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The goal of this work is to understand and quantify how a line with nonlocal diusion given by an integral enhances a reaction-diusion process occurring in the surrounding plane. This is part of a long term programme where we aim at modelling, in a mathematically rigorous way, the eect of transportation networks on the speed of biological invasions or propagation of epidemics.

We prove the existence of a global propagation speed and characterise in terms of the parameters of the system the situations where such a speed is boosted by the presence of the line. In the course of the study we also uncover unexpected regularity properties of the model. On the quantitative side, the two main parameters are the intensity of the diusion kernel and the characteristic size of its support. One outcome of this work is that the propagation speed will signicantly be enhanced even if only one of the two is large, thus broadening the picture that we have already drawn in our previous works on the subject, with local diusion modelled by a standard Laplacian.

We further investigate the role of the other parameters, enlightening some subtle eects due to the interplay between the diusion in the half plane and that on the line. Lastly, in the context of propagation of epidemics, we also discuss the model where, instead of a diusion, displacement on the line comes from a pure transport term.

Biological invasions and epidemics in the presence of a line

This work is part of a programme aimed at understanding the eect of a line, or a network of lines, on propagation properties in the context of reaction-diusion. The underlying motivation is to model the eect of a line of transportation, such as a road, a railway, or a waterway, on the spreading of a biological invasion, or the dissemination of epidemics. In the present paper, we examine the case of a nonlocal diusion on the line.

In [START_REF] Berestycki | The inuence of a line of fast diusion in Fisher-KPP propagation[END_REF], or [START_REF] Berestycki | Propagation of epidemics along lines of fast diusion[END_REF] we considered the framework of local diusion on the line. There, we analysed the case of a line having a diusion of its own, given by a multiple of the Laplacian (thus associated with random brownian motion of individuals), and coupled with a Fisher-KPP, or diusive SIR process with diusion in the adjacent plane. We computed the propagation velocity, and an important outcome was that the overall propagation was increased as soon as the diusion on the line exceeded a certain explicit threshold. Our results here recover and generalise those of the aforementioned papers.

An even more drastic eect was observed by A.-C. Coulon and the authors of the present paper in [START_REF] Berestycki | The eect of a line with nonlocal diusion on Fisher-KPP propagation Math[END_REF], where the diusion was given by a fractional Laplacian. In that case, the fronts propagate exponentially fast in time, just as Fisher-KPP fronts with such a kind of diusion (see Cabré-Roquejore [START_REF] Cabre | Propagation de fronts dans les équations de Fisher-KPP avec diusion fractionnaire[END_REF]). Thus, the present work is a further evidence that the line communicates the characteristics of its own diusion to the whole process, regardless of the type of diusion in the rest of the plane.

Our analysis is carried out for two distinct models: biological invasions in the context of population dynamics, and the spreading of epidemics. We describe these two frameworks in the following two subsections. They are closely related through a well known transformation that we will recall in Section 3.

Biological invasions

In the spirit of the system we introduced in [START_REF] Berestycki | The inuence of a line of fast diusion in Fisher-KPP propagation[END_REF], we describe the invasion of a species whose dissemination is enhanced by a line of transportation by considering the upper half plane R 2 + = R × (0, +∞), that we call in a stylised way the eld, while its boundary R × {0} is referred to as the road. We restrict ourselves to the upper halfplane, rather than considering the whole plane crossed by a line, because the results in the two cases can easily be deduced from one another. We then consider two distinct density functions describing the same species: u(t, x), t > 0, x ∈ R, is the density on the road, v(t, x, y), t > 0, (x, y) ∈ R 2 + , is the one in the eld. The individuals in the eld are assumed to diuse, according to the Laplace operator with a diusion coecient d > 0, and to proliferate with rate f (v), that we take to be smooth and of the Fisher-KPP type, i.e. f (0) = f (1) = 0, 0 < f (s) ⩽ f ′ (0)s for all s ∈ (0, 1).

(

For the sake of deniteness, we extend f (s) by a negative function for values of s > 1.

In contradistinction to what happens in the eld, we assume that the diusion on the road is nonlocal, reecting displacements of larger amplitude (see Turchin [START_REF] Turchin | Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants[END_REF] for a biological discussion). For this purpose, we let K : R → R be an even, smooth, nonnegative function with unit mass, supported in [-1, 1]. For L > 0, we set

K L (x) := 1 L K x L .
Thus K L is supported in [-L, L] and the mass condition is preserved: R K L (x)dx = 1.

We dene the nonlocal diusion operator, depending on the parameter L > 0, by

J u(x) := R K L (x -x ′ )(u(x ′ ) -u(x))dx ′ .
The parameter L then represents the order of the distance that individuals travel to owing to this non-linear dispersal.

The model writes

     ∂ t v -d∆v = f (v) (t > 0, (x, y) ∈ R 2 + ) -d∂ y v = µu -νv (t > 0, x ∈ R, y = 0) ∂ t u -DJ u = νv -µu (t > 0, x ∈ R, y = 0), (1.2) 
where d, D are positive parameters (recall that u is independent of y).

In [START_REF] Berestycki | The inuence of a line of fast diusion in Fisher-KPP propagation[END_REF] we considered the case where the diusion on the road was given by D∂ xx instead of DJ . The main result we derived is the existence of a spreading velocity in the horizontal direction, and the comparison with the classical Fisher-KPP velocity.

We will review these results in Section 2.2, and we will relate them with the results we get here on the new Model (1.2).

Propagation of epidemics

The basic system of epidemiology describes bulk quantities, with total populations variables only depending on time, that is, with no spatial dependence. Proposed rst by as an elaborate set of integral equations, this model reduces, when some parameters are assumed to be constant, to the classical SIR system. We owe it to Kendall to have rst envisioned that an epidemic could propagate as a front in space, with a denite speed. Kendall developed this idea in an answer to a study of Bartlett [3], the underlying mechanism being the nonlocal contamination rate (see also [START_REF] Kendall | Mathematical models of the spread of infection[END_REF]). We refer the reader to Ruan [START_REF] Ruan | Spatial-temporal dynamics in nonlocal epidemiological models[END_REF] for more information on the modelling issues.

In [START_REF] Berestycki | Propagation of epidemics along lines of fast diusion[END_REF] we proposed a new stylized model, built on the ideas of our preceding roadeld model [START_REF] Berestycki | The inuence of a line of fast diusion in Fisher-KPP propagation[END_REF], to couple a classical SIR -type model with spatial diusion in the plane with a diusion-exchange equation on the x-axis. The latter models a road on which infected individuals can travel, the diusion being local and precisely given by -D∂ xx .

The contamination process takes place outside the road, where the diusion process is modelled by a Laplacian -d∆. In addition to the classical compartments S, I and R, this model therefore involves a fourth compartment, T , of traveling infectious population. Hence our reference to this model as the SIRT model.

The main conclusion involved a parameter R 0 , known as the Pandemic Threshold in such models. We showed that it acts as a basic reproduction number: when it is larger than 1, there is front propagation. Moreover, the value of the ratio D/d determines whether propagation occurs at the usual SIR speed (as determined, for instance, by Aronson [START_REF] Aronson | The asymptotic speed of propagation of a simple epidemic[END_REF], or Diekmann [START_REF] Diekmann | Run for your life. A note on the asymptotic speed of propagation of an epidemic[END_REF]), or rather at a larger speed. We also pointed out situations where the propagation velocity can be quite large, even though the epidemics looks fairly mild when R 0 very close to 1.

In the present paper we examine what happens when the diusion on the road is governed by a nonlocal operator J as in the previous subsection. This translates the fact that individuals have the potential to instantly make large yet nite jumps, and will result in a richer set of parameters to analyse. Specically, we let S(t, x, y) denote the fraction of susceptible individuals at time t ⩾ 0 and position (x, y) of the domain R 2 + (as before we restrict to the upper half-plane in view of symmetry reasons). We assume that susceptibles do not diuse, and let I(t, x, y) be the fraction of infected individuals in the domain, and T (t, x) (standing for travelling infected) be the fraction of infected individuals on the x-axis. The former ones are assumed to diuse according to standard diusion with amplitude d > 0, whereas the latter ones diuse according to the nonlocal operator J with coecient D > 0.

Thus, the model writes

         ∂ t I -d∆I + αI = βSI (t > 0, (x, y) ∈ R 2 + ) ∂ t S = -βSI (t > 0, (x, y) ∈ R 2 + ) -d∂ y I = µT -νI (t > 0, x ∈ R, y = 0) ∂ t T -DJ T = νI -µT (t > 0, x ∈ R, y = 0). (1.3)
Of specic interest to us here will be to determine the spreading velocity for this new model, and to compare it with the speed without the road. We will then study its dependence on the parameters of the system, in particular the ones involved in the nonlocal diusion: D, L.

We also apply our methods to the analysis of a somewhat dierent, yet related, framework. Namely, in the context of epidemic propagation we consider the inuence of a line with a transport mechanism in one direction. It is of interest in situations where individuals travel away from main towns for instance as they try to move away from contamination. This eect was largely reported in the recent COVID-19 pandemic in several countries. We will see that the transport also enhances the global propagation, but that the value of the spreading speed is, unexpectedly, strictly less than that of the transport.

The paper is organised as follows. Section 2 contains the statements of the main results. In Section 2.1, we perform a preliminary classical transformation that allows one to reduce the SIRT model (1.3) to a slight perturbation of (1.2). Next we state a result about the well-posed character of the two systems. Section 2.2 is devoted to the model (1.2) for biological invasions, for which we present rstly the Liouvilletype result as well as the local-in-space convergence, and next the result about the propagation. Section 2.3 focuses on the specic features of the SIRT model: the description of the steady state and its behaviour at innity, and the result on the spreading of the epidemic wave. The results presented in those subsections are proved in Sections 3, 4 and 5 respectively. In Section 6 we discuss our results and emphasise analogies and novelties with respect to previous models.

2 Main results

Initial value problems

The preliminary question is whether the Cauchy Problem for models (1.2) and (1.3) is well-posed. So, we supplement (1.2) with the initial datum (u(0, x), v(0, x, y)) = (0, v 0 (x, y))

(2.1)
with v 0 ⩾ 0 smooth and compactly supported, and (1.3) with the initial datum (S(0, x, y), I(0, x, y), T (0, x)) = (S 0 , I 0 (x, y), 0),

with S 0 > 0 constant, I 0 ⩾ 0 smooth and compactly supported.

It was noticed in [START_REF] Berestycki | Propagation of epidemics along lines of fast diusion[END_REF] that the cumulative densities of Model (1.3) satisfy a Fisher-KPP type equation with fast diusion on the line, thus allowing for the treatment proposed in [START_REF] Berestycki | The inuence of a line of fast diusion in Fisher-KPP propagation[END_REF]. Actually, this remark dates back, at least, to Aronson [START_REF] Aronson | The asymptotic speed of propagation of a simple epidemic[END_REF] for the SIR model in the whole space. Namely, calling u(t, x) := t 0 T (s, x)ds, v(t, x, y) := t 0 I(s, x, y)ds, the system rewrites as

     ∂ t v -d∆v = f (v) + I 0 (x, y) (t > 0, (x, y) ∈ R 2 + ) -d∂ y v = µu -νv (t > 0, x ∈ R, y = 0) ∂ t u -DJ u = νv -µu (t > 0, x ∈ R, y = 0), (2.3) 
with, as in [START_REF] Berestycki | Propagation of epidemics along lines of fast diusion[END_REF],

f (v) := S 0 (1 -e -βv ) -αv, (2.4) 
I 0 ̸ ≡ 0 non-negative, smooth and compactly supported, (

and initial datum (u(0, x), v(0, x, y)) ≡ (0, 0).

(

Observe that the non-linearity f in (2.4) vanishes at 0 and, being concave, it satises the Fisher-KPP condition f (s) ⩽ f ′ (0)s for s > 0.

Theorem 2.1. The initial value problems (1.2),(2.1) with v 0 ⩾ 0 bounded and smooth, and (1.3),(2.2) with S 0 > 0 constant and I 0 ⩾ 0 bounded and smooth, both have a unique classical, bounded solution. Moreover, rst-order-in-time and second-order-inspace derivatives of the solution are globally bounded and Hölder continuous.

The existence proof proceeds from fairly usual arguments. Less standard is the uniform bound of the derivatives for system (1.2) and its compact perturbation (2.3),

as the line has no particular smoothing eect. It is obtained as a consequence of the maximum principle in narrow domains applied to the equations satised by the derivatives. We point out that the the rst-order estimates for (2.3) are essential for us because the functions T, I of the original model (1.3) correspond to the time-derivatives of u, v. Theorem 2.1 is proved in Section 3.

Biological invasions: steady states and propagation

Let us focus on the model for biological invasions. The rst issue to understand is the classication of the steady states of the systems and their attractiveness. There is an obvious positive solution, and the game is to show that it is globally attractive.

Proposition 2.2. The unique non-negative, bounded steady solutions for (1.2) are the constant ones (u ≡ 0, v ≡ 0) and (u ≡ ν µ , v ≡ 1). Moreover, any solution (u(t, x), v(t, x, y)) to (1.2),(2.1) with v 0 ⩾ 0, ̸ ≡ 0 smooth and compactly supported, converges to ( ν µ , 1) as t → +∞, locally uniformly in x ∈ R, y ⩾ 0.

Proposition 2.2 is proved in Section 4.1 following the same scheme as for the model with local diusion on the road considered in [START_REF] Berestycki | The inuence of a line of fast diusion in Fisher-KPP propagation[END_REF]. The arguments require uniform regularity of the solutions, which is guaranteed here by Theorem 2.1. In the realm of biological invasions, the statement about the long-time behaviour of the solution is known as the hair trigger eect (the terminology dates back to Aronson-Weinberger [START_REF] Aronson | Multidimensional nonlinear diusion arising in population genetics[END_REF]).

Once the local behaviour of the solution is established, one naturally turns to the study of the propagation. For the classical Fisher-KPP equation

v t -d∆v = f (v), t > 0, X ∈ R N ,
propagation occurs with an asymptotic spreading speed c K , which is explicit: c K = 2 df ′ (0), see Aronson-Weinberger [START_REF] Aronson | Multidimensional nonlinear diusion arising in population genetics[END_REF]. The next result identies an asymptotic spreading speed for (1.2).

Theorem 2.3. Let (u(t, x), v(t, x, y)) be the solution to (1.2),(2.1) with v 0 ⩾ 0, ̸ ≡ 0 smooth and compactly supported. Then, there exists c * > 0 such that, for all ε > 0, it holds

sup |x|⩽(c * -ε)t (u(t, x), v(t, x, y)) - ν µ , 1 → 0, sup |x|⩾(c * +ε)t (u(t, x), v(t, x, y)) → 0, (2.7)
as t → +∞, locally uniformly with respect to y ⩾ 0.

In addition, there is a quantity D * > 0 such that the spreading speed c * satises

c * = c K if D ⩽ D * > c K if D > D * with c K := 2 df ′ (0).
Finally, c * / √ DL 2 converges to a positive constant as DL 2 → +∞.

When the diusion on the line is D∂ xx , we derived the same qualitative result in [START_REF] Berestycki | The inuence of a line of fast diusion in Fisher-KPP propagation[END_REF], with D * = 2d. In the present case, the threshold D * is given by the nonalgebraic formula (4.11) below. Let us emphasise that, in contrast with the local case, it depends not only on d, but also on f ′ (0) as well as on the nonlocal kernel J and in particular on its range L. The proof of Theorem 2.3 uses the fact that J has a compactly supported kernel. We expect the same type of result to hold for kernels decaying suciently fast at innity, but to prove this one should dwell deeper into the arguments developed in the present paper. The last statement of the theorem says that, for large D and L, the propagation in the horizontal direction really occurs as if the diusion in the eld were also given by the nonlocal operator J , the speed in that case being given by the formula (4.8) below. Theorem 2.3 is proved in Section 4.3.

Further properties of the SIRT model with nonlocal diusion

In the case of the Model (1.3) for propagation of epidemics, the existence of steady solutions has to be examined at the level of cumulative densities, which satisfy system (2.3) with f given by (2.4). Recall that the non-linearity f , being concave, fulls the Fisher-KPP condition f (s) ⩽ f ′ (0)s for s > 0. We compute

f ′ (0) = α(R 0 -1)
, where R 0 := S 0 β α .

Hence f ′ (0) > 0 if and only if R 0 > 1, and in such a case f has a unique positive zero, that we call v * . As a consequence, when R 0 > 1 the function f fulls all the conditions in (1.1) with 1 replaced by v * > 0. The quantity R 0 can be viewed as the classical basic reproduction number, see for instance [START_REF] Källén | Thresholds and traveling waves in an epidemic model for rabies[END_REF]. System (2.3) is nothing else than (1.2) with the additional source term I 0 in the rst equation. The Liouville-type result and the stability of the unique positive steady solution hold true for this new system. However, since I 0 is non-constant, the positive steady solution is in this case nontrivial. It tends to the constant steady solution to (1.2) at innity, with a given exponential decay, as stated in the following theorem.

Theorem 2.4. The problem (2.3)-(2.5) has a unique non-negative, bounded steady

solution (u r ∞ (x), v r ∞ (x, y)). Such a solution satises u r ∞ (x) = 0 if R 0 < 1 ν µ v * if R 0 > 1 + e -κ(x)|x| , v r ∞ (x, y) = 0 if R 0 < 1 v * if R 0 > 1 + e -λ(x,y)|x| ,
where, in the case R 0 > 1, v * is the unique positive zero of f = 0, and κ, λ full

lim |x|→∞ κ(x) = lim |x|→∞ λ(x, y) = a * , locally uniformly in y ⩾ 0, with 0 < a * < α d (1 -R 0 ) if R 0 < 1 -f ′ (v * ) d if R 0 > 1.
Moreover, the solution

(u, v) to (2.3)-(2.6) converges to (u r ∞ , v r ∞ ) as t → +∞, locally uniformly in x ∈ R, y ⩾ 0.
The proof is presented in Section 5.3. As far as the Liouville-type result is concerned, the nonlocal operator J does not introduce any substantial dierence in the proof, compared with the SIRT model with local diusion on the road treated in [START_REF] Berestycki | Propagation of epidemics along lines of fast diusion[END_REF].

The study of the decay, instead, requires one to understand the structure of exponential eigenfunctions for the nonlocal operator. Theorem 2.4 is a pandemic threshold result (c.f. for instance the discussion of Bartlett's paper [START_REF] Bartlett | Measles Periodicity and Community Size[END_REF] by Kendall) which exhibits two opposite scenarios according to whether R 0 is below or above the value 1. Indeed, since the loss of susceptible individuals at a given location (x, y) throughout the whole epidemic course is I tot (x, y) := S 0 -S(+∞, x, y), and one has that S = S 0 e -βv by the second equation in (1.3), Theorem 2.4 yields

I tot (x, y) = S 0 1 -e -βv r ∞ (x,y) , whence in particular lim |(x,y)|→∞ I tot (x, y) = 0 if R 0 ⩽ 1 S 0 1 -e -βv * if R 0 > 1.
This means that the epidemic wave spreads throughout the territory if and only if R 0 > 1. Therefore, Model (1.3) displays the same well-known dichotomy as the classical epidemic models.

The next question is then to determine the speed of the epidemic wave when R 0 > 1.

Similarly to what happens when the diusion of the epidemic on the line is given by the Laplacian, considered in [START_REF] Berestycki | Propagation of epidemics along lines of fast diusion[END_REF], the speed of propagation on the half-plane can be enhanced by the faster diusion on the line.

Theorem 2.5. Assume that R 0 > 1. Let (u, v) be the solution to (2.3)-(2.6). Then, there exists c T SIR > 0 such that, for all ε > 0, it holds

sup |x|⩽(c T SIR -ε)t (u(t, x), v(t, x, y)) -(u r ∞ (x), v r ∞ (x, y)) → 0, sup |x|⩾(c T SIR +ε)t (u(t, x), v(t, x, y)) → 0,
as t → +∞, locally uniformly with respect to y ⩾ 0.

In addition, there is a quantity D * > 0 such that the spreading speed c T SIR satises

c T SIR = c SIR if D ⩽ D * > c SIR if D > D * with c SIR := 2 dα(R 0 -1).
The quantity c SIR = 2 dα(R 0 -1) is the speed of propagation for the classical SIR model with local diusion on the infected, without the road. The speed c T SIR and the threshold D * in the above theorem coincide with the spreading speed c * and the D * that are provided by Theorem 2.3 in the case where f is given by (2.4). This is not surprising, because systems (2.3) and (1.2) only dier for the compactly supported source term I 0 , which, as one may expect, does not aect the dynamics of the solution far from the origin. This is rigorously proved at the end of Section 5.3.

We conclude with a nal feature of Model (1.3): propagation occurs in the form of an epidemic wave. As its proof does not require more elements than [10, Proposition 3.7], we only state it informally and its proof will be left to the interested reader.

In the case R 0 > 1, the number of infected at a given location (x, y) the epidemic peak occurs around a time τ * (x) which satises

lim |x|→+∞ τ * (x) |x| = 1 c T SIR ,
In more precise terms, there is a constant T * > 0 and a locally bounded, and locally bounded from below function I * (y), dened for y ⩾ 0, such that

T (τ * (x), x) ⩾ T * , I(τ * (x), x, y) ⩾ I * (y).
Moreover, uniformly in x ∈ R and locally uniformly in y ⩾ 0, one has

lim t→+∞ T (τ * (x) + t, x), I(τ * (x) + t, x, y) = lim t→+∞ t⩽τ * (x) T (τ * (x) -t, x), I(τ * (x) -t, x, y) = (0, 0).

Initial value problems and a-priori bounds

The study of system (1.2) was carried out in [START_REF] Berestycki | The inuence of a line of fast diusion in Fisher-KPP propagation[END_REF] in the case where J is replaced by ∂ xx . Problem (1.2) is almost linear, the only non-linearity being the harmless globally Lipschitz-continuous function f . Moreover, the system displays a monotonic structure, which yields a comparison principle: if (u1 0 (x), v 1 0 (x, y)) ⩽ (u 2 0 (x), v 2 0 (x, y)) are two ordered, initial data then the corresponding solutions (u

1 , v 1 ), (u 2 , v 2 ) satisfy (u 1 (t, x), v 1 (t, x, y)) ⩽ (u 2 (t, x), v 2 (t, x, y)), ∀t > 0, (x, y) ∈ R 2 + .
The same holds true if (u 

u(x) ⩾ u(x 0 ) for all x ∈ R =⇒ J u(x 0 ) ⩾ 0, (3.1) 
which is the key for the maximum principle to hold, as well as on the existence of a

smooth function χ : R → [0, +∞) such that ∥χ ′ ∥ ∞ , ∥χ ′′ ∥ ∞ < +∞, lim x→±∞ χ(x) = +∞, |J χ| ⩽ 1
(which can easily be constructed after noticing that |J χ| ⩽ CL∥χ ′ ∥ ∞ ). The monotonic structure of (1.2) entails that if the initial datum v 0 in (2.1) is smooth (we have taken u(0, .) ≡ 0 for convenience) the comparison principle propagates to the derivatives and entails exponential in time a priori bounds for the successive derivatives of u and v. 

     ∂ t v -d∆v = f (v) (t > 0, (x, y) ∈ R 2 + ) -d∂ y v = µu -νv (t > 0, x ∈ R, y = 0) ∂ t u -ε∂ xx u -DJ u = νv(t, x, 0) -µu (t > 0, x ∈ R, y = 0). (3.2)
By [START_REF] Berestycki | The inuence of a line of fast diusion in Fisher-KPP propagation[END_REF], the Cauchy Problem for (3.2),(2.1) is well-posed and enjoys the comparison principle. Let (u ε (t, x), v ε (t, x, y)) be unique classical solution. Since M (ν/µ, 1) is a supersolution to (3.2) for any constant M ⩾ 1, taking M larger than max(1, sup v 0 ) one deduces from the comparison principle that

0 ⩽ u ε (t, x) ⩽ M ν µ , 0 ⩽ v ε (t, x, y) ⩽ M, ∀ε > 0.
In order to get estimates that are uniform both in ε and in t we proceed as follows.

Let us call (U, V ) := (∂ x u ε , ∂ x v ε ), where we have dropped the ε's to to alleviate the notation. This pair solves the linear problem

     ∂ t V -d∆V = f ′ (v ε )V (t > 0, (x, y) ∈ R 2 + ) -d∂ y V = µU -νV (t > 0, x ∈ R, y = 0) ∂ t U -ε∂ xx U -DJ U = νV (t, x, 0) -µU (t > 0, x ∈ R, y = 0). (3.3)
Pick any ℓ > 0, having in mind that we will require it to be small. By interior parabolic regularity, see e.g. [START_REF] Ladyzhenskaya | tseva Linear and quasilinear equations of parabolic type Translations of Mathematical Monographs[END_REF]Theorem 9.10.1], applied to the Fisher-KPP equation in (3.2)

(recall that f is smooth), for given α ∈ (0, 1) there is C ℓ > 0 such that |V (t, x, y)| ⩽ C ℓ ∥v ε ∥ L ∞ (R + ×R 2 + ) + ∥v 0 ∥ C 2+α (R 2 + ) =: C ′ ℓ , ∀t ⩾ 0, x ∈ R, y ⩾ ℓ.
We have that C ℓ , C ′ ℓ are independent of ε because v ε ⩽ M . We introduce the pair

( Ū (x), V (x, y)) = (1, µ ν cos πy 4ℓ )
.

By direct computation one checks that it satises third equations of (3.3) exactly, while it is a super-solution to the second one. For the rst one we have that

-d∆ V -f ′ (v ε ) V = π 2 16ℓ 2 -f ′ (v ε ) V , (3.4) 
which is positive for y ∈ (0, ℓ) as soon as

π 2 16ℓ 2 > max [0,M ] f ′ . (3.5)
Therefore, with such a choice of ℓ, ( Ū , V ) is a super-solution to (3.3) and -( Ū , V ) is a sub-solution. Moreover we have

V (x, ℓ) = µ ν √ 2 . Set M ′ := √ 2 ν µ max ∥∂ x v 0 ∥ ∞ , C ′ ℓ , whence ∀t ⩾ 0, x ∈ R, y ∈ [0, ℓ], M ′ V (x, y) ⩾ M ′ V (x, ℓ) ⩾ max ∥∂ x v 0 ∥ ∞ , |V (t, x, ℓ)| .
Recall, on the other hand, that u 0 ≡ 0 ⩽ M ′ Ū . We can then apply the comparison principle between (U, V ) and ±M ′ ( Ū , V ) in the strip R×(0, ℓ) and derive the following bounds for U, V in their domains of denition:

|U | ⩽ M ′ Ū , |V | ⩽ M ′ V .
We have thereby shown that the functions

∂ x u ε (t, x), ∂ x v ε (t, x, y) are bounded uni- formly in ε > 0, t ⩾ 0, x ∈ R, y ⩾ 0. A bound for ∂ xx u ε , ∂ xx v ε is derived in a similar way. Indeed, the couple (∂ xx u ε , ∂ xx v ε )
solves a system quite similar to (3.3), up to the fact that the rst equation has the additional inhomogeneous term f ′′ (v ε )(∂ x v ε ) 2 , which we know to be bounded independently of ε. As a consequence, recalling (3.4) and taking ℓ satisfying (3.5), one sees that, for a possibly larger M ′ than before, the pair M ′ ( Ū , V ) is a super-solution to this new system for y ∈ (0, ℓ). Now that we know that ∂ xx u ε is bounded, we can apply on one hand the regularity theory for the oblique derivative problem in (3.3) (see [START_REF] Lieberman | Second order parabolic dierential equations[END_REF]Theorem 5.18]) and infer that the rst-order-in-time and second-order-in-space derivatives of v ε are globally bounded and Hölder continuous, uniformly in ε > 0, t ⩾ 0. On the other hand, we directly derive from the last equation in (3.2) the uniform L ∞ bound for ∂ t u ε . One can bootstrap the above arguments, thanks to the smoothness of f , and get uniform L ∞ bounds on the x-derivatives of any order of u ε , v ε , and also of

∂ t u ε , ∂ t v ε . The last equation in (3.
2) eventually yields that ∂ t u ε is uniformly Hölder continuous too. These uniform estimates allow us to pass to the limit as ε → 0 (up to subsequences) in (3.2) and get a solution to (1.2). The uniform-in-time bounds on the derivatives are inherited by such a solution.

The argument for system (2.3) is analogous, up to the fact that we have the additional term I 0 in the right-hand side for v, which does not aect the previous analysis because I 0 is bounded and smooth. Once the bounds for all derivatives of u, v are secured, the bounds for S, I, T follow.

Remark 3.1. The boundedness of the derivatives of (u, v) may look rather simple, but it relies on two deep facts. The rst one is that the diusion process in the upper half plane transfers some regularity to the line through the exchange condition. The second is the maximum principle in narrow domains (which is equivalent to the existence of a positive strict super-solution, see [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains Comm[END_REF] for a very general study), which allows L ∞ estimates even though the domain is unbounded in one direction. Using classical regularisation techniques, one can relax the smoothness assumption on the initial datum v 0 and just require it to be continuous; in such a case the uniform bounds on the derivatives hold starting from any given positive time T .

To conclude this section, let us dwell a little more on the issue of the boundedness of derivatives, and compare it to what happens in a classical reaction-diusion equation with nonlocal diusion, that is

u t -DJ u = f (u), t > 0, x ∈ R, (3.6) 
where we assume, to x ideas, that f (0) = f (1) = 0, and that either f fulls the Fisher-KPP condition in (1.1), or f is bistable with positive mass (i.e. f ′ (0), f ′ (1) < 0, f has one zero in (0, 1) and 1 0 f > 0). The Cauchy Problem for (3.6) with initial data 0 ⩽ u 0 ⩽ 1 produces classical solutions, that are bounded but have derivatives that may grow exponentially in time, and moreover there is no regularisation mechanism as in parabolic equations (i.e. when J is replaced by ∆).

When f is a bistable non-linearity, let us show that the preservation of regularity for (3.6) occurs in case a travelling wave with positive speed, connecting 0 to 1, exists.

Let ϕ(ξ) be such a wave. It solves

-DJ ϕ + cϕ ′ = f (ϕ) in R ϕ(-∞) = 1, ϕ(+∞) = 0.
See Bates, Fife, Ren, Wang [START_REF] Bates | Traveling waves in a convolution model for phase transitions[END_REF] for sucient existence conditions. One readily sees that the positivity of the speed c yields the regularity of ϕ, and it is this exact same property that will trigger the regularity mechanism. Assume, in order to simplify the argument, that the initial datum u 0 for (3.6) satises u 0 (-∞) = 1, u 0 (+∞) = 0 (if u 0 were compactly supported one would need u 0 to be suciently large on a large interval and one would also have to deal with leftwards propagating waves). A word by word adaptation of the celebrated Fife-McLeod argument [START_REF] Fife | The approach of solutions of nonlinear diusion equations to travelling front solutions[END_REF] shows the existence of two positive numbers q and ω, as well as two real numbers ξ 1 ⩾ ξ 2 such that

ϕ(x -ct + ξ 1 ) -qe -ωt ⩽ u(t, x) ⩽ ϕ(x -ct + ξ 2 ) + qe -ωt . (3.7)
The function U (t,

x) := -∂ x u(t, x) solves U t -DJ U = f ′ (u)U, t > 0, x ∈ R, (3.8) 
and the underlying mechanism of Theorem 2.1 is not present here. As a matter of fact, when there is no diusion, that is, D = 0, u(t, x) tends to a step function as t → +∞, while U (t, x) grows unboundedly in time, as it becomes a sum of Dirac masses as t → +∞. Yet, when D > 0, one recovers the boundedness of U (t, x), but what makes it work is that, for every x in R, the function f ′ (u(t, x)) is non-negative for a set of times that has bounded measure. Indeed, we may rewrite (3.8) as

U t + (D -f ′ (u(t, x)))U = DK L * U (t, •) = DK ′ L * u(t, •),
with the latter term going pointwise to 0 and f ′ (u(t, x)) → f ′ (1) < 0 as t → +∞, due to (3.7). Therefore, the Gronwall Lemma gives, for t larger than any given T > 0, a bound of the form

|U (t, x)| ⩽ sup t⩾T |K ′ L * u(t, •)| + Cexp -tD + t 0 f ′ (u(s, x)) ds, (3.9) 
for some large C > 0. Given any x ∈ R, estimate (3.7) shows that the time spent by u(s, x) in the zone {f ′ ⩾ 0} is bounded independently of x: this ensures the uniform boundedness for the exponential in (3.9). This argument, by the way, provides an alternative, and somewhat quicker, proof of a result by Chen [START_REF] Chen | Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations[END_REF] asserting that u(t, x)

converges to a travelling wave.

When f is of the Fisher-KPP type, there are no such bounds as (3.7). The analogue of such bounds are given by (Graham [START_REF] Graham | The Bramson correction for Fisher-KPP equations with nonlocal diusion[END_REF]), but more work is needed to achieve the regularity proof, doing it is outside our scope here. Let us notice that regularity results have been proved for travelling fronts of equations of the type (3.6) that are inhomogeneous in t or x. Let us for instance mention Coville, Davila, Martinez [START_REF] Coville | Pulsating fronts for nonlocal dispersion and KPP nonlinearity[END_REF] or Shen, Shen [START_REF] Shen | Regularity of Transition Fronts in nonlocal Dispersal Evolution Equations[END_REF] for particular cases of transition fronts for inhomogeneous Fisher-KPP non-linearities. All these results are dierent from Theorem 2.1 in spirit. This latter theorem presents indeed a new mechanism for the preservation of regularity. [START_REF] Bates | Traveling waves in a convolution model for phase transitions[END_REF] The biological invasions model

Steady states and invasion

This section is devoted to the proof of Proposition 2.2 concerning the biological invasions model (1.2). It contains two separate statements. The rst one is a Liouvilletype result asserting that the only non-negative, nontrivial, bounded, steady solution for (1.2) is the constant pair (u ≡ ν/µ, v ≡ 1) (which is indeed a solution, as one can directly check). The second one describes the long-time behaviour for the Cauchy problem, locally in space. The proof is a straightforward adaptation of the one for the local problem given in [START_REF] Berestycki | Fisher-KPP propagation in the presence of a line: further eects[END_REF], which is based on the comparison principle and a variant of the sliding method. We give it here for the sake of completeness.

Proof of Proposition 2.2. We simultaneously show the two statements of the Proposition. For R > 0 suciently large, the principal eigenfunction ϕ of -∆ in the ball B R , with Dirichlet boundary condition, satises -∆ϕ ⩽ f ′ (0)ϕ, hence -∆(δϕ) ⩽ f (δϕ) for δ > 0 smaller than some δ 0 > 0. We extend ϕ by 0 outside B R , and we call ϕ(x, y) := ϕ(x, y -R -1), so that its support does not intersect the line {y = 0}. We deduce that the pair (0, δ ϕ) is a generalised steady sub-solution to (1.2). On the other hand, the constant pair M (ν/µ, 1) is a super-solution to (1.2) for any M ⩾ 1. Let (u, v) and (u, v) be the solutions to (1.2) emerging respectively from the initial data (0, δ ϕ) and M (ν/µ, 1), with δ ∈ (0, δ 0 ] and M ⩾ 1. Since system (1.2) fulls the comparison principle c.f. the beginning of Section 3 one deduces that these solutions are respectively non-decreasing and non-increasing in t, and satisfy (u, v) ⩽ (u, v) for all t > 0 and (x, y) ∈ R 2 + . Moreover, using the boundedness of derivatives asserted by Theorem 2.1, one infers that these solutions converge locally uniformly in space, as t → +∞, to a steady solution (u ∞ , v ∞ ) and (u ∞ , v ∞ ) respectively, which satisfy

(0, δ ϕ) ⩽ (u ∞ , v ∞ ) ⩽ (u ∞ , v ∞ ) ⩽ M ν µ , 1 , ∀(x, y) ∈ R 2 + .
As a consequence, if we show that the steady states (u ∞ , v ∞ ) and (u ∞ , v ∞ ) coincide, we would have that any solution with an initial datum lying between (0, δ ϕ) and M (ν/µ, 1), for some δ, M > 0, converges as t → +∞ to such a steady state, locally uniformly in space. This would immediately yield the Liouville-type result, since any non-negative, bounded, steady solution (u, v) ̸ ≡ (0, 0) to (1.2) satises v > 0 in R 2 + (because otherwise v ≡ 0 by the elliptic strong maximum principle and thus u ≡ 0 by the second equation in (1.2)) hence (0, δ ϕ)

⩽ (u, v) ⩽ M (ν/µ, 1) for δ ≪ 1, M ≫ 1.
Analogously, one would also derive the second statement of Proposition 2.2 thanks to the parabolic strong maximum principle applied to v.

To conclude the proof we then need to show that (u ∞ , v ∞ ) ≡ (u ∞ , v ∞ ). We know that (u ∞ , v ∞ ) is independent of x. We now show that the same is true for (u ∞ , v ∞ ), using a variant of the sliding method. Namely, since δ ϕ ⩽ v ∞ in the ball B R (0, R + 1), and the strict inequality holds on its boundary, the elliptic strong maximum principle implies that the inequality is strict in the interior too. Hence we can nd H > 0 such that δ ϕ(x + h, y) ⩽ v ∞ (x, y) for all h ∈ [-H, H] and (x, y) ∈ R 2 + . Since the solution emerging from (0, δ ϕ(x + h, y)) converges to (u ∞ (x + h), v ∞ (x + h, y)) as t → +∞ (by the horizontal invariance of the system), it follows from the comparison principle that (u

∞ (x + h), v ∞ (x + h, y)) ⩽ (u ∞ , v ∞ ) in R 2 + . This being true for all h ∈ [-H, H], we conclude that (u ∞ , v ∞ ) is x-independent. Finally, since (u ∞ , v ∞ ) and (u ∞ , v ∞ ) do not depend on x, the term J u in (1.
2) drops and one ends up in the local case. Namely, one directly applies [9, Proposition 3.1] (with ρ = 0) and infers that

(u ∞ , v ∞ ) ≡ (u ∞ , v ∞ ).

A benchmark: Fisher-KPP front propagation with nonlocal diusion

In order to investigate the propagation for the model (1.2), we start with considering the Fisher-KPP equation alone in the one-dimensional space, with nonlocal diusion:

u t -DJ u = f (u) (t > 0, x ∈ R). (4.1)
It is well known (see, for instance, Liang-Zhao [START_REF] Liang | Asymptotic speeds of spread and traveling waves for Monotone Semiows with Applications[END_REF], Thieme-Zhao [START_REF] Thieme | Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diusion models[END_REF]) that the speed of propagation for compactly supported initial data is inferred, in this case, from the study of the plane waves of (4.1), linearised around u = 0:

u t -DJ u = f ′ (0)u (t > 0, x ∈ R) (4.2)
Plane waves for (4.2) are sought for in the exponential form u(t, x) = e -a(x-ct) , with a, c > 0. Direct computation shows that

J u = R K L (x -x ′ ) e -(ax ′ +ct) -e -(ax+ct) dx ′ = u R K L (x -x ′ ) e -a(x ′ -x) -1 dx ′ = φ L (a)u,
where we have set

φ L (a) : = R K L (x)(e ax -1)dx = 2 +∞ 0 K L (x)(cosh(ax) -1)dx. (4.3)
The function a → φ L (a) is analytic, even, nonnegative and vanishes at 0. It further satises

φ ′′ L (a) = 2 +∞ 0 K L (x) cosh(ax)x 2 dx, (4.4) 
hence it is strictly convex. Moreover, for all δ ∈ (0, 1) it holds that δ min

[1-δ,1] K 1 2 e (1-δ)aL -1 ⩽ φ L (a) ⩽ e aL -1,
which shows that φ L (a) grows exponentially as a → +∞.

The function u(t, x) = e -a(x-ct) solves (4.2) if and only if c = Dφ L (a) + f ′ (0) a .

(4.5)

We call c L (D) the minimal value of c in (4.5) as a varies on (0, +∞). By the strict convexity of φ L , such a minimal value is attained by a unique a = a(D). It turns out that the minimum c L (D) is the asymptotic spreading speed for (4.1), as well as the minimal speed of travelling waves, see for instance [START_REF] Coville | Propagation speed of travelling fronts in nonlocal reaction diusion equations[END_REF]. In order to see the important eect of the road on the overall propagation in model (1.2), it is useful to provide an order of magnitude of c L (D) when D is large, the other parameters being xed. The minimiser a(D) in (4.5) satises

f ′ (0) D = a(D)φ ′ L (a(D)) -φ L (a(D)) = a(D) 0 xφ ′′ L (x)dx. (4.6)
This indicates that a(D) → 0 as D → +∞, and more precisely that Finally, computing

f ′ (0) D = 1 2 a 2 (D) φ ′′ L (0) + o(1) as D → +∞.
φ ′′ L (0) = R K L (x)x 2 dx = R K L (x)x 2 dx = L 2 R K(x)x 2 dx =: L 2 ⟨x 2 K⟩, we eventually nd c L (D) = 2Df ′ (0) L 2 ⟨x 2 K⟩ + o(1) as D → +∞. (4.8)

Spreading speed

We now turn to Theorem 2.3 which asserts the existence of an asymptotic spreading speed c * for model (1.2). This will be given by the least c so that the linearised system around (0, 0) has plane wave supersolutions (i.e. satisfying the inequalities ⩾ in the three equations) moving with speed c in the x direction. The analogous property is proved in [START_REF] Berestycki | The inuence of a line of fast diusion in Fisher-KPP propagation[END_REF] when the diusion on the line is -D∂ xx .

To start with, we linearise the system (1.2) around v ≡ 0 :

     ∂ t u -DJ u = νv -µu (t > 0, x ∈ R, y = 0) ∂ t v -d∆v = f ′ (0)v (t > 0, (x, y) ∈ R 2 + ) -d∂ y v = µu -νv (t > 0, x ∈ R, y = 0). (4.9)
The novelty with respect to [START_REF] Berestycki | The inuence of a line of fast diusion in Fisher-KPP propagation[END_REF] is in the nonlocal term J u instead of ∂ xx u. However, as seen in Section 4.2, exponential functions are also eigenfunctions for such a nonlocal operator. This is why we look for plane wave solutions for (4.9) as exponential functions, exactly as in the local case:

(u(t, x), v(t, x, y)) = e -a(x-ct) (1, γe -by ) a, γ, c > 0, b ∈ R. Starting from these pairs, we will construct suitable super and sub-solutions to (1.2).

Lemma 4.1. Let φ L be dened in (4.3), let c K := 2 df ′ (0) and call

D * := 2f ′ (0) φ L c K 2d . (4.11)
Then the following occur:

1. if D ⩽ D * then system (4.9) admits a supersolution in the form (4.10) if and only if c ⩾ c K .

2. if D > D * then there exists a quantity c * (D, L) > c K such that the system (4.9) admits a supersolution in the form Proof. The third equation of (4.9) rewrites in terms of the parameters in (4.10) as γ = µ/(ν + db). This xes γ, and entails that necessarily b > -ν/d (observe that also when one deals with super-solutions, it is convenient to take γ so that equality holds in the third equation of (4.9), because increasing γ makes the inequality ⩾ in the rst one more stringent). The plane wave problem for (4.9) then reduces to the following system in the unknowns a and b:

     -Dφ L (a) + ca + dµb ν + db = 0 -(a 2 + b 2 ) + ca d = c 2 K 4d 2 , (4.13) 
where φ L (a) is given by (4.3) and c K := 2 df ′ (0). Solutions of (4.13) correspond in the (a, b) plane, restricted to b > -ν/d, to the intersection between the curve Γ 1 , given by the rst equation, and the circle Γ 2 with centre ( c 2d , 0) and radius ρ(c)

:= √ c 2 -c 2 K 2d ,
which is nonempty if and only if c ⩾ c K .

Let us examine Γ 1 , for given c > 0. Recall from Section 4.2 that φ L is analytic, even, vanishes at 0 and it is uniformly strictly convex (i.e. inf R φ ′′ L > 0). We nd that Γ 1 is the graph With respect to the parameter c, the function G c 1 (a) is smooth and strictly decreasing for a > 0 (and a ∞ ± (c, D) are increasing). Plane wave super-solutions to (4.9) correspond to the points (a, b) lying in the intersection of the disk E 2 with boundary Γ 2 and the region E 1 which is the one with boundary Γ 1 and bounded a component. It is readily seen that E 2 is continuously strictly increasing with respect to c, and we have seen that the same is true for 

b = G c 1 (a) := ν d µ µ + ca -Dφ L (a) -1 , (4.14) which is dened for a ∈ (a ∞ -(c, D), a ∞ + (c, D)) (in order to full b > -ν/d) where a ∞ -(c, D) < 0 < a ∞ + (c, D) are the solutions to Dφ L (a ∞ ± (c, D)) = ca ∞ ± (c, D) + µ.
E 2 ∩{a > 0}. For c < c K the intersection E 1 ∩ E 2 is empty because E 2 is. For c = c K the disk E 2 reduces to its centre ( c K 2d , 0) and thus E 1 ∩ E 2 ̸ = ∅ if and only if c K 2d ⩽ a 0 (c K , D). ( 4 
c = c K outside the set E 1 . Notice that the leftmost point of E 2 , i.e. c -c -c 2 K 2d , 0 ,
approaches the origin as c → +∞. Therefore, by the monotonicity properties of E 1 and E 2 , as c increases starting from c K , there has to be a rst value of c at which E 1 and E 1 intersect, being tangent at some point (a * , b * ), which corresponds to a solution of (4.13). This rst c is the sought for c * (D, L). The dichotomy is depicted in Figure 1.

Let us look at condition (4.17) in terms of D. Recall from (4.16) that a 0 (c, D) is the unique positive solution of ψ(a 0 (c, D)) = c/D, with ψ(a) := φ L (a)/a. The strict convexity of φ L implies that the function ψ is strictly increasing for a > 0 and satises ψ(0 + ) = 0 and ψ(+∞) = +∞, hence a 0 (c, D) = ψ -1 (c/D) and then (4.17) rewrites as

ψ -1 c K D ⩾ c K 2d .
Rewriting ψ(a) := φ L (a)/a and c K = 2 df ′ (0) we eventually nd that (4.17) is equivalent to D ⩽ D * with D * given by (4.11).

In order to conclude the proof of the lemma it only remains to show (4.12). Firstly, we use that φ L (a) = φ 1 (aL) and that φ 1 is strictly convex to derive from (4.15) the existence of a positive constant H such that with α, β ∈ R, w > 0, where ⟨x 2 K⟩ := R K(x)x 2 dx. The condition b > -ν/d reads β > -2ν. We know from (4.18) that any solution of (4.13) satises a → 0 as DL 2 → +∞, hence we can write φ L (a) = 1 2 φ ′′ L (0)a 2 + o(1). Recalling that φ ′′ L (0) = L 2 ⟨x 2 K⟩, we end up with the following reduced system, as DL 2 → +∞:

H(a ∞ ± (c, D)) 2 DL 2 ⩽ ca ∞ ± (c, D) + µ.
a = c K α 2dDL 2 ⟨x 2 K⟩ , b = β 2d , c = c K DL 2 ⟨x 2 K⟩ 2d w.
       -f ′ (0)α 2 + o(1) + 2f ′ (0)wα + µβ 2ν + β = 0 2wα - 2d DL 2 ⟨x 2 K⟩ α 2 - β 2 c 2 K = 1. (4.19) 
Let us neglect for a moment the term o(1) in the rst line and the one in α 2 in the second line (whose coecient tends to 0 as DL 2 → +∞). We get

     α 2 -2wα = µβ 2νf ′ (0) + f ′ (0)β α = 1 + β 2 /c 2 K 2w . (4.20) 
The rst equation describes a curve in the (β, α) plane with asymptotes α = w 2 ± w 2 + µ/f ′ (0), while the second one is a parabola. One sees that the two curves do not intersect for w small, and do intersect for w large. There exists then a positive minimal value of w, that we call w * (d, µ, ν), such that the system has a solution. From this, one eventually deduces that the minimal value of w for which the complete system (4.19) admits solution converges to w * (d, µ, ν) as DL 2 → +∞. Reverting to the original parameters, we have shown that lim

DL 2 →+∞ c * (D, L) √ DL 2 = 2f ′ (0)⟨x 2 K⟩ w * (d, µ, ν), (4.21) 
that is (4.12).

Next, for D > D * , we derive the existence of some generalised subsolutions, with bounded support, that move with speed slightly smaller than c * (D, L), where D * and c * (D, L) are given in Lemma 4.1. Lemma 4.2. For D > D * , there is a sequence c ↗ c * (D, L) with associated pairs of continuous, nonnegative and not identically to 0 functions u c , v c , compactly supported in R and R × [0, +∞) respectively, such that

k u c (x -ct), v c (x -ct, y)
is a generalised subsolution to (1.2) for k > 0 small enough.

Proof. The rst step is to nd a sequence c ↗ c * (D, L) such that, for any of such c's,

the system          ∂ t u -DJ u = νv -µu (t > 0, x ∈ R, y = 0) ∂ t v -d∆v = (f ′ (0) -δ)v (t > 0, x ∈ R, 0 < y < Y ) -d∂ y v = µu -νv (t > 0, x ∈ R, y = 0) v = 0 (t > 0, x ∈ R, y = Y ) (4.22) 
with δ > 0 suciently small and Y > 0 suciently large, admits a sign-changing solution of the form

u c (x -ct), v c (x -ct, y) .
In addition, we will have that the sets where u c and v c are positive have bounded connected components and satisfy

{x ∈ R : u c (x) > 0} = (2kπω c -πω c /2, 2kπω c + πω c /2), k ∈ Z, (4.23) 
{x ∈ R :

v c (x, 0) > 0} = (2kπω c + ϑ c -πω c /2, 2kπω c + ϑ c + πω c /2), k ∈ Z, (4.24) 
where |ϑ c | ⩽ πω c and ω c → +∞ as c ↗ c * (D, L). We postpone this rst step to the Appendix.

Having the functions u c , v c at hand, one needs to truncate their support. Call

U c := (-πω c /2, πω c /2) and V c the connected component of { v c > 0} such that V c ∩ (R × {0}) = (ϑ c -πω c /2, ϑ c + πω c /2), then dene u c := u c in U c 0 outside , v c := v c in V c 0 outside . Since u c ⩾ u c in V c ∩ (R × {0}
), one has that v c (x -ct, y) is a generalised subsolution of the linear parabolic problem with Robin boundary condition given by the rst two equations in (4. [START_REF] Ladyzhenskaya | tseva Linear and quasilinear equations of parabolic type Translations of Mathematical Monographs[END_REF], with u = u c . Instead, the rst equation in (4.22) has to be handled more carefully due to the nonlocal term, since J u c ̸ = J u c even in the region U c where u c ≡ u c . However, for x ∈ U c , there holds that

J u c (x) = (x-L,x+L)∩Uc K L (x -x ′ ) u c (x ′ )dx ′ -u c (x) = J u c (x) - (x-L,x+L)\Uc K L (x -x ′ ) u c (x ′ )dx ′ ,
and we have (x -L, x + L) ⊂ (-πω c /2 -L, πω c /2 + L). If c is large enough so that πω c ⩾ L, one has that the latter set is contained in [-3πω c /2, 3πω c /2], and thus, being u c ⩽ 0 in [-3πω c /2, 3πω c /2] \ U c , we deduce that J u c ⩾ J u c in U c . We also clearly have J u c ⩾ 0 outside U c . Summing up, we have that for c suciently large, (u c (x -ct), v c (x -ct, y)) is a generalised subsolution to (4.22), hence to (1.2) up to multiplication by a small k > 0. thanks to the KPP hypothesis). For the rst one, we make use of the sub-solutions k(u c (x -ct), v c (x -ct, y)) provided by Lemma 4.2 in the case D > D * , for k suciently small and c < c * which can be taken arbitrarily close to c * . In the case D ⩽ D * , since c * = c K , the existence of a compactly supported sub-solution v c moving with a speed c < c * is standard for the Fisher-KPP equation ∂ t v -d∆v = f (v), and thus one can simply neglect the equations on the line and take u c ≡ 0. We then decrease k if need be in order to have in addition that k(u c (x), v c (x, y)) ⩽ (u(1, x), v(1, x, y)) for all (x, y) ∈ R + 2 . We deduce, by comparison, u(1 + τ, cτ ), v(1 + τ, cτ, y) ⩾ u c (0), v c (0, y) , ∀τ ⩾ 0, y ⩾ 0. for any 0 < c ′ < c. We recall, on the other hand, that lim sup t→+∞ (u, v) ⩽ (ν/µ, 1)

uniformly in space, as seen in the proof of Proposition 2.2. The rst limit in (2.7) then follows from the fact that c ′ and c can be taken arbitrarily close to c * .

Let us dwell a little bit on the quantity w * (d, µ, ν) appearing in (4.21). Computing the curves at β = 0 one infers that w * (d, µ, ν) ⩽ 1/2. Observe that the parameter d aects w * (d, µ, ν) only through the term c K in the second equation, which modulates the opening of the parabola. One deduces that w * (d, µ, ν) is decreasing with respect to d and tends to 1/2 as d → 0 + , and to the unique solution w of the equation w + w 2 + µ/f ′ (0) = 1 2w as d → +∞. Notice, however, that the limit as d → +∞ has not real meaning for the model (1.2), because the reduction to (4.20) is not justied since the term neglected in the second equation of (4.19) becomes large as d → +∞ (and we indeed know that c * (D, L) ⩾ c K → +∞).

according to nonlocal diusion and are initially conned in a bounded region. This yields the following system for the density of susceptibles S(t, x) and of infected I(t, x) :

∂ t S = -βSI (t > 0, x ∈ R) ∂ t I -DJ I = βSI -αI (t > 0, x ∈ R)
completed with the initial condition (S, I)(0, x) = (S 0 , I 0 (x)), where S 0 is a positive constant and I 0 is non-negative and compactly supported. with f given by (2.4). This is the same equation as (4.1) with the addition of the compact perturbation I 0 . If R 0 := S 0 β/α is larger than 1 then f is of the Fisher-KPP-type. It turns out that I 0 does not aect the large time/space dynamic of the solution, and in fact the asymptotic spreading speeds for (4.1) and (5.1) coincide.

Namely, the spreading speed for (5.1) is the minimal c > 0 such that the transcendental equation (4.5), that now reads -Dφ L (a) + ca = α(R 0 -1), admits a solution a > 0.

The inuence of R 0 and other parameters

We now investigate the inuence of the parameters of the system (1.3) on the speed c T SIR . As this asymptotics is delicate, we introduce non-dimensional the space and time variables by setting

t = τ α , (x, y) = d α (ξ, ζ),
while the unknowns T (t, x) and I(t, x, y) are expressed as T (t, x) = S 0 T (τ, ξ), I(t, x, y) = S 0 I(τ, ξ, ζ), S(t, x, y) = S 0 S(τ, ξ, ζ).

There are ve non-dimensional parameters:

D = D α , Λ = L α d , R 0 = βS 0 α , ν = ν α , μ = µ α .
The speed c SIR for the model without the road is expressed as will then solve

c SIR = √ dαw SIR with w SIR := 2 R 0 -1. System (1.3) is then rewritten as          ∂ τ I -∆I + I = R 0 SI (τ > 0, ξ ∈ R, ζ > 0) ∂ τ S = -R 0 SI (τ > 0, ξ ∈ R, ζ > 0) -∂ ζ I = μT -νI (τ > 0, ξ ∈ R, ζ = 0) ∂ τ T -D∂ ξξ T = νI(τ, ξ, 0) -μT (τ > 0, ξ ∈ R).
     ∂ τ U -D J U = νV(τ, ξ, 0) -μU + T 0 (ξ) (τ > 0, ξ ∈ R) ∂ τ V -∆V = f (V) + I 0 (ξ, ζ) (τ > 0, ξ ∈ R, ζ > 0) -∂ ζ V(τ, ξ, 0) = μU(τ, ξ) -νV(τ, ξ, 0) (τ > 0, ξ ∈ R). (5.2)
The integral operator J is given by

J U(ξ) = R K(ξ ′ ) U(ξ) -U(ξ + Λξ ′ ) dξ ′ The function f is given by f (V) = 1 -e -R 0 V -V, so that, f ′ (0) = R 0 -1 = w 2 SIR 4 .
The initial quantities I 0 and T 0 have obvious meanings. The minimal reduced speed for (5.2), that we call w T SIR , is the least w so that the system in a, b

     -DΦ K (a) + wa + μb ν + b = 0 -(a 2 + b 2 ) + wa = w 2 SIR 4 (5.3) 
has solutions, with

Φ K (a) = 2 +∞ 0 K(ξ ′ )(cosh(aξ ′ ) -1)dξ ′ .
We study R 0 is only slightly larger than 1. So, w SIR is now a small parameter. From the second equation of (5.3) we suspect that a, b and w will scale like w SIR and that a will be much smaller than b. So, we set:

a = w SIR ā, b = w SIR b, w = w SIR w,
and we introduce the new parameters

λ = μ νw SIR , ρ = w SIR ν .
This leads to the nal reduced system (a rigorous justication would be easy, via the Implicit Functions Theorem):

     - D R 0 -1 Φ K (Λ R 0 -1a) + wā + λ b = 0 -b2 + wā = 1 4 .
The second equation is the standard parabola Γ 2, w ā = 1 w 1 4 + b2 := h( w, b).

A nal observation will allow us an easy treatment of the rst equation. We notice that the second and third terms are expected to be of nite size, so that the rst one should also be of nite size. Given that the ratio D R 0 -1 is large, the hyperbolic cosine should be small, so that Λ √ R 0 -1a should be small. And so, we may approximate

Φ K (Λ √ R 0 -1a) as Φ K (Λ R 0 -1ā) ∼ M 1 DΛ 2 ā2 = K 0 DL 2 d ā2 , M 1 = +∞ 0 ξ 2 K(ξ)dξ.
And so, with the same analysis as in [START_REF] Berestycki | Propagation of epidemics along lines of fast diusion[END_REF], we obtain the existence of a positive bounded

function ω T SIR (λ) such that lim DL 2 →+∞,w SIR →0 d M 1 DL 2 w T SIR w SIR = ω T SIR (λ), λ = μ νw SIR .
(5.4)

Proof of the results on the SIRT model

We start with the proofs of the Liouville-type result and of the local stability property contained Theorem 2.4. We can follow exactly the same arguments used in the proofs of [10, Theorem 3.4, 3.5], thanks to the fact that system (2.3) enjoys the comparison principle and the uniform regularity of the solutions, due to Theorem 2.1. We sketch these arguments below for completeness.

Proof of Theorem 2.4 Liouville-type result and stability. Let (u, v) be the solution to (2.3)-(2.6). Since its initial datum (0, 0) is a sub-solution to (2.3)-(2.5), the comparison principle implies that (u, v) is non-decreasing in t. Observe that one can choose M > v * large enough so that the constant pair M (ν/µ, 1) is a super-solution to (2.3). It follows that (u(t, x), v(t, x, y)) converges as t → +∞, locally uniformly in space, to a bounded pair (u r ∞ (x), v r ∞ (x, y)), and moreover, by the uniform regularity of solutions, that (u r ∞ (t, x), v r ∞ (x, y)) is a (stationary) non-negative solution to (2.3). It remains to prove the Liouville-type result. We distinguish the two cases according to R 0 .

Case R 0 > 1. In this case f fulls all conditions in (1.1) with 1 replaced by v * > 0. Hence, since (u(t, x), v(t, x, y)) is a super-solution to (1.2), and v(t, x, y) > 0 for t > 0, x ∈ R, y > 0 due to the parabolic strong maximum principle (because I 0 ̸ ≡ 0), we infer from Proposition 2.2 that 

(u r ∞ (x), v r ∞ (x, y)) ⩾ ν µ , 1 
k := max sup R u 1 u 2 , sup R×R + v 1 v 2 > 1.
If, on the contrary, L is small that is, we are close to the classical local diusion we have

Dφ L (a) = Dφ 1 (aL) ∼ Da 2 L 2 ⟨x 2 K⟩ → 0 as L → 0,
locally uniformly in a. This yields, thanks to the rst equation in (5.6), that b → 0 as L → 0, whence, by the second equation, that a * → ρ = α d (1 -R 0 ) as L → 0. 

(a) = φ 1 (aL) ⩾ ⟨x 2 K⟩a 2 L 2 , it follows that a * < a ∞ (D, L) ⩽ µ ⟨x 2 K⟩DL 2 . (5.8)
This shows that a * can be small, i.e. the solution has a thick tail, even if D is small, provided that L is large, or, on the contrary, if L is small but D is suciently large.

We conclude with the proof of Theorem 2.5, which just consists in showing that the compactly supported function I 0 does not aect the behaviour of the solution far from the origin.

Proof of Theorem 2.5. Since R 0 > 1, the function f is of the Fisher-KPP type. We call c T SIR the speed c * provided by Theorem 2.3 with such a f . Hence the comparison between c T SIR and the standard speed c SIR stated in Theorem 2.5 hold, with D * given by (4.11). It remains to show that c T SIR is actually the spreading speed for (2. locally uniformly with respect to y ⩾ 0 (in formula (2.7) one has v * = 1 as the positive zero of f ). Recall from Theorem 2.4 that (ν/µ, 1)v * is the limit as x → ±∞ of the steady state (u r ∞ , v r ∞ ). We further know from Theorem 2.4 that (u, v) → (u r ∞ , v r ∞ ) as t → +∞ locally uniformly in space, and, by comparison, that (u, v) ⩽ (u r ∞ , v r ∞ ). All this facts together imply the validity of the rst limit of Theorem 2.5.

The second limit directly follows by comparison with the plane waves provided by the case 2 of Lemma 4.1 (recall that c * in Theorem 2.3 is precisely given by c * (D, L)

of Lemma 4.1). Indeed, being super-solutions to the linearised system (4.9), it is clear that they are super-solutions to (2.3) as well, up to multiplication by a large constant. (5.9)

where q ∈ R is a given constant. The system for the cumulative densities u, v reads      ∂ t v -d∆v = f (v) + I 0 (x, y) (t > 0, (x, y) ∈ R 2 + ) -d∂ y v = µu -νv (t > 0, x ∈ R, y = 0) ∂ t u + q∂ x u = νv -µu (t > 0, x ∈ R, y = 0), (5.10) with f given by (2.4). As in Section 4.3, the spreading speed c * for this new system will be given by the minimal c such that the linearised system admits plane wave super-solutions of the type (4.10). As a matter of fact, because the system is no longer symmetric in the x variable, there will be two distinct spreading speeds, c ± * , one leftward and one rightward.

Theorem 5.1. Assume that R 0 > 1. Let (u, v) be the solution to (5.9), (2.4)-(2.6).

Then, there exist c ± * > 0 such that, for all ε > 0, it holds Finally, c ± * /|q| converge to a positive constant κ * ∈ (0, 1) as q → ±∞.

Recalling that S = S 0 e -βv , the above result shows that the epidemic wave moves at the leftward and rightward asymptotic speeds c ± * respectively. These speeds are always no less than c SIR , which means that the transport term q on the line does not slow down the spreading speed in the opposite direction, no matter how strong it is.

On the contrary, as soon as the intensity q is larger than the classical speed c SIR , the spreading speed in the direction of the transport is enhanced, but, however, it never reaches the value of q itself. Proof of Theorem 5.1. The problem of the existence of plane wave solutions for the linearised system reduces to the algebraic system

       (c -q)a = - dµb ν + db -(a 2 + b 2 ) + ca d = c 2 K 4d 2 .
(5.11)

Consider the case q ⩽ c K . Recall that the second equation in 

(4. 7 )

 7 Recalling that c L is given by (4.5) with a = a(D) satisfying (4.6), one getsc L (D) = Dφ ′ L (a(D)) = Da(D) φ ′′ L (0) + o(1) as D → +∞,whence, by (4.7), c L (D) = 2Df ′ (0) φ ′′ L (0) + o(1) as D → +∞.

  (4.10) if and only if c ⩾ c * (D, L). Moreover c * (D, L) satises lim

(4. 15 )

 15 The function G c 1 (a) is analytic, has the two vertical asymptotes a = a ∞ ± (c, D) and the two zeroes a = 0 and a = a 0 (c, D), the latter being the unique positive solution of Dφ L (a 0 (c, D)) = ca 0 (c, D).

  * (D, L), D) → 0 as DL 2 → +∞.

(4. 18 )

 18 Now, having in mind the conclusions (4.7)-(4.8) of the benchmark in Section 4.2, we look for a, b, c in (4.13) under the form

Figure 1 :

 1 Figure 1: The minimal c for the existence of plane wave super-solutions: (a) c = c K , (b) c = c * (D, L).

Proof of Theorem 2 . 3 .

 23 Let us show that the two limits in (2.7) hold with c * := c K if D ⩽ D * and c * := c * (D, L) if D > D * , where D * and c * (D, L) are given by Lemma 4.1. By reason of symmetry in the x variable, it is sucient to derive them for x ⩾ 0. The second limit immediately follows by comparison with the plane waves provided by Lemma 4.1 (which are super-solutions to the nonlinear problem (1.2)

  The integrated density u(t, x) := t 0 I(s, x)ds solves the following nonlocal equation with non-homogeneous right hand-side: u t -DJ u = f (u) + I 0 (x), (5.1)

T 0 I

 0 (σ, ξ))dσ, V(τ, ξ, ζ) = τ (t, x, y)ds.

  3)-(2.5). The pair (u, v) is a super-solution to (1.2), hence by the comparison principle and Theorem 2.3 we infer ∀ε < c T SIR , lim inf t→+∞ inf |x|⩽(c T SIR -ε)t u(t, x), v(t, x, y) ⩾ ν µ , 1 v * ,

5. 4 ∂

 4 The case of pure transport on the road Another way of analysing a nonlocal eect of a road on the spreading of an epidemic, is by considering a pure transport equation on the line. Namely, we introduce the system t I -d∆I + αI = βSI(t > 0, (x, y) ∈ R 2 + ) ∂ t S = -βSI (t > 0, (x, y) ∈ R 2 + ) -d∂ y I = µT -νI (t > 0, x ∈ R, y = 0) ∂ t T + q∂ x T = νI -µT (t > 0, x ∈ R, y = 0).

  - * -ε)t⩽x⩽(c + * -ε)t (u(t, x), v(t, x, y)) > 0, lim t→+∞ sup x⩽-(c - * +ε)t (u(t, x), v(t, x, y)) = 0, lim t→+∞ sup x⩾(c + * +ε)t (u(t, x), v(t, x, y)) = 0,locally uniformly with respect to y ⩾ 0.In addition, the spreading speeds c ± * satisfyc ± * = c SIR if ± q ⩽ c SIR ∈ (c SIR , |q|) if ± q > c SIRwith c SIR := 2 dα(R 0 -1).

( 5 .

 5 11) admits solutions, describing a circle Γ 2 , if and only if c ⩾ c K . For c = c K the circle reduces to the point (a, b) = (c K /(2d), 0), which satises the inequality ⩾ in the rst equation of(5.11).It follows that in such a case, (5.10) admits a super-solution of the type (4.10) if and only if c ⩾ c * (q) := c K . of h c (a) = 0 with nonzero imaginary part of order h c (a * ) (see[START_REF] Berestycki | The inuence of a line of fast diusion in Fisher-KPP propagation[END_REF] Appendix B] for the detailed argument). The same properties are fullled also by the perturbationh c δ,Y := g -1 Y • G c 1 (a) -G c 2,δ(a) of h c (a) (with c * (D, L), a * replaced by some slightly dierent values) provided δ is suciently small and Y is suciently large. As a consequence, for c < c * (D, L) close enough to c * (D, L), we can nd δ small and Y large so that the equation h c δ,Y (a) = 0 admits two complex solutions with nonzero imaginary part of order h c (a * ). Pick one of them, together with the associated b = G c 2,δ (a) and γ. This provides us with a complex plane-wave solution (u(x -ct), v(x -ct, y)) to(4.22). Finally, its real partu c (x -ct), v c (x -ct, y) := ℜ(u)(x -ct), ℜ(v)(x -ct, y) ,is a real solution to (4.22). The positivity sets of u c , v c full (4.23), (4.24) with ω c = 1/ℑ(a) → +∞ as c ↗ c * (D, L).

  1 , v1 ) is a sub-solution and (u 2 , v 2 ) is a super-solution, also in the generalised sense 1 . One can show the comparison principle following the same arguments as in the proof of [8, Proposition 3.2], which hold true when ∂ xx is replaced by J . Indeed, those arguments only rely on the following form of ellipticity condition (which is straightforward to check):

  Then, applying Proposition 2.2 to the solution with initial datum (u c , v c ) we get, uniformly with respect to y ⩾ 0, from which, calling s := 1 + τ + t we derive

	always by comparison,			
	lim inf t→+∞	inf τ ⩾0	u(1 + τ + t, cτ ), v(1 + τ + t, cτ, y) ⩾	ν µ	, 1 ,
	lim inf t→+∞	inf s⩾t+1	u(s, c(s -t -1)), v(s, c(s -t -1), y) ⩾	ν µ	, 1 .
	This yields		lim inf t→+∞	inf x∈[0,c ′ t]	u(t, x), v(t, x, y) ⩾	ν µ	, 1 ,

locally

  v * , the right-hand side being the unique positive solution to (1.2). It is then straightforward to see that v r ∞ (x, y) → v * as y → +∞, uniformly in x ∈ R. Conversely, taking a diverging sequence (x n ) n∈N in R, the limit of the translations (u r ∞ (x+x n ), v r ∞ (x+x n , y)) (which exists locally in (x, y) by the uniform regularity of (u r ∞ , v r * . It remains to prove the Liouville result. Let (u 1 , v 1 ) and (u 2 , v 2 ) be two pairs of

	∞ )) is a positive, sta-
	tionary solution to (1.2), hence by Proposition 2.2 it coincides with (ν/µ, 1)v

positive, bounded, stationary solutions to (2.3). Assume by way of contradiction that

  This limit indeed coincides with the asymptotic exponential rate that holds for the local model, see[START_REF] Berestycki | Propagation of epidemics along lines of fast diusion[END_REF] Theorem 4.2]. In any case, since by (4.4) we have that φ L

A sub-solution (resp. super-solution) satises ⩽ (resp. ⩾) in the three equations in (1.2); a generalised sub-solution (resp. super-solution) is the maximum (resp. minimum) of a nite number of sub-solutions (resp. super-solutions). We always require (sub,super)solutions to grow at most exponentially in space in order to guarantee the classical maximum principle for linear parabolic equations.

The SIRT model for epidemics along a line with nonlocal diusion5.1 A benchmark: SIR-type model with nonlocal diusionConsider a standard SIR model, where the population lives on the real line R, with an initially homogeneous population of susceptibles, and where the infected may move

Because of the limits we have just proved, one of the following situations necessarily occurs:

Suppose we are in the latter case. Then, it is readily seen using the concavity of f that the maximum cannot be achieved in the interior of R × R + . Then, it is achieved at some point (x, 0), and Hopf 's lemma yields ∂ y (kv 2 -v 1 )(x, 0) > 0.

Using the second equation in (2.3), together with v 1 (x, 0) = kv 2 (x, 0), we nd that

which contradicts the denition of k. Consider the remaining case:

Computing the dierence of the equations satised by ku 2 and u 1 at a point x where this maximum is achieved, we derive from (3.1) the contradiction

We have thereby shown that k ⩽ 1, that is, (u 1 , v 1 ) ⩽ (u 2 , v 2 ). Exchanging the roles of the solutions, yields the uniqueness result.

Case R 0 ⩽ 1. We start with the Liouville-type result for non-negative solutions, with possibly I 0 ≡ 0. We need to show that, for any two pairs (u 1 , v 1 ), (u 2 , v 2 ) of non-negative, bounded, stationary solutions to (2.3), it holds that (u 1 , v 1 ) ⩽ (u 2 , v 2 ). Assume by contradiction that, on the contrary,

Suppose rst that sup R×R + (v 1 -v 2 ) = h, and let ((x n , y n )) n∈N be a maximising sequence. If (y n ) n∈N is bounded from below away from 0, then the functions v j (x + x n , y + y n ) converge locally uniformly (up to subsequences) towards two solutions v j of the equation -d∆

This is impossible because f is decreasing on R + . If, instead, y n → 0 (up to subsequences), then the pairs (u j (x + x n ), v j (x + x n , y)) converge locally uniformly (up to subsequences) towards two solutions ( u j , v j ) of the same system, which is of the form (2.3) with I 0 either translated by some vector (ξ, 0), or replaced by 0. Moreover the dierence v 1 -v 2 attains its maximal value h > 0 at (0, 0) and satises

As before, such a maximum cannot be attained also at some interior point, hence by Hopf 's lemma

, we get a contradiction with the denition of h.

(5.5)

Consider a maximising sequence (x n ) n∈N for u 1 -u 2 , then the limits (up to subsequences) ( u j , v j ) of the translations (u j (x + x n ), v j (x + x n , y)), which, once again, satisfy a system analogous to (2.3). The dierence u 1 -u 2 attains its maximum ν µ h at the origin, whence by (3.1)

This contradicts (5.5) The proof of the Liouville result is concluded.

Let us pass to the limits at innity. The limit v r ∞ (x, y) → 0 as y → +∞, uniformly with respect to x, readily follows from the negativity of f on (0, +∞). Consider now a diverging sequence (x n ) n∈N in R. The sequence of translations (u r ∞ (x + x n ), v r ∞ (x + x n , y)) converges locally uniformly (up to subsequences) towards a bounded, stationary solution ( u, v) to (2.3) with I 0 ≡ 0. We apply the Liouville-type we have just proved and infer that ( u, v) ≡ (0, 0). This concludes the proof of the theorem.

We conclude the proof of Theorem 2.4 using the plane wave solutions of Section 4.3.

Proof of Theorem 2.4 exponential decay. Let us start with the case R 0 < 1. In the rst place, we linearise system (2.3) around v = 0 and we get (4.9), where f ′ (0) = α(R 0 -1) < 0. We look for steady waves of the form (4.10) with c = 0. With analogous computation as in Section 4.3, we end up with the system 

(5.7)

Let us call (u ± , v ± ) the corresponding steady waves. Take then k > 0 large enough so that kv ± > v r ∞ in the support of I 0 . We nally dene

3). By comparison, the solution (u, v) to (2.3)-(2.6) stays below (u, v) for all times, and we then deduce from the stability result of Theorem 2.4 that

Let us turn to the lower bound. Steady waves with b = b * , γ = γ * and any a > a * , are sub-solutions to the linearised problem (4.9). However, in to get suitable sub-solutions for the nonlinear problem, we penalise f ′ (0) by a small δ > 0 and we also truncate the domain at a large value Y of y, that is, we consider (4.22). As shown in the Appendix, this translates into a slight perturbation of the original system (4.9), namely, for given a > a * , the truncated wave

is a sub-solution to the penalised system provided δ is suciently small and Y is large. We take k > 0 small enough so that k

with initial datum M (ν/µ, 1) is non-increasing in t and converges to a non-negative steady state, which is necessarily (u r ∞ , v r ∞ ) owing to the Liouville result. In particular ( u(t, 0), v(t, 0, y)) > k(u(0), v(0, y)) for t > 0, 0 ⩽ y ⩽ Y . We can then apply the comparison principle in the half-strip x > 0, 0 ⩽ y ⩽ Y , and infer that ( u, v) > k(u, v) there, for all t > 0. Passing to the limit t → +∞ yields (u r ∞ , v r ∞ ) ⩾ k(u, v) for x ⩾ 0. The specular estimate for x < 0 holds true by the symmetry of (u r ∞ , v r ∞ ). The proof of the case R 0 < 1 is thereby concluded owing to the arbitrariness of a > a * .

In the case R 0 > 1 the argument is analogous. One linearises the system around (ν/µ, 1)v * and gets (5.6) with f ′ (0) replaced by f ′ (v * ), which is also negative. One then nds the super-solutions to (2.3) outside the support of I 0 in the form (ν/µ, 1)v * + (u ± , v ± ), the sub-solution in the form (ν/µ, 1)v * + k(u, v), and concludes as before.

Let us study the exponential rate a * in Theorem 2.4 for extreme values of L, that is, when the range of contaminations on the road is large or small. Let us focus, as in the above proof, on the case R 0 < 1. Recall that a * < a ∞ (D, L) by ( 5 Next, consider the case q > c K . For c ⩾ q, any point (a, b) ∈ Γ 1 with a, b > 0 satises the inequality ⩾ in the rst equation of (5.11), that is, (5.10) admits supersolutions of the form (4.10). Conversely, for c = c K , the circle (a, b) = (c K /(2d), 0) satises < in the rst equation of (5.11), i.e., the corresponding plane wave is a subsolution to the linearised system. This means that there is a rst value c = c * (q) ∈ (c K , q) at which the two curves in (5.11) are tangent, which provides us with a plane wave super-solution to (5.10).

Let us investigate the behaviour of c * as q → +∞. We write c = κq with κ > 0 and α = aq. The system rewrites as

(5.12)

Dropping the term α 2 /q 2 (that will be justied at the end of the computation) we get

Consider k ∈ (0, 1). For κ ∼ 0 this equation does not admit solution b ⩾ 0, whereas for κ ∼ 1 it does. There exists then a minimal κ = κ * ∈ (0, 1) for which a solution exists. We then recover the same existence result for system (5.12) when q → +∞, with a minimal value κ q → κ * . This shows that c * → κ * q as q → +∞.

Discussion

We have proposed and analysed a model that quanties the eect of a line of fast, nonlocal diusion, both on the propagation of fronts in models of reaction-diusion for biological invasions, and of the SIR type for epidemics. Such a modelling for the diusion processes on the line is relevant, as it makes possible long range displacements along lines of communications in addition to local ones. This type of eects is widely recognised to exist. Our aim here is to provide a rigorous formulation of this feature and to analyse it mathematically. While we had previously analysed the eect of a line having a diusion of its own on reaction-diusion propagation [START_REF] Berestycki | The inuence of a line of fast diusion in Fisher-KPP propagation[END_REF], [START_REF] Berestycki | Propagation of epidemics along lines of fast diusion[END_REF], we had indeed represented the diusion by the standard Laplacian. The nonlocal dispersal that we are proposing here encompasses and conrms the results that we have already obtained, and introduces further elements of understanding.

The nonlocal diusion on the line is characterised by two parameters: its intensity D, that essentially measures the importance of the trac, and the parameter L, that represents the characteristic length of individual travel. This additional parameter amplies the eect of the road on all the aspects of the overall dynamics.

Regardless of the size of all other parameters, we have shown that the spreading velocity on the line behaves like √ DL 2 . This really shows that the dynamics on the line is that of an eective reaction-diusion process of the Fisher-KPP type, with the kernel DK L (x), and a reaction term of the form γu(1 -u), with γ tailored so as to obtain the spreading speed. This broadens the picture that we had already obtained when the diusion on the line is given by a standard diusion operator -D∂ xx . In [START_REF] Berestycki | The inuence of a line of fast diusion in Fisher-KPP propagation[END_REF],

we showed that the spreading velocity grows like √ D. Such an eect was also observed on long range diusion operators of the form (-∂ xx ) α (0 < α < 1) in [START_REF] Berestycki | The eect of a line with nonlocal diusion on Fisher-KPP propagation Math[END_REF]. In this last case we proved that the spreading speed is exponential. The rst noticeable eect of the nonlocal diusion that we are considering is that the spreading velocity can be quite large if the range L of the dispersal on the road is large, even if the intensity of the trac is modest.

Let us concentrate on the model for the propagation of epidemics. The pandemic threshold R 0 is the same through all the models we have studied so far, from the classical SIR model to the nonlocal model we are dealing with in this paper. However, the presence of the nonlocal operator on the line has an important quantitative impact on the system. Let us rst focus on the case R 0 < 1. The epidemic does not spread, the population reaches a nal state where much more infected individuals may nonetheless be found at very large distance from the origin of the outbreak in the presence of the road than without it. This is reected in the asymptotics of the limit, as t → +∞, of the cumulative density I tot of infected, that is S 0 (1-e -βv r ∞ ), which decays exponentially at innity with decay rate a * , (compare Theorem 2.4). The bound (5.8) indeed shows that, even if D is small which would, in principle, make the decay exponent a * quite large, thus granting a fast exponential decay the parameter L can be made large enough to make a * arbitrarily small. If, on the contrary, L is small, thus once again, potentially allowing a * to be quite large, this eect can be compensated by a very large diusion coecient D. According to (5.8), what really matters is indeed the size of DL 2 , which, if large, yields a small decay rate a * . The most important eects can be observed on the propagation velocity. Let us concentrate on the case when R 0 is only slightly larger than 1, that is, a range where the epidemics progress would be expected to be slow and thus would not appear to pose a major public health concern. In such a case however the propagation speed is accelerated by a factor of order √ DL 2 , see (5.4). Thus, the size of L gives an additional important boost to enhancement. In particular, few individuals moving very far are sucient to produce an important increase of the spreading speed of the epidemics, all other parameters being small. We retrieve, in a way that is even stronger than in [START_REF] Berestycki | Propagation of epidemics along lines of fast diusion[END_REF], the fast propagation eect even in the case of a seemingly mild epidemic wave.

We also observe that the spreading speed is asymptotic to √ DL 2 times a function that is decreasing with respect to d, given by (4.21). This monotonicity is rather counterintuitive, and is yet another manifestation of the complexity of the interaction between the dynamics in the eld and that on the road. One possible interpretation is the following: the ux of individuals entering the road, dv y , is proportional to d. It is also equal to µu -νv, a negative quantity for the linear waves. As a consequence it is all the more negative as d is large, thus weakening the eect of the road and resulting in a slowdown eect when d becomes larger. One could show that this type of monotonicity (that we observe here for the rst time) also holds for local diusion models.

On the mathematical side, one observes an unexpected preservation of smoothness due to the interaction between the line and the upper half plane, that is not present in the classical nonlocal Fisher-KPP models.

We have nally discussed the eect of a pure unidirectional transport on the line, and we have found another surprising result. The transport on the line does enhance the overall propagation, but with an important subtlety. If q is the size of the transport, as q → +∞, the spreading speed in that direction tends to +∞ as κ * q, with κ * positive but strictly smaller than 1.

The fact that the spreading speed is strictly smaller than q (and that κ * < 1) can be interpreted as follows: infected individuals T are transported by the road with a speed q, but if the latter is larger than the speed c SIR in the eld, the incom- ing/outcoming contribution of infected at their location, i.e. νI -µT , is negative, and this slows down the speed of propagation. This would not have been the case if contamination took place on the line too. Indeed, we showed in [START_REF] Berestycki | Fisher-KPP propagation in the presence of a line: further eects[END_REF] that, for the model of biological invasion with local diusion on the road, the spreading speed behaves like q (with factor 1) as q → +∞ provided that a reaction term is also present on the road, and it is suciently large compared with the exchange rate µ, see [START_REF] Berestycki | Fisher-KPP propagation in the presence of a line: further eects[END_REF]Theorem 1.3]. As a corroboration of the above interpretation, one can indeed check in our proof that, in the present case, the spreading speed tends to q as µ → 0, and the limit factor κ * tends to 1.

Appendix

In this appendix, we construct a solution of the form ( u c (x -ct), v c (x -ct, y)), with c < c * (D, L) close enough to c * (D, L), to the penalised problem (4.22), with δ > 0 suciently small and Y > 0 suciently large. In order to full the Dirichlet condition at y = Y , we consider a variant of the plane waves (4.10), namely (u(t, x), v(t, x, y)) = e -a(x-ct) 1, γ(e -by -e by-2bY ) . (a * ).

One also directly checks that (G c 1 ) ′′ (a) > 0, at least for the values a > 0 where G c 1 (a) ⩾ 0, and that (G c * (D,L) 2,0

) ′′ < 0 in its domain. Let us call h c (a) := G c 1 (a) -G c 2,0 (a). This is an analytic function that satises h c (a * ) ↘ 0 as c ↗ c * (D, L) (with strict monotonicity) and moreover (h c * (D,L) ) ′′ (a * ) > 0. These properties allow us to apply Rouché's theorem and nd, for c < c * (D, L) close enough to c * (D, L), two complex solutions