
HAL Id: hal-04216506
https://hal.science/hal-04216506

Submitted on 25 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ADER Discontinuous Galerkin Material Point Method
Alaa Lakiss, Thomas Heuzé, Mikhael Tannous, Laurent Stainier

To cite this version:
Alaa Lakiss, Thomas Heuzé, Mikhael Tannous, Laurent Stainier. ADER Discontinuous Galerkin
Material Point Method. International Journal for Numerical Methods in Engineering, 2023,
�10.1002/nme.7365�. �hal-04216506�

https://hal.science/hal-04216506
https://hal.archives-ouvertes.fr


ADER Discontinuous Galerkin Material Point Method
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Abstract

The first-order accurate Discontinuous Galerkin Material Point Method (DGMPM), initially introduced by Renaud
et al. [55], considers a solid body discretized by a collection of material points carrying the history of the matter,
embedded in an arbitrary grid on which a nodal Discontinuous Galerkin approximation is defined, and that serves to
solve balance equations. This method has been shown to be promising, especially for solving hyperbolic problems in
finite deforming solids [57, 56]. The main goal of this research is to extend the first-order DGMPM to arbitrary high-
order accurate approximations. This is performed by adapting the ADER (Arbitrary high order DErivative Riemann
problem) approach [15] to the particular spatial discretization of the DGMPM. Firstly, the predictor step permits to
design a particle-to-grid projection of arbitrary high order of accuracy, consistent with that of the nodal discontinuous
Galerkin approximation defined on the arbitrary grid. This is performed using a Moving Least Square approximation
for the ADER predictor field. Secondly, since the degrees of freedom of the predictor field are now defined at material
points, the computation of the constitutive response of the material is ensured to be always performed at these material
points. This is of crucial importance for history-dependent constitutive models because it avoids any diffusive transfer
of internal variables on a new computational grid. Finally, a total Lagrangian formulation of equations is kept, which
allows to precompute once and for all both the nodal discontinuous Galerkin approximation and that of the ADER
predictor field, until the arbitrary grid is discarded if required. The method is illustrated on a few two-dimensional
numerical examples, on which comparisons are shown with the ADER-DGFEM and Runge-Kutta-DGFEM.

Keywords: Discontinuous Galerkin Material Point Method, ADER schemes, Finite deforming hyperelastic solids,
ADER-DGMPM, Hyperbolic problems

1. Introduction

High resolution numerical simulations of impacts on dissipative solids aim at reproducing the history of loading
undergone by the material points, while freeing from any numerical disturbance that might impair the understanding
of physical phenomena of interest. These simulations are of great importance for many engineering applications such
as crash-proof design, or high speed forming processes, and mainly consist in solving hyperbolic initial boundary
value problems, whose solutions consist of both continuous and discontinuous waves [40]. On the one hand, accurate
capturing of both wave fronts and propagation of irreversible phenomena is of primal importance in order to be able
to relate the history of wave paths in the medium to its residual fields once the steady state is achieved. On the other
hand, the solid medium may undergo large strains, as a consequence of the applied impact.

The construction of numerical approximations of these solutions face two main challenges which may combine
with each other during the simulation. The first one is related to the finite deformations which may occur. The
Lagrangian or material description is very popular in the solid mechanics community since it allows to accurately track
boundaries and particle pathlines, especially for history-dependent constitutive response. But Lagrangian mesh-based
approximations are subject to mesh entanglement and may require re-meshing and diffusive projection steps [16, 47].
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The Eulerian description is free from the mesh tangling issues, but requires interface tracking techniques plus the
(diffusive) transport of internal variables [48, 5, 35]. Arbitrary-Lagrangian-Eulerian (ALE) approaches were designed
to meet the advantages of the two above descriptions [18], but usually also combine their drawbacks especially for
dissipative constitutive responses [7]. Following a Lagrangian description, mesh-free methods aim at freeing the
numerical simulation from mesh tangling issues [6, 42, 52]. However, on the one hand these methods have their
own problems (prescribing boundary conditions, among others), and on the other hand their approximations were not
developed for shock-capturing purpose, and give quite poor results for those problems as shown for instance in [45].

The second challenge is the problem of the approximation of discontinuous solutions, and the development of
high order numerical schemes for hyperbolic conservation laws. This challenge has been addressed continously since
the 1950s, especially with the introduction of non-linear approximations such as, but not limited to, the Total Varia-
tion Disminishing methods (TVD) (see e.g. [63, 30, 41]), the family of ENO and WENO schemes [32, 31, 61], and
more recently the ADER approach (Arbitrary high order DErivative Riemann problem) [67, 59, 65], which can either
be applied in the contexts of the Finite Volume (FV) Method [20, 11, 12, 13] or the Discontinuous Galerkin Finite
Element Method (DGFEM) [54, 22, 15]. Although ADER was first thought as a way to solve a generalized Rie-
mann problem[8] (GRP) coupled to a MUSCL[69] approach [67, 59], it was later reformulated as a local space-time
discontinuous Galerkin predictor solved cellwise, whose approximation enabled to solve a set of classical Riemann
problems along the time axis at each element interface. Non-oscillatory solutions are then obtained by applying to the
ADER solution an a posteriori sub-cell WENO-FV-based limiter, based on the MOOD algorithm [21].

Althought the combination of the above two challenges have been addressed successfully with an Eulerian descrip-
tion (see e.g. [51, 64]), the construction of shock-capturing methods able to compute large strains with a Lagrangian
description is not a closed problem, and remains a challenge in itself. For instance, the approximations related to
some well-known mesh-free methods developed in the 1980s and the 1990s are still the topic of adaption for shock-
capturing purpose. To this end, some Lagrangian conservative particle-based methods have been recently developed
for problems in solid mechanics involving large strains. One example is the Smooth Particle Hydrodynamics (SPH)
method [43, 49], applied for solid mechanics problems with a conservative formulation in the isothermal setting
[39], then extended to thermoelasticity[24]. Another example is the Discontinuous Galerkin Material Point Method
(DGMPM)[55, 57, 56], which combines the DGFEM [17] with the Material Point Method[62] (MPM). The latter
comes from the family of Particle-In-Cell methods (PIC)[28] developed in the 1960s. The solid body is discretized
into a set of particles carrying the fields of a problem that move in an arbitrary computational mesh, which is used
for the solution of balance equations. In a sense, this double discretization (material points plus a grid) permits to
dissociate the motion of material particles from that of the computational mesh, but without any transfer of internal
variables and additional convection terms as the grid is discarded as also done in an ALE approach. The DGMPM
brought several novelties with respect to the MPM: (i) the set of equations was formulated within a total Lagrangian
framework, in order to get rid of the grid-crossing instabilities [2], and (ii) following conservative formulations in
order to be compatible with the discontinuous Galerkin approximation defined on the arbitrary grid, interface fluxes
being computed from the solution of approximate Riemann solvers.

Despite that the DGMPM has been shown to be promising for solving hyperbolic problems in finite deforming
solids with a Lagrangian description, its approximation is only first order-accurate[57]. Its extension to arbitrary high
orders of approximation is the purpose of the present work. However, several issues prevent at first this straightfor-
ward extension. First, the projection functions from particles to grid inherited from MPM are Shepard’s functions[60],
whose smoothness is not sufficient to increase the order of accuracy of the method. Second, the computation of inte-
grals of the weak form uses a quadrature based on material points, also inherited from MPM, which is not sufficiently
accurate. Third, the crucial point the method should meet to address history-dependent constitutive responses is to
ensure that internal variables always lie at material points, in order to avoid diffusive projection steps of the loading
history. Explicit Runge-Kutta (RK) methods may not appear as the best suited time integrators to satisfy this last
condition. For instance, the second stage of a RK2 requires (see Eq. (7)2 in a previous analysis of DGMPM[57]) the
computation of fluxes and hence of stresses at mid-time step at nodes. On the one hand, a projection of internal vari-
ables to grid nodes in order to perform a constitutive update would lead to severe numerical diffusion, which cannot
be afforded. On the other hand, keeping internal variables at material points for constitutive updates would require as
many back and forth transfers of strains or stresses between material points and grid nodes as the number of stages
the Runge-Kutta time integrator consists of, which would moreover lead to additional numerical diffusion.

In this paper, the extension of the first-order DGMPM to arbitrary high-order accurate approximations is performed
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by adapting the ADER approach to the particular spatial discretization of the DGMPM. Two main novelties are
brought with respect to ADER-DGFEM. First, the predictor step permits to design a particle-to-grid projection of
arbitrary high order of accuracy, consistent with that of the nodal discontinuous Galerkin approximation defined on
the arbitrary grid. This is performed using a Moving Least Square (MLS) approximation[6] for the ADER predictor
field. Second, the degrees of freedom of the ADER-predictor fields are now defined at material points, and not
at interpolation points as it is the case for ADER-DGFEM. Hence, the contitutive update is ensured to be always
performed at these material points. Internal variables are never changed of geometrical support, whether during a
time increment or when the arbitrary computational grid is discarded and rebuilt for any purpose. At last, thanks to
the total Lagrangian framework of the formulation, both the discontinuous Galerkin approximation and the particle to
grid mapping are computed once and for all at the beginning of the computation, until the grid is discarded.

In this paper, the ADER-DGMPM is first presented in the context of Lagrangian isothermal hyperelastodynam-
ics, whose model problem is first recalled in Section 2. Next, the space-time discretization and associated basics
of DGFEM (actually the corrector step) are presented in Section 3. The predictor of the ADER-DGMPM is then
presented in Section 4, as well as the global solution procedure. Finally, some numerical illustrations are shown in
Section 5, especially presenting comparisons with numerical results obtained with RK-DGFEM and ADER-DGFEM.

2. Model continuous problem: Lagrangian isothermal hyperelastodynamics

2.1. Conservation laws
We consider a continuous solid body Ω, of initial configuration Ω0 ∈ Rd, of boundary ∂Ω0 and outward unit

normal N, d is the space dimension. The motion of this body is described by the mapping φ(X, t) relating the position
of a material point of coordinate X ∈ Ω0 in the initial configuration to its current coordinates x ∈ Ω(t). From this
mapping, the rate of the deformation gradient two-point tensor Ḟ is the material gradient of the material velocity vector
v

Ḟ(X, t) = GRAD v ∀X ∈ Ω0. (1)

Equation (1) can be rewritten as a geometrical conservation law [53, 68, 38]

Ḟ − DIV(v ⊗ 1) = 0. (2)

The material divergence DIV is computed with respect to initial coordinates X, and 1 is the identity of second order.
From Equation (1), it is evident that the material CURL of the deformation gradient F vanishes

CURL F = 0. (3)

The conservation of the linear momentum should also be satisfied. Neglecting body forces, it reads in its material
form

∂p
∂t
− DIV P = 0 (4)

where p = ρ0v denotes the density of linear momentum per unit undeformed volume, ρ0(X) = ρ(X, t = 0) is the
reference mass density, P denotes the first Piola-Kirchhoff stress tensor. Gathering Equations (2) and (4) allows to
form the following system of conservation laws

∂U

∂t
+ DIVF = 0, (5)

consisting of M scalar equations, where U and F denote the vector of conserved quantities and the flux vector
respectively, defined as

U =

{
F
p

}
; F =

{
−v ⊗ 1
−P

}
. (6)

System (5) also reads in castesian coordinates as

∂U

∂t
+

3∑
α=1

∂F α

∂Xα
= 0, (7)
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with the flux vector F α = F · Eα in the α-th material direction Eα, defined as

F α =

{
−v ⊗ Eα

−P · Eα

}
. (8)

System (5) reduces to the well-known Rankine-Hugoniot jump conditions across any discontinuity of fields

S [U] = [F ] · N, (9)

where N is the material normal of the discontinuity surface moving at speed S , and [•] denotes the jump of the quantity
(•) across the discontinuity, such that [•] = (•)+ − (•)−.

2.2. Quasi-linear form
It is also convenient to introduce the auxiliary vector Q defined as

Q =

{
P
v

}
, (10)

including the stresses P, and satisfying to the following quasi-linear form

∂Q

∂t
+Aα

∂Q

∂Xα
= 0 (11)

obtained from the conservation laws (5)[55], with

Aα =
∂Q

∂U

∂F α

∂Q
= −

[
04

∂P
∂F · Eα

1⊗Eα

ρ0
03

]
, (12)

where 0k denotes the kth-order zero tensor, and the fourth-order tangent moduli tensor ∂P
∂F explicitly appears, which

are provided by the chosen constitutive model discussed in the next section.

2.3. Constitutive model
A hyperelastic constitutive modeling is taken as a model response in this work, described by the stored-energy

potential W(F) which is a function of the deformation gradient F. More precisely, the elastic energy density W is
usually split into volumetric and isochoric parts[10]

W(F) = WH(J) + W̄(C̄), (13)

where the volumetric part WH(J) depends on the jacobian determinant J, and the isochoric component W̄(C̄) is a
function of the isochoric Cauchy-Green strain tensor C̄ defined as

F̄ = (J)−1/3F, det F̄ = 1 (14)

C̄ = (F̄)T · F̄. (15)

According to the particular chosen set of conservation laws (5), the jacobian determinant J may either be computed as
the determinant of the deformation gradient (i.e. J = det F), or updated via the solution of an additional conservation
law written on it (see e.g. [33, 25]), especially when quasi-incompressible responses[25] or hydrodynamic equation
of state[13] are described.

The simplest expression one can consider for the volumetric part WH(J) is a quadratic one

WH(J) =
κ

2
(J − 1)2, (16)

while the isochoric part of the free energy can be described by a family of rank-one convex stored energies[23, 13]

W̄(Ī1, Ī2) =
µ

4

[
−2a(Ī1 − 3) +

(1 + a)
3

(Ī2 − 9)
]
, (17)
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where a is an adjustable parameter, µ is the elastic shear modulus, and invariants Ī1, Ī2 are defined as

Ī1 = tr C̄, Ī2 =
1
2

(
tr [C̄]2 − tr [C̄2]

)
. (18)

In the range a ∈
[
−1, 1

2

]
, it has been shown[23] that the resulting first order system of equations is hyperbolic. In the

particular case where a = −1, a more classical neo-Hookean material is obtained, whose distortional free energy reads

W̄(Ī1) =
µ

2
(Ī1 − 3). (19)

Polyconvex hyperelastic models (e.g. Mooney-Rivlin) are also used by some authors[25, 9], for which the isochoric
elastic free energy W̄ becomes a function of the three minors of the elastic deformation. The system of conservation
laws (5) is then extended to the other deformation minors, so that the resulting first order system of equations is also
shown to be hyperbolic [9].

From the stored energy density (13) and the distortional energy density (19), the first Piola-Kirchhoff stresses are
expressed as

P =
∂W
∂F

, (20)

and can be split into hydrostatic and shear contributions

P = PH + Ps, (21)

defined as

PH = pH, p =
∂W
∂J

= κ(J − 1) (22)

Ps = µF ·
∂Ī1

∂C
, (23)

where p is the hydrostatic pressure, and H the co-factor of the deformation gradient. The acoustic tensor A is defined
from the fourth-order tangent modulus tensor C as

(CNN)i j = Ciα jβNαNβ (24)

(C)iα jβ =
∂Piα

∂F jβ
=

∂2W
∂F jβFiα

, (25)

where Nα are the components of an arbitrary material normal vector N. The spectral analysis of the jacobian matrix
AN = AαNα (see Equation (11)) can be shown to be linked to that of the acoustic tensor CNN , which yields distinct
and non-zero elastic celerities and associated eigenvectors, as shown in [55], if the stored energy density (13) satisfies
the Legendre-Hadamard ellipticity condition.

3. Space-time discretization on the computational grid

The initial configuration Ω0 of the continuum body Ω is discretized into a set material points which are embedded
within an arbitrary computational grid, made of E non-overlapping grid cells of volume Ωe. Figure 1 shows a two-
dimensional example. Let us now focus on one grid cell Ωe and on the time increment t ∈ [tn, tn+1], n = 1, . . . ,N∆t.
From the vector of conserved quantities Up(tn) and the auxiliary vector Qp(tn) assumed to be known at each material
point p = 1, . . . ,Np of initial coordinates Xp lying in the grid cell e at time tn, plus eventually associated additional
internal variables, the objective is to compute updates of these quantities at time tn+1.
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Figure 1: Discretization of the initial configuration Ω0 of a two-dimensional body Ω using particles in an arbitrary grid.

3.1. Discrete update on the computational grid
The nodal-discontinuous Galerkin framework provides the following approximate solution to that of the system

of conservation laws (5) in each grid cell Ωe:

Uh(X, tn)|Ωe
=

Nn∑
b=1

Φb(ξ(X))Û
n
b (26)

which is a priori discontinuous across element boundaries. In the approximation (26), both the degrees of freedom
Û

n
b defined at time tn and the shape function Φb(ξ(X)) are associated with the bth spatial interpolation point, which

can be of various types (equidistant, Gauss-Legendre or Gauss-Lobatto). More precisely, the shape function Φb(ξ(X))
is a function of parent coordinates ξ which are themselves a function of initial coordinates X through the inverse geo-
metrical mapping. The shape function Φb(ξ) is constructed by a classical tensorisation of one-dimensional Lagrange
polynomials on the parent interval. In case of two-dimensional problems, for example considering quadrangular el-
ements, the shape function reads as Φb(ξ) = φb0 (ξ)φb1 (η), b0 and b1 being indices related to the first and second
directions respectively, and the parent interval may be defined as ξ = (ξ, η) ∈ [0, 1] × [0, 1].

Multiplying System (5) with the shape function Φa, integrating over the space-time domain Ωe × [tn, tn+1], and
integrating by parts with respect to the spatial coordinates Xα gives the following weak form:∫ tn+1

tn

∫
Ωe

(
Φa

∂Uh

∂t
−
∂Φa

∂Xα
· F α

)
dVdt +

∫ tn+1

tn

∫
Γe

Φa(F · N)dΓdt = 0. (27)

The introduction of the DG approximation (26) within the weak form (27) gives the following semi-discrete equations

M
(
Ûn+1 − Ûn

)
=

∫ tn+1

tn
R(Qh)dt. (28)

The mass matrixM is defined as

M =

(∫
Ωe

ΦaΦbdV
)

1≤i≤M
1≤a,b≤Nn

, (29)

hence gathering all nodal shape functions for all scalar equations i = 1, . . . ,M. For rectangular grids and normed Leg-
endre polynomials, it becomes the identity matrix[]. However for non-uniform quadrilateral meshes, it is computed
with a classical quadrature in the parent domain. The residual fluxes R(Qh) depend on the auxiliary vectorQh and are
defined as the substraction between the discrete volume and interface fluxes:

R(Qh) = Fv(Qh) − Fs(Q−h ,Q
+
h ), (30)

where Q−h ,Q
+
h denotes the evaluations of Qh on each side of the grid cell interfaces.

The computation of the time integral appearing in Equation (28) with a classical Gauss quadrature permits to
compute the sought update on the grid cell

Ûn+1 = Ûn +
∑

s

ωs

[
M
−1
R

(
Qh(τs),Q−h (τs),Q+

h (τs)
)]
, (31)
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where ωs and τs ∈ [0, 1] are the weights and parent coordinates of the time integration points, respectively. The
computation of update (31) relies on the ability to provide some evaluations of the auxiliary vector Q at intermediate
times τs in order to compute the residual fluxes R at those instants. The ADER approach amounts to replace the
Nodal-DG approximation Qh of the auxiliary vector Q appearing as an argument of the residual fluxes R by a space-
time approximation qh(X, t) of the same vector defined on the control volume Ωe × [tn, tn+1], called the predictor field,
solution of a local auxiliary problem defined in Section 4.1. As a consequence, update (31) is also called the corrector
step.

3.2. Computation of fluxes

3.2.1. Volume fluxes
Since the fluxes F are linear functions of the auxiliary vector q, the discrete volume fluxes can be computed from

their pointwise evaluations at interpolation points a as

(Fv)ia = Kab
α F iα (qh(Xb, τs)) ; Kab

α =
∑

I

(
wI
∂Φa

∂ξm

∂ξm

∂Xα
ΦbJ

)
(ξI) (32)

where F iα is the ith component of the fluxes F α = F · Eα, qh(Xb, τs) denotes the space-time approximation of
the auxiliary vector evaluated at the bth spatial interpolation point and at intermediate time τs, J and ∂ξm/∂Xα are
the jacobian determinant of the geometrical approximation and its inverse matrix, and Kab

α denotes the components
of some pseudo-stiffness matrix obtained by summing quantities evaluated at the Ith integration points of parent
coordinates ξI . The latter is computed and stored once and for all for each element for a given computational grid.

3.2.2. Surface fluxes
The discrete surface fluxes can be computed at each cell interface with the following quadrature

(Fs)ia =
∑

J

(
w̄JΦaF iα

(
q−h ,q

+
h

)
J
∂ξm

∂Xα
Nm

)
(ξJ) (33)

where Nanson’s formula has been used for the transfer of the integrand to the spatial parent domain, with N being
the local normal to the parent domain, and a dedicated integration rule is used for the interface. The interface fluxes
F iα

(
q−h ,q

+
h

)
are computed from the solution of the following Riemann problem, defined with the quasi-linear form

(11) at each integration point of parent coordinate ξJ of a cell interface

∂q
∂τ

+
∂F N

∂XN
= 0, XN = X · N ∈] −∞,+∞[, τ > 0{

q(XN , τ = τs) = q−h if XN < 0
q(XN , τ = τs) = q+

h if XN > 0

(34)

where τ denotes some parent time coordinate, and (q−h ,q
+
h ) are known data at the left and right sides of a given

interface at intermediate time τs. A linearized Riemann solver [66] can be constructed by approximating the jacobian
matrix AN = AαNα by a constant matrix AN(q−h ,q

+
h ) in the vicinity of states q−h and q+

h . If that matrix correctly
ensures hyperbolicity, namely it has real eigenvalues and a complete set of independent eigenvectors, and satisfies the
consistency condition[40]

AN(q,q) =AN(q), (35)

then the solution of problem (34) consists of M discontinuous waves emanating from the origin of the (XN , τ) plane,
with celerities ci and associated right eigenvectors r(i)

q , 1 ≤ i ≤ M. The stationary solution is obtained for the ray
XN/τ = 0 as

q∗ = q−h +

M∑
i=1

ci<0

δir(i)
q = q+

h −

M∑
i=1

ci>0

δir(i)
q , (36)
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where the wave strength coefficients δi can be computed from the solution of the following linear system

q+
h − q−h =

M∑
i=1

δir(i)
q . (37)

The interface fluxes F iα

(
q−,q+

h

)
appearing in the quadrature formula of surface fluxes (33) are then computed with

the stationary solution q∗

F iα

(
q−h ,q

+
h

)
= F iα (q∗) , (38)

also known as the Godunov flux[26].

3.3. Basic slope limiters

Although non-oscillatory solutions are mainly enforced in ADER-DGFEM through an a posteriori sub-cell WENO-
FV-based limiter[21, 15], basic slope limiters with piecewise monotonic linear reconstruction[17, 38, 46] are used in
this work for the sake of simplicity, although the former could also be adapted for ADER-DGMPM. The main idea is
to enforce at some limiting points XK , K ∈ V, such as the Gauss-Legendre integration points of an interface, the local
maximum principle

Ū
min
e ≤U

n
e(XK) ≤ Ūmax

e ; Ū
min
e = min

j∈Ne
Ū

n
j ; Ūmax

e = max
j∈Ne
Ū

n
j (39)

where Ūn
e denotes the element average of the vector of conserved quantitiesU in the element Ωe at time tn, and Ne

are the set of indices of nearby elements of Ωe, plus Ωe itself. The piecewise monotonic linear reconstruction requires
to compute a gradient, usually obtained by using a least square procedure using information from the current cell as
well as values from nearby cells, whose solution reads

∇Ū
n
e =

 m∑
γ=1

νeγ ⊗ νeγ

−1 m∑
γ=1

(
Ūγ − Ūe

deγ

)
⊗ νeγ ; νeγ =

Xγ − Xe

deγ
(40)

where Xγ and Xe are the coordinates of the centroids of grid cells γ and e, and deγ their relative distance. The limited
solution is reconstructued componentwise. It involves the reconstructed gradient (40), and a set of limiting coefficients
associated with each component of System (5) gathered in the vector αe, such that dim(αe) = M, where dim(•) refers
to the dimension of the quantity (•). The reconstructed limited solution reads:

U
n
e,lim(X) = Ū

n
e + diag(αe) · ∇Ūn

e · (X − Xe). (41)

The limiting coefficients are defined as the componentwise minimum values among those computed for several limit-
ing points of coordinates XK :

αe = min
K∈V

αK , (42)

where

αK =


g
(
Ū

max
e −Ū

n
e

U
n
e (XK )−Ūn

e

)
ifUn

e(XK) − Ūn
e > 0

g
(
Ū

min
e −Ū

n
e

U
n
e (XK )−Ūn

e

)
ifUn

e(XK) − Ūn
e < 0

1 ifUn
e(XK) − Ūn

e = 0

. (43)

The function g(x) denotes here a real-valued function associated with the limiter, hence Equation (43) is computed
componentwise. The Barth-Jespersen[4] limiter is obtained for g(x) = min(1, x); that of Venkatakrishnan[70] for

g(x) =
x2 + 2x

x2 + x + 2
.
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4. Space-time ADER-DGMPM predictor

4.1. Space-time approximation of a local auxiliary problem
Following [22], one introduces the following local auxiliary Cauchy problem

∂u
∂t

+ DIVF = 0, ∀(X, t) ∈ (Rd × [0,∆t])

u(X, 0) = Uh(X, t = tn)|Ωe
∀X ∈ Rd

(44)

which is assumed to be solved in an infinite medium, i.e. with no data coming neither from any boundaries nor from
the neighboring grid cells. Practically speaking, the initial value problem (44) is solved within the space-time slab
Ωe×[tn, tn+1], therefore its initial conditions are provided by the spatial approximation Uh(X, tn)|Ωe

reconstructed from
the vector of conserved quantities Up(tn) known at time tn at each material point p = 1, . . . ,Np of initial coordinates
Xp.

The following common space-time approximate solution uh(X, t) is provided by ADER-DGFEM[22, 15] to that
of the local auxiliary problem (44)

uh(X, t) =

Ndofs∑
l=1

θl(X, t)ûl, (45)

where Ndofs = (M + 1)d+1 is the number of degrees of freedom of the approximation, d is the space dimension, and
the multi-index l = (l0, l1, l2) (if d = 2) denotes the degrees of freedom associated with various space locations and
intermediate times. More specifically, the space-time shape functions θl(X, t) are usually constructed in the context of
ADER-DGFEM by a classical tensorisation of one-dimensional Lagrange polynomials of degree N passing through
N + 1 Gauss-Legendre interpolation points, yielding θl(X, t) = ϕl0 (τ)ϕl1 (ξ)ϕl2 (η), and the time coordinate t is mapped
to the reference time τ ∈ [0, 1], via t = tn + τ∆t.

However, since the computational domain is discretized within the context of DGMPM into a collection of material
points (see Figure 1), the tensorisation of one-dimensional Lagrange polynomials associated with spatial coordinates
cannot be pursued, since the location of those material points can be arbitrary within a grid cell. However, the
tensorisation between spatial functions and the temporal one can be kept, giving the following space-time shape
functions

θl(X, t) = ϕl0 (τ)χp(ξ, η), (46)

where χp(ξ, η) denotes some multi-variate spatial shape function associated with one material point p lying in the
grid cell Ωe. As a consequence, the degrees of freedom ûl appearing in the space-time approximation (45) are now
defined at material points, at some intermediate time in the interval [tn, tn+1]. The approximation (45) is therefore
quite different in the context of ADER-DGMPM with respect to that of ADER-DGFEM.

4.2. Forward mapping particle to grid via a Moving Least Square approximation
The Moving Least Square[60, 37] (MLS) approximation represents one method among many others to reconstruct

functions from scattered data. It has been used to build approximations for many meshless methods[50, 6, 42, 52]
from fields defined pointwise. It is therefore well suited to build the forward mapping particle to grid, through the
construction of spatial shape functions χp(ξ, η). Notice that the use of MLS approximation has already been used in
the context of the improved MPM in [27]. Here, it is rather derived in the context of ADER-DGMPM. The MLS
approximation uh of an any scalar field u is given by

uh(X) =

m∑
j=0

p j(X)a j(X) = pT (X)a(X) (47)

where pT (X) = [1 X1 X2 X1X2 X2
1 X2

2 . . . ] is a m-order polynomial (here Lagrange) basis in the two-
dimensional setting and a(X) = [a0(X) a1(X) . . . am(X)] is a vector of coefficients obtained by minimizing the
quadratic functional

J =
1
2

Np∑
p=1

w(X − Xp)
[
pT (Xp)a(Xp) − ūp

]2
, (48)
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where ūp is the given data at point p, and w(X − Xp) denotes a weight function with compact support. Once the
functional (48) has been minimized, the solution coefficients a = A−1Bū can be introduced in the approximation (47)
in order to obtain the MLS shape function associated with the material point p involved in space-time shape functions
(46) of the predictor

χp(X) = pT (Xp)[A(Xp)]−1Bp(Xp), (49)

where the matrices A and B are defined as

A(X) =

Np∑
p=1

w(X − Xp)p(Xp)pT (Xp) ; B(X) =
[
w(X − X1)p(X1), . . . , w(X − XNp )p(XNp )

]
. (50)

The reconstructed MLS approximation of the vector of conserved quantities at time tn from the pointwise values
known at material points thus reads

Uh(X, tn) =

Np∑
p=1

χp(X)Un
p, (51)

which provides the initial conditions to the local Cauchy problem (44).
It is clear that the moment matrix A(X) (50) of size m×m should be invertible wherever the MLS shape functions

are to be evaluated. On the one hand, a necessary condition for the moment matrix to be invertible is that Np ≥ m. On
the other hand, pathological arrangements of material points leading to a singular matrix should be avoided, especially
if Np = m (see [52] for more details on it), hence the locations of material points within the grid cell Ωe may not be
completely arbitrary.

The MLS shape function (49) relies on a weight function w(X − Xp) which should satisfy a set of mathematical
properties. Especially, it should be non-zero and positive only over a compact support, continuous, satisfy to some
unity and Dirac delta conditions (see [6] for more details), and be a monotonically decreasing function of r =

‖X−Xp‖

dp
,

where dp is the support size of the material point p. To fix ideas, one very common weight function is the cubic spline

w(r) =


2
3 − 4r2 + 4r3, r ≤ 1

2
4
3 − 4r + 4r2 − 4

3 r3, 1
2 < r ≤ 1

0, r > 1
, (52)

but others with higher order of smoothness can be considered, see [6]. For multi-space dimensions, the weight function
can be generated from a tensor product. For instance, in the two-dimensional setting it reads:

w(X − Xp) = w

 |X1,p − X1|

dX1
p

 w

 |X2,p − X2|

dX2
p

 (53)

Basically, the support sizes (dX1
p , d

X2
p ), or smoothing lengths, are defined as the two dimensions of a quadrilateral

element.
Note also that both MPM and DGMPM use Shepard’s functions[60] for the particle to grid mapping, also known

as MLS at order zero

χ0
p(X) =

w(X − Xp)∑
q w(X − Xq)

, (54)

coupled with a piecewise linear weight function (actually a ”hat” function) over the compact support (see [27]). Higher
order MLS approximation thus allows to get a higher order approximation for the DGMPM.

Finally, thanks to the total Lagrangian framework retained in Section 2, the material points of coordinates Xp are
defined in the initial configuration Ω0 of the body Ω. Hence, the MLS approximation (47) is computed once and for
all for a given mesh, until the grid is discarded.
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4.3. Local space-time DGMPM-predictor

Multiplying Equation (44) by the space-time shape function θk, and integrating over the space-time domain Ωe ×

[tn, tn+1] yields its integral form ∫ tn+1

tn

∫
Ωe

θk

(
∂uh

∂t
+ DIVF

)
dVdt = 0. (55)

However, since an element local predictor solution is sought, no interactions with any neighbor element is required at
this stage, which will be accounted for during the corrector stage (31) via the computation of interface fluxes. Hence
no integration by parts in space is required, but rather an integration by parts in time of the first term gets rid of the
time derivative of the sought predictor field. Then, once the integrals have been transfered to the parent domains of
both space and time coordinates, and accounting for the approximation (45) valid for both the vector of conserved
quantities uh and the auxiliary vector qh, one gets the following discrete system of non-linear equations{∫∫

�
θk(ξ, τ = 1)θl(ξ, τ = 1)Jdξ −

∫ 1

0

∫∫
�

∂θk(ξ, τ)
∂τ

θl(ξ, τ)Jdξdτ
}

ûl

=

∫∫
�
θk(ξ, τ = 0)χp(ξ)JdξUn

p − ∆t
∫ 1

0

∫∫
�
θk(ξ, τ)

∂θl(ξ, τ)
∂ξm

∂ξm

∂Xα
JdξdτF α(q̂l), (56)

where the parent domain � associated with space coordinates may be defined as [0, 1]2 or [−1, 1]2, the initial con-
ditions are reconstructed from the MLS approximation (51), and F α(q̂l) denotes the fluxes F α = F · Eα computed
with the auxiliary vector q̂l associated with the lth degree of freedom. System (56) applies for each ith component
(ûil,Un

ip, q̂il) of vectors (ûl,Un
p, q̂l), and can be recast in a more compact form as

Sτû = R0Un − ∆t
∑
α

SαF α(q̂) (57)

where

û = [û1 û2 . . . ûM]T ; q̂ = [q̂1 q̂2 . . . q̂M]T (58)

Sτ = diag
[
Si
τ, 1 ≤ i ≤ M

]
;
(
Si
τ

)
kl

=

(∫∫
�
θk(ξ, τ = 1)θl(ξ, τ = 1)Jdξ −

∫ 1

0

∫∫
�

∂θk(ξ, τ)
∂τ

θl(ξ, τ)Jdξdτ
)

(59)

R0 = diag
[
Ri

0, 1 ≤ i ≤ M
]

;
(
Ri

0

)
kp

=

∫∫
�
θk(ξ, τ = 0)χp(ξ)Jdξ (60)

Sα = diag
[
Si
α, 1 ≤ i ≤ M

]
;
(
Si
α

)
kl

=

∫ 1

0

∫∫
�
θk(ξ, τ)

∂θl(ξ, τ)
∂ξm

∂ξm

∂Xα
Jdξdτ (61)

provided ûi, 1 ≤ i ≤ M here denotes all degrees of freedom related to the component i of System (5), so that
dim(ûi) = Ndofs, where dim(•) refers to the dimension of the quantity (•). Conversely, ûl, 1 ≤ l ≤ Ndofs refers to all
components related to the lth degree of freedom, such that dim(ûl) = M. The same definitions apply for q̂i and q̂l.

System (57) is non-linear and should be solved on û with an iterative process. It is usually solved by means of
some fixed point algorithm (or Picard iterations, see e.g. [22]), such that the following update is provided at each
iteration r of the computation

û(r+1) = S−1
τ R0Un − ∆t

∑
α

S−1
τ SαF α(q̂(r)), (62)

where the auxiliary vector q̂(r) has been computed from û(r) known at iteration r. Especially, stresses are computed
from the deformation gradient plus a possible set of internal variables through constitutive updates which are per-
formed at material points, at various intermediate times τ ∈ [0, 1] according to the index l of the associated degree
of freedom. Notice that the iterative solution of the non-linear system (62) has been shown to be convergent[15].
Besides, since the matrix S−1

τ Sα is nilpotent[36], yielding all its eigenvalues to be zero, the convergence to the ex-
act solution is guaranteed in a finite number of steps for linear homogeneous PDE. Figure 2 shows a sketch of the
discretization of a model space-time control volume Cn = (ξ, η, τ) ∈ [−1, 1]2 × [0, 1], plotted with only two space
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Figure 2: Discretization of a model space-time control volume Cn = (ξ, η, τ) ∈ [−1, 1]2 × [0, 1] with a quadratic approximation, plotted with only
two space dimensions for visualization purpose.

dimensions for visualization purpose. Layers of 3 × 3 Gauss integration points and of the same set of material points
are here defined in this example, at each intermediate time τs the chosen time integration rule consists of. The ADER
approach permits to perform at the same time the particle to grid projection and the solution process of degrees of
freedom associated with material points at those various intermediate times.

An efficient initial guess to the iterative solution process of the non-linear system (57) is of much importance to
obtain a fast convergence. One possibility is to employ a second-order accurate MUSCL-Hancock-type approach[34]
based on that of Van Leer[69], which basically consists in extrapolating the known approximation Uh(X, tn) (51)
through some Taylor series expansion in time with a particular operator which here reduces to −DIVF (Qh(X, tn)):

uh(X, t) = Uh(X, tn) − (t − tn)DIVF (Qh(X, tn)). (63)

Therefore, provided the MLS approximation (51) is also applied to the auxiliary vector Qh(X, tn), the initial guess
(63) expresssed at each intermediate time τs reads

ûp(τs) = Un
p − ∆tτs

Np∑
q=1

∂χq

∂ξm
(ξp)

∂ξm

∂Xα
(ξp)F α(Qn

q) (64)

where ûp(τs) denotes a vector consisting of all unknown components associated with the material point p, defined at
the time slice τs. Notice that the initial guess (64) defined in the context of ADER-DGMPM requires to compute and
to store (once and for all) the gradient of the MLS shape functions ∂χq

∂ξm
(ξp) and the inverse jacobian matrix ∂ξm

∂Xα
(ξp)

expressed at material points p = 1, . . . ,Np of spatial parent coordinates ξp.

Remark 1. While the updated solution in RK-DGFEM methods is computed in a recursive manner at each stage, the
ADER approach provides a space-time approximation on the slab Ωe × [tn, tn+1] computed purely locally at once in an
implicit manner. On the one hand, it avoids communications at each RK stage over the whole computational grid in a
context of parallel implementation, and may allow for a simple time-accurate local time stepping. On the other hand,
the sole predictor approximation requires a local implicit solution procedure, letting the global update on the grid (31)
to be still time explicit.

In the context of DGMPM, RK methods may not appear as the best suited time integrators. Indeed, since the
stresses should be updated on the grid at intermediate RK stages, either it would require to transfer internal variables
from material points to the computational grid in order to perform constitutive update, or back and forth transfers
of strains or stresses between material points and grid nodes should be carried out at each intermediate RK stage
if internal variables are let at material points for constitutive updates. In both cases, additional numerical diffusion
would be added in the scheme, which is not desirable. When coupled with DGMPM, ADER hence provides a suitable
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framework to circumvent the above issues encountered with RK time integrators, especially when including Moving
Least Square shape functions as the spatial contribution to the space-time approximation of the predictor field.

Remark 2. The computation of integrals (59), (60), (61) require to map back the coordinates of the material points
from the initial configuration to the parent domain, and therefore to compute the associated geometrical inverse map-
ping. This is straightforward for rectangular grids, but may be costly for non-uniform quadrilateral grids since it
requires the solution of a non-linear system of equations. Another possibility is to define the position of material
points in the parent domain of each grid cell, and to only use the direct mapping to get their associated initial coordi-
nates. In that last case, the computation of MLS shape functions (49) and of the weight function (53) can directly be
computed with the parent coordinates ξ, while the support sizes are defined as the lengths of the parent element.

4.4. Back-mapping grid to particles
Once the solution (31) has been updated on the grid, it is projected back to material points. Various back-mappings

can be considered. The first one is a simple interpolation using the discontinuous Galerkin approximation (26)

Uh(Xp, tn+1) =

Nn∑
b=1

Φb(Xp)Û
n+1
b (65)

for every material point p = 1, . . . ,Np lying in each grid cell e. This is known as the PIC[28] (Particle-In-Cell)
method. Another one is the FLIP[14] (Fluid Implicit Method), which rather amounts to interpolate the increment of
the solution field over the time step back to material points:

Uh(Xp, tn+1) =Uh(Xp, tn) +

Nn∑
b=1

Φb(Xp)(Û
n+1
b − Û

n
b). (66)

It is known to be less diffusive than PIC, at least in the MPM context. However, other types of back-mapping technique
exist, such as XPIC[29], which may also be used in the context of ADER-DGMPM.

4.5. ADER-DGMPM solution scheme
Assume that for every material point p = 1, . . . ,Np lying in each grid cell Ωe, e = 1, . . . ,Ne, the vector of

conserved quantities Un
p as well as the auxiliary vector Qn

p are known at time tn. After a stage of pre-processing of
some quantities before the time loop, the computing procedure of ADER-DGMPM on the time increment [tn, tn+1]
mainly consists of three big steps. First, the ADER method permits to perform at the same time the forward projection
of various fields from material points to the grid and the local solution process of the predictor field uh(X, t) (45) and its
associated auxiliary vector qh(X, t) on each space-time slab Ωe × [tn, tn+1]. Second, the vector of conserved quantities
Uh(X, tn) defined on the computational grid is updated cellwise via the corrector step. At last, a back projection from
the grid to material points and a constitutive update permits to update the vectors Un+1

p and Qn+1
p at time tn+1 at each

material point p.

Pre-processing step
Once the initial configuration Ω0 of the body Ω has been discretized into a collection of material points, and a ded-

icated mapping between those points and each cell of a computational grid has been performed, some pre-processing
operations can be carried out. Especially, since a total Lagrangian approach is followed here, many matrices can
be computed and stored once and for all. On the one hand, the definition of the sole computational mesh and the
associated integration rules permits to compute once and for all some elements of approximation at quadrature points
(gradients of the nodal-DG shape functions, inverse mapping and associated determinant of the geometrical approx-
imation) and then compute the pseudo-stiffness matrices Kab

α (32), as well as the mass matrixM (29) which can be
factorized. On the other hand, the mapping known between material points and the grid permits to compute cellwise
the MLS shape functions (49) at space quadrature points, then to compute the space-time shape functions θl(ξ, t) (46)
and their space and time derivatives at space-time quadrature points or at particular end times of the time parent do-
main. From the latters, the matrices S−1

τ R0 and S−1
τ Sα involved in the predictor step and appearing in the recurrence

formula (62) are computed once and for all and stored.
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Processing step
For each time step, the following processing steps are in order:

1. Compute the critical time step according to the CFL condition associated with DG schemes[17]:

∆t ≤ CFL
hmin

(2P + 1)|λmax|
(67)

where CFL is the Courant number, P is the polynomial order of the approximation, hmin is the minimum char-
acteristic mesh-size, and |λmax| is the maximum wavespeed. The characteristic speeds are computed from the
eigenvalues of the acoustic tensor CNN (24) depending on the deformation gradient Fn at time tn. Notice that
when applied to ADER-DGFEM, the values of the CFL number must be slightly reduced with respect to these
associated with DGFEM for increasing orders of approximation, see [19, 22] for more details.

2. Space-time predictor step
(a) Compute an initial guess ûp(τs) for each material point p at each intermediate time τs of the time integra-

tion rule with the explicit second order accurate Taylor expansion (64), from the data (Un
p,Qn

p) known at
material points at time tn. The associated auxiliary vector q̂p(τs) is computed via a constitutive update of
stresses.

(b) at each iteration r of the iterative process,
i. Compute the fluxes F α(q̂(r)

l ) for each space-time degree of freedom l, 1 ≤ l ≤ Ndofs.
ii. Update û(r+1) with the recurrence formula (62).

iii. Update the auxiliary vector q̂(r+1) from û(r+1). A constitutive update is performed for each degree
of freedom l, that is for all material points p = 1, . . . ,Np and for all intermediate times s to up-
date stresses P(r+1) from the deformation gradient F(r+1) contained in the vector û(r+1) and eventually
internal variables known at material points at time tn.

(c) At convergence, the space-time approximations uh(X, t) (45) and qh(X, t) are known in Ωe × [tn, tn+1], and
are especially expressed at space-time quadrature points for the next corrector step.

3. Corrector step
(a) At each intermediate time τs,

i. Compute the discrete volume fluxes Fv(q̂(τs)) with Equation (32).
ii. Solve the approximate Riemann problem (34) with the jacobian matrix (35) at each cell interface

of the mesh. Wave strength coefficients are solution of Equation (37), the stationary solution q̂∗(τs)
follows from Equation (36), from which the interface fluxes F α(q̂∗(τs)) are obtained with Equation
(38).

iii. Compute the discrete surface fluxes Fs(q̂∗(τs)) at each side of each interface of the mesh with the
quadrature formula (33). Boundary conditions are enforced through the definition of ghost states at
boundary interfaces.

(b) Update the nodal degrees of freedom Ûn+1 at time tn+1 with the quadrature formula (31).
(c) Apply slope limiters by reconstructing a limited piecewise monotonic linear solutionUn

e,lim(X) with Equa-
tion (41).

4. Back-mapping grid to particles
(a) Back-projection of the updated limited solution Un

e,lim(X) from interpolation points to material points
using a classical interpolation (PIC) (65) or the FLIP back-mapping (66).

(b) Constitutive updates are performed at material points from updated deformation gradients Fn+1
p contained

in the vector Un+1
p , and eventually internal variables known at material points at time tn. The stresses Pn+1

are updated with Equation (20), eventually internal variables may also be updated at time tn+1.

5. At this stage, and if required, the arbitrary computational grid inherited from MPM may be discarded, and
rebuilt for any purpose. Especially, the construction of a new mesh may be motivated by the improvement of the
approximation locally (for shock-capturing purpose), or for the sake of large deformations which have occurred
and require a better mesh. Notice that reconstructing a new grid require to redo the whole pre-processing step
before moving to the next time step.
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4.6. Summary
It is worthwhile to summarize the novelties brought by ADER-DGMPM with respect to ADER-DGFEM:

1. The presence of material points in the ADER-DGMPM implies the definition of forward and back mappings
between material points and the computational grid. The forward mapping is achieved via an MLS space
approximation during the predictor stage, associated with degrees of freedom of the predictor now defined at
material points and not at interpolation points as in ADER-DGFEM. The back mapping amounts to interpolate
either the DGFEM solution (PIC) or its increment over the time step (FLIP) to transfer quantities from the
interpolation points back to material points.

2. The constitutive updates are now only performed at material points, either during the predictor stage (at each
iteration) or after the back-mapping. The computational grid becomes arbitrary, and can be discarded once the
solution has been updated at material points. No step of projection of internal variables from one grid to another
is required as in classical mesh-based methods.

3. ADER-DGMPM can reduce to the first-order DGMPM if wished, which thus represents a lower limit (actually
of first-order accuracy) to the approximation of arbitrary high order of ADER-DGMPM. This can be achieved by
changing the order of the MLS approximation (actually using Shepard’s functions (54)) and using an integration
rule based on material points[55, 56] rather than on Gauss-Legendre integration points. The main interest of the
existence of such first-order accurate lower limit lies in that it can provide a monotone approximation, which
appears as another way of achieving a non-oscillatory solution in the vicinity of shocks than using limiters.
Moreover, if the grid is adapted so that a cell only consists of one material point, the usual upwind scheme is
retrieved[57], with the associated optimal CFL condition[40].

4. For the sake of simplicity, a classical slope limiter has been kept in the present version of ADER-DGMPM,
although an analog WENO-FV subcell limiter as used for ADER-DGFEM could also be developed for ADER-
DGMPM.

5. Numerical examples

5.1. Convergence analysis on a two-dimensional square domain
We first consider smooth solutions for convergence analysis purpose of the ADER-DGMPM, obtained in the plane

and small strains, isothermal, linear and isotropic elastodynamic framework. One considers a square computational
domain of side length equal to l = 1m, with symmetry conditions set on its left and bottom sides, and traction-free
prescribed on its top and right sides. This test case is similar to the one presented in [38], but with different boundary
conditions. The following function

f (x1, x2) =
U0π

2
cos

(
πx1

2

)
sin

(
πx2

2

)
, (68)

with U0 = 5 · 10−4 serves as an initial condition for the strain field, which reads at time t = 0 as

ε(x, t = 0) = f (x1, x2) (e1 ⊗ e1 − e2 ⊗ e2), (69)

from which the initial stresses follow from the elastic law, while the velocity field vanishes initially. The analysis is
here conducted with steel-like material parameters, more precisely with Young modulus E = 2 · 1011 Pa, Poisson’s
ratio ν = 0.3 and mass density ρ = 7800 kg.m−3. The convergence analysis is carried out with grids consisting of
Ne elements per side (Ne = 5, 10, 15, 25, 50), with respect to a reference solution computed with a finer mesh of 100
cells per side. As a matter of illustration, Figure 3 shows the map of the first component of the velocity field of the
reference solution at time t = 6.8084 · 10−6 seconds, computed with bi-quadratic polynomial order in space (S2) and
quadratic one in time (T2).

The convergence curves of the relative errors in L2 norm of the strain component ε11, the Cauchy stress component
σ11, and of the velocity component V1 as a function of the grid size ∆x are here considered and shown in Figure 4,
but are also representative of other fields. More precisely, bi-linear polynomial order in space (S1) and linear one
in time (T1) are used for convergence curves shown in Figure 4a, bi-quadratic in space (S2) and quadratic in time
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Figure 3: Reference solution of ADER-DGMPM computed with a bi-quadratic approximation in space (S2) and quadratic in time (T2): map of the
first component of the velocity field at time t = 6.8084 · 10−6 seconds.

(T2) for these shown in Figure 4b, and bi-cubic in space (S3) and cubic in time (T3) for those shown in Figure
4c. For comparison purpose, convergence curves are plotted for RK-DGFEM, ADER-DGFEM and ADER-DGMPM
methods.The PIC back-mapping (65) is used with ADER-DGMPM. Gauss-Legendre interpolation points mapped
on the spatial parent domain [0, 1]2 are considered for RK-DGFEM and ADER-DGFEM. A set of tensored material
points are defined cellwise in the same parent domain for ADER-DGMPM, so that their parent coordinates are

{
1
4 ,

3
4

}2
,{

1
4 ,

1
2 ,

3
4

}2
,
{

1
5 ,

2
5 ,

3
5 ,

4
5

}2
when combined with the bi-linear, bi-quadratic and bi-cubic polynomial orders respectively.

The Moving Least Square approximation (see Section 4.2) is computed with a cubic spline (52) when the polynomial
order is lower or equal than two, and with a quartic one (see [52, Eq. (3)]) for higher order, with a support size equal
to the side length of the parent quadrilateral domain. Time integration is performed with a Courant number CFL set
at 0.2, with a TVD-RK2 time scheme to compute the S1T1 solution of RK-DGFEM, and a RK4 to compute higher
ones (S2T2 and S3T3). The relative errors shown in Figure 4 are computed at a fixed time. Typically, for a grid mesh
of Ne elements per side, Nt = Ne times steps are computed, leading to the same final instant for fixed CFL number
and material parameters. However, since the critical time step (67) associated with the CFL condition depends on
the order of approximation in DG methods, various orders give various final end times, which are approximately
{2.76 × 10−4, 1.53 × 10−4, 4.89 × 10−6} seconds for {S1T1,S2T2,S3T3} approximate solutions respectively.

The expected convergence rates of (∆x)P+1, where P is the polynomial order, are correctly retrieved for all methods
and for the various approximation orders. Namely, convergence rates of two, three and four are shown in Figures 4a,
4b and 4c, respectively associated with polynomial orders of one, two and three. All convergence curves are very
close, and the constant do not differ much between the various numerical methods.

Next, this two-dimensional square problem is also used to quantify the diffusive aspects of the various methods.
Notice that since the solution is smooth, no limiter is used. S1T1 approximations are used, with a discretization
Ne = 50,Nt = 3Ne, and a CFL number set at 0.5. Figure 5 shows the time evolutions of the dimensionless total
energy, namely the ratio of the total energy at current time t to its initial value Wtot(t)

Wtot(t=0) , when computed with the
various methods. In addition, both PIC (65) and FLIP (66) back-mappings are considered when used together with
ADER-DGMPM. It is clearly observed that (i) all methods are relatively few diffusive, the dimensionless total energy
decreases at most of an amount of the order of 10−4 on the time interval of study for this smooth solution, (ii) all
ADER schemes appear almost superposed and slightly more diffusive than TVD-RK2-DGFEM. A zoom allows to
observe more precisely that PIC and FLIP appear almost superposed and that ADER-DGFEM lies a little bit above
results of ADER-DGMPM. Hence, when the formulation relies on the first order system (5), and is solved with a
DG approximation and an ADER time integrator, PIC and FLIP do not seem to have the same influence on diffusive
aspects as in the original MPM. Besides, the MLS approximation in the ADER-DGMPM predictor does not seem to
add much numerical diffusion with respect to ADER-DGFEM. In the sequel, ADER-DGMPM will be computed with
PIC back-mapping.
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(a) Linear polynomial order (approximation S1T1).
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(b) Quadratic polynomial order (approximation S2T2).
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(c) Cubic polynomial order (approximation S3T3).

Figure 4: Convergence curves of the relative errors of fields (σ11, ε11,V1) in L2 norm, computed for various approximation orders, and for RK-
DGFEM, ADER-DGFEM and ADER-DGMPM.

5.2. LASAT-like test
Let us now consider the bidimensional square domain of side length l shown in Figure 6, submitted to an impact on

a part of its left face, by means of a step function of a pressure p(t) at time t = 0, which is released after a time tu = l/cP

where cP is the pressure sound speed. A symmetry condition is considered on the bottom side, free boundaries are set
at the right face and on the remaining part of the left one, and a perfect transmission condition is set on its top face.
This problem is treated in the bidimensional plane and large strain framework. It can also be thought to approximate
the conditions of a laser shock adhesion test (LASAT) [3]. In the latter, a laser pulse is applied on a small area of one
side of a flat sheet in order to test the adhesion of some intermediate layer of the sheet thanks to a tensile normal stress
which is generated at the crossing of two unloading waves, one arising from the unloading of the applied pressure, the
other from the free boundary set at the opposite side. A basic constitutive response is here considered, consisting of a
quadratic volumetric part of the energy (16) plus a neo-Hookean shear energy (19), associated with the same material
parameters than those used in Section 5.1.
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Figure 5: Time evolutions of the dimensionless total energy computed with the various methods.

Figure 7 shows the maps of the Cauchy stress component σ11 plotted in the current configuration of the square
computational domain at two different times, computed with TVD-RK2-DGFEM, ADER-DGFEM and ADER-DGMPM.
Results are computed with a CFL number set at 0.35, and with a bi-linear approximation in space (S1), and a linear
one in time (T1) for ADER schemes. For comparison purpose, maps of fields are plotted by making a pointwise
extraction either at Gauss-Legendre interpolation points for TVD-RK2-DGFEM and ADER-DGFEM, or at material
points for ADER-DGMPM. Especially, Figure 7a shows the rightward propagation of the first compression shock
wave through the thickness of the specimen. The capturing of its front is performed in a very similar manner by
all numerical schemes in few elements. This can be viewed in Figure 8a, in which the plot of the Cauchy stress
component σ11 is evaluated over the bottom line at the same instant for all methods. Since maps are defined with

l = 3 m

l = 3 m

a = 1 mP · e1 = p(t)e1

e1

e2

Figure 6: Partial impact on a two-dimensional square computational domain.

pointwise data in Figure 7, plots in Figure 8 are achieved thanks to a point-line interpolator available in the software
Paraview[1]. Figure 7b shows a tensile normal stress that has occurred within the specimen after the crossing of two
unloading waves. More precisely, at time t ≈ 1.14 · 10−3 seconds, the tensile stress area is currently being reduced by
two rightward and leftward unloading waves travelling towards each other. Once crossed, these two waves will then
generate a compression area. The contour of the initial configuration of the square domain is also shown in Figure
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(a) t ≈ 4.25 · 10−4 seconds.

(b) t ≈ 1.14 · 10−3 seconds.

Figure 7: Maps of the Cauchy stress component σ11 plotted in the current configuration of the square computational domain at various times,
computed with TVD-RK2-DGFEM, ADER-DGFEM and ADER-DGMPM. Results are obtained with a bi-linear polynomial order in space (S1),
and linear one in time (T1) for ADER schemes. Maps are made with pointwise extraction of fields either at Gauss-Legendre interpolation points
(for TVD-RK2-DGFEM and ADER-DGFEM), or at material points (ADER-DGMPM).

7, so that its displacement is easily seen. Finally, Figure 8b shows the tensile normal stress state occurring at time
t ≈ 1.14 · 10−3 seconds. A very good correlation is also observed between the various numerical solutions.

5.3. Multi-holed elementary cell

A last example involving large strains pertains to a multi-holed elementary rectangular domain submitted to some
impact loading, which is extracted from [33]. Figure 9 shows the computational domain and associated boundary con-
ditions. It is drilled with several circular holes where free boundary conditions are considered. Symmetry conditions
are set at the top, left and bottom sides of the domain, and a step function of a leftward velocity −v̄e1 is applied on the
right side of the domain at time t = 0. The numerical values of the geometrical and loading parameters are gathered
in Table 1. Such geometry also permits to show the behaviour of the proposed method when used with non-uniform
quadrilateral grids. This problem is also treated in the bidimensional plane and large strain framework, starting from
a natural initial state, and considering the same hyperelastic constitutive response than the one used in Section 5.2.

Figure 10 shows the maps of the Cauchy stress component σ11 plotted at two different times in the current config-
uration of the multi-holed computational domain, computed with TVD-RK2-DGFEM, ADER-DGFEM and ADER-
DGMPM, coupled to a bi-linear approximation in space (S1) and a linear one in time (T1) for ADER schemes. Time
advancement is performed with a CFL number set at 0.2. A very good agreement is observed between the various nu-
merical solutions at the two different times. This is also emphasized in Figure 11 which shows the plots of the velocity

19



S
tr

e
ss

 (
P

a
)

-1e+10

-8e+9

-6e+9

-4e+9

-2e+9

0

2e+9

4e+9

6e+9

8e+9

1e+10

x (m)
0 0.5 1 1.5 2 2.5 3

t=0.000424493 sec.

(a) t ≈ 4.25 · 10−4 seconds.

S
tr

e
ss

 (
P

a
)

-1e+10

-8e+9

-6e+9

-4e+9

-2e+9

0

2e+9

4e+9

6e+9

8e+9

1e+10

x (m)
0 0.5 1 1.5 2 2.5 3

t=0.00114054 sec.

(b) t ≈ 1.14 · 10−3 seconds.

Figure 8: Plots of the Cauchy stress component σ11 along the bottom line of the square computational domain at various times, computed with
TVD-RK2-DGFEM, ADER-DGFEM and ADER-DGMPM. Results are obtained with a bi-linear polynomial order in space (S1), and linear one in
time (T1) for ADER schemes.
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−v̄e1

Figure 9: Sketch of the computational domain of the multi-holed elementary cell. Holes 1, 2, 3 of radii r = r1 = r2 = r3 are centered at locations
(w, 3w), (3w,w) and

(
4w, 7w

2

)
respectively, where w ∈

]
R
3 ,min

(
2
7 (H − r), (L−r)

4

)[
is a parameter.

Geometry R = 8 × 10−3 m r = 4 × 10−3 m w = 5 × 10−3 m L =
11w

2
H =

9w
2

Loading v̄ = 300 m.s−1

Table 1: Geometrical and loading parameters for the multi-holed medium test case.

component V1 evaluated along the bottom line of the computational domain for the various numerical solutions. This
problem is challenging since holes tend to depart from a circular profile as strains increase, as shown in Figure 10b.

Figure 12 shows the same numerical simulation, but now computed with a bi-quadratic approximation in space
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(a) t ≈ 2.39 · 10−6 seconds.

(b) t ≈ 3.63 · 10−6 seconds.

Figure 10: Maps of the Cauchy stress component σ11 plotted in the current configuration of the multi-holed elementary cell at various times,
computed with TVD-RK2-DGFEM, ADER-DGFEM and ADER-DGMPM. Results are obtained with a bi-linear polynomial order in space (S1),
and linear one in time (T1) for ADER schemes. Maps are made with pointwise extraction of fields either at Gauss-Legendre interpolation points
(for TVD-RK2-DGFEM and ADER-DGFEM), or at material points (ADER-DGMPM).
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(a) t ≈ 2.39 · 10−6 seconds.
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Figure 11: Plots of the velocity component V1 along the bottom line of the multi-holed medium at various times, computed with TVD-RK2-
DGFEM, ADER-DGFEM and ADER-DGMPM. Results are obtained with a bi-linear polynomial order in space (S1), and linear one in time (T1)
for ADER schemes.

(S2) for all methods, hence resulting in much more computation points, a quadratic one in time (T2) for ADER
schemes, and a RK4 time integrator for RK-DGFEM. The same comments than the aforementioned ones still hold.
The maps of stresses seen in Figure 12a show a very good correlation between the various numerical solutions, as
well as velocity profiles shown in Figure 13. Besides the different time integration schemes and spatial discretizations
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(a) t ≈ 2.39 · 10−6 seconds.

(b) t ≈ 3.63 · 10−6 seconds.

Figure 12: Maps of the Cauchy stress component σ11 plotted in the current configuration of the multi-holed elementary cell at various times,
computed with RK4-DGFEM, ADER-DGFEM and ADER-DGMPM. Results are obtained with a bi-quadratic polynomial order in space (S2), and
quadratic one in time (T2) for ADER schemes. Maps are made with pointwise extraction of fields either at Gauss-Legendre interpolation points
(for RK4-DGFEM and ADER-DGFEM), or at material points (ADER-DGMPM).
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(a) t ≈ 2.39 · 10−6 seconds.
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Figure 13: Plots of the velocity component V1 along the bottom line of the multi-holed medium at various times, computed with RK4-DGFEM,
ADER-DGFEM and ADER-DGMPM. Results are obtained with a bi-quadratic polynomial order in space (S2), and a quadratic one in time (T2)
for ADER schemes.

of the various numerical methods compared here, notice also that the limiter used (see Section 3.3) may also have
an influence on the results, especially as strains become important. In particular the approximate solutions in the
two ligaments lying between the right holes and the top and bottom lines of the computational domain may become
sensitive to small variations as strains increases. As already pointed out in [46], this basic limiting algorithm has been
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developed for scalar variables, and is thus not frame invariant and may lead to rotational symmetry distortion. The
construction of a Lagrangian frame invariant limiter compatible with System (5), in the spirit of [44, 58], may then
help to preserve rotational symmetries, and simulate higher strain levels before discarding the arbitrary computational
grid.

6. Conclusion

The first-order accurate DGMPM has been extended in this work to arbitrary high orders of approximation. The
considered applications pertain to hyperbolic problems defined in solid media submitted to impacts and undergo-
ing large strains. The proposed extension of the DGMPM relies on the ADER technology. The latter here appears
as a particular discrete time integrator well-suited to ensure the compatibility between constitutive updates set only
at material points and discrete time advancement performed on a computational grid, while RK-type time integra-
tors would require more remapping steps of various fields. More precisely, the ADER technology when applied
to DGMPM was adapted on two items with respect to that applied to DGFEM: (i) the degrees of freedom of the
space-time approximation of the predictor are now defined at materials points (at each intermediate times), and not
at Gauss-Legendre interpolation points anymore, (ii) the spatial contribution to the space-time approximation of the
predictor is now provided by a Moving Least Square Approximation (and not by a tensor product of one-dimensional
Lagrange polynomials anymore). MLS permits on the one hand to reconstruct a smooth approximation of arbitrary
order from scattered data, and on the other hand to perform the forward projection from material points to the degrees
of freedom of the grid at the same time than the predictor approximation is being computed. The solution of the
predictor approximation over the space-time slab Ωe × [tn, tn+1], and the DGFEM correction step then basically follow
the same lines than those of ADER-DGFEM. Once a slope limiter has been applied to the updated field defined on
the computational grid, a back-mapping permits to get the fields at material points via a PIC or a FLIP procedure,
followed by a last constitutive update performed at these material points. Then, if required, the grid can be discarded
for any adaption purpose. Notice that thanks to the total Lagrangian framework, the approximations related to the grid
and to the predictor are computed once and for all, until the grid is discarded. Finally, some illustrations on examples
of two-dimensional Lagrangian isothermal hyperelastodynamics have shown a good agreement between numerical
solutions computed with RK-DGFEM, ADER-DGFEM and ADER-DGMPM.

Data availability statement

Data are available on request from the authors.
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