning B a IJ C a . Let g be a Lie ring with no additive 2-torsion and a Ď g be an abelian subring. For n ě 1 and x P g, let A n " ra, . . . , ra, xs...s ď g, where a appears n times. Then rA n , A n s ď ra, gs.

	Proof. " ra, rax 2 , x 1 s `ra, x 1 x 2 ss
	" ra, rb 2 , x 1 ss `ra, ra, x 1 x 2 ss
	loooomoooon
	PBaďCa
	" rab 2 , x 1 s `rb 2 , ax 1 s
	" rb 2 , b 1 s.
	Since there is no 2-torsion, we find rb 1 , b 2 s " 0, as wished.
	Last, if b The following plays a key role when removing nilpotent Borel subrings in Propos-
	itions 3.1 and 4.4.
	Lemma C ([Ros91, Claim 4.3.2]).
	, Lemma 3.2.6]). Let g be a Lie ring with no additive 2-torsion
	and a P g be such that C 2 a " g. Then B a is an abelian subring of C a , and actually an
	ideal of C a .

  .4.3 (see Step 3.1.3). Contradiction. Proof. Throughout, h will stand for an arbitrary non-zero element of b. Let B b " rb, gs, a b-module containing each B h for h P bzt0u.We first show that B h " B b and dim B h " 3. Indeed, by abelianity, B h is binvariant; now C h " b, so dimpg{B h q " 1. By Step 4.4.1, b acts trivially on g{B h . So rb, gs ď B h . Hence for any h 1 P b one has B h 1 ď B h and equality follows. Thus B h does not depend on h P bzt0u; it equals B b .
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Abstract Lie rings and their representations

Question 2. State and prove an analogue of the 'Borel-Tits' theorem [START_REF] Borel | Homomorphismes "abstraits" de groupes algébriques simples[END_REF], viz. describe automorphisms of Lie rings of Lie-Chevalley type.

One could start or content oneself over algebraically closed fields (see the elegant model-theoretic proof for groups in [START_REF] Poizat | Tits, Zilber et le général nonsense[END_REF]), and even ask the same in Lie-Cartan type.

Question 3. Devise identification methods à la Curtis-Phan-Tits [START_REF] Georg | The Curtis-Tits-presentation[END_REF][START_REF] Gramlich | Developments in finite Phan theory[END_REF] for Lie rings of Lie-Chevalley type. [START_REF] Deloro | Symmetric powers of Nat sl 2 pKq[END_REF][START_REF] Deloro | Locally quadratic modules and minuscule representations[END_REF]. Also see Question 6.)

Question 4. Study Lie ring representations of Lie rings of Lie-Chevalley type

One could also ask about Lie rings of Lie-Chevalley type (or even Lie-Cartan type) up to elementary equivalence, à la Malcev [START_REF] Malcev | The elementary properties of linear groups'. Certain Problems in Mathematics and Mechanics (In Honor of M[END_REF][START_REF] Bunina | Elementary equivalence of Chevalley groups over fields[END_REF]. Such questions usually rely on retrieving the base field, which should be easier here than in groups. For more on elementary properties of Chevalley groups, see [START_REF] Bunina | Elementary properties of linear and algebraic groups[END_REF].

Lie modules of finite Morley rank

In the proof of Theorem 4 (more specifically, when analysing 3-dimensional Borel subrings), results like relevant analogues of Maschke's Theorem [Tin17, Proposition 2.13] or Lie's Theorem (in characteristic larger than Morley rank, generalising Corollary 2) would come handy.

Question 5. Develop basic tools for Lie modules of finite Morley rank.

Question 6. Let K be an algebraically closed field of characteristic p ą 0 and g be a finite-dimensional, simple K-lie algebra. Assume that g acts definably and irreducibly on an elementary abelian p-group V of finite Morley rank. Prove that:

(i) V has a structure of a finite dimensional K-vector space compatible with the action of g [see [START_REF] Borovik | Finite group actions on abelian groups of finite Morley rank[END_REF]Theorem 3]];

(ii) g is a K-Lie subalgebra of gl K pV q. [More dubious.]

The original result was for connected algebraic groups, which correspond more to Lie rings of Lie-Chevalley type. And for that reason, we are more confident in (i) than in (ii). Question 7. Work in a theory of finite Morley rank. Prove a 'Steinberg tensor product theorem' [START_REF] Steinberg | Representations of algebraic groups[END_REF] for definable G Φ pKq-modules. [See [START_REF] Borovik | Finite group actions on abelian groups of finite Morley rank[END_REF]Theorem 3

].]

A more abstract direction makes no assumptions on g. Question 8. Classify faithful, irreducible g-modules of Morley rank 2. [See [START_REF] Deloro | Actions of groups of finite Morley rank on small abelian groups[END_REF].]

Abstract Lie rings of finite Morley rank

There is of course the question of field interpretation in a non-abelian nilpotent Lie ring, where unreasonable hopes are shattered by [START_REF] Baudisch | A new uncountably categorical group[END_REF].

Returning to the Reineke phenomenon, some topics are quite unclear.