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The Riemann hypothesis is the assertion that all non-trivial zeros are complex numbers with real part 1 2 . It is considered by many to be the most important unsolved problem in pure mathematics. There are several statements equivalent to the famous Riemann hypothesis. For x ≥ 2, the function f was introduced by Nicolas in his seminal paper as f (x) = e γ • log θ(x) • q≤x 1 -1 q , where θ(x) is the Chebyshev function, γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural logarithm. In 1983, Nicolas stated that if the Riemann hypothesis is false then there exists a real number b with 0 < b < 1 2 such that, as x → ∞, log f (x) = Ω±(x -b ). In this note, using the Nicolas criterion, we prove that the Riemann hypothesis is true.

Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 2 [START_REF] Conrey | Riemann's hypothesis[END_REF]. It was proposed by Bernhard Riemann (1859) [START_REF] Conrey | Riemann's hypothesis[END_REF]. The Riemann hypothesis belongs to the Hilbert's eighth problem on David Hilbert's list of twenty-three unsolved problems [START_REF] Conrey | Riemann's hypothesis[END_REF]. This is one of the Clay Mathematics The Riemann hypothesis Institute's Millennium Prize Problems [START_REF] Conrey | Riemann's hypothesis[END_REF]. In mathematics, the Chebyshev function θ(x) is given by θ(x) = q≤x log q with the sum extending over all prime numbers q that are less than or equal to x, where log is the natural logarithm. Leonhard Euler studied the following value of the Riemann zeta function (1734) [2].

Proposition 1 It is known that [2, (1) pp. 1070]:

ζ(2) = ∞ k=1 q 2 k q 2 k -1 = π 2 6 ,
where q k is the kth prime number. By definition, we have

ζ(2) = ∞ n=1 1 n 2 ,
where n denotes a natural number. Leonhard Euler proved in his solution to the Basel problem that

∞ n=1 1 n 2 = ∞ k=1 q 2 k q 2 k -1 = π 2 6 ,
where π is a well-known irrational number linked to several areas in mathematics such as number theory, geometry, etc.

Proposition 2 For x ≥ 3 we have [3, Lemma 6.4 pp. 370]:

  q>x q 2 q 2 -1   ≤ exp 2 x ,
where exp(k) is the exponential function with value e k and exponent k. Indeed, Choie and her colleagues proved that for x ≥ 3 and t ≥ 2,

log(R t (x)) ≤ t • x 1-t t -1 ,
where R t (x) is given as

R t (x) = q>x (1 -q -t ) -1 = q>x q t q t -1 .
Therefore, this Proposition is a particular case of their result applied to the specific value of t = 2.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant which is defined as

γ = lim n→∞ -log n + n k=1 1 k = ∞ 1 - 1 x + 1 ⌊x⌋ dx.
Here, ⌊. . .⌋ represents the floor function. In number theory, Ψ(n) = n • q|n 1 + 1 q is called the Dedekind Ψ function where q | n means the prime q divides n. For x ≥ 2, a natural number M x is defined as

M x = q≤x q.
We define R(n) = Ψ(n) n•log log n for n ≥ 3. We also define N k = k i=1 q i as the primorial number of order k, where we deduce that log N k = θ(q k ).

Proposition 3 Unconditionally on Riemann hypothesis, we know that [4, Proposition 3. pp. 3]:

lim x→∞ R(Mx) = e γ ζ(2) .
Actually Solé and Planat proved that

lim k→∞ R(N k ) = e γ ζ (2) 
.

However, we already know that Mx = N k whenever q k ≤ x and there is no other prime different of q k in the interval [q k , x].

The well-known asymptotic notation Ω was introduced by Godfrey Harold Hardy and John Edensor Littlewood [START_REF] Hardy | Some problems of diophantine approximation: Part II. The trigonometrical series associated with the elliptic ϑ-functions[END_REF]. In 1916, they also introduced the two symbols Ω R and Ω L defined as [START_REF] Hardy | Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes[END_REF]:

f (x) = Ω R (g(x)) as x → ∞ if lim sup x→∞ f (x) g(x)
> 0;

f (x) = Ω L (g(x)) as x → ∞ if lim inf x→∞ f (x) g(x) < 0.
After that, many mathematicians started using these notations in their works. For example, the well-known mathematician Edmund Landau widely used these symbols in his work [START_REF] Landau | Über die Anzahl der Gitterpunkte in gewissen Bereichen[END_REF]. From the last century, these notations Ω R and Ω L changed as Ω + and Ω -, respectively. There is another notation:

f (x) = Ω ± (g(x)) (meaning that f (x) = Ω + (g(x)) and f (x) = Ω -(g(x)
) are both satisfied). Nowadays, the notation f (x) = Ω + (g(x)) has survived and it is still used in analytic number theory as [START_REF] Tenenbaum | Introduction to Analytic and Probabilistic Number Theory[END_REF]:

f (x) = Ω + (g(x)) if ∃k > 0 ∀x 0 ∃x > x 0 : f (x) ≥ k • g(x)
which has the same meaning to the Hardy and Littlewood older notation. For x ≥ 2, the function f was introduced by Nicolas in his seminal paper as [9, The Riemann hypothesis Theorem 3 pp. 376], [10, (5.5) pp. 111]:

f (x) = e γ • log θ(x) • q≤x 1 - 1 q .
Next, we have the Nicolas Theorem: Putting all together yields a proof for the Riemann hypothesis.

Central Lemma

This is a key Lemma.

Lemma 1 If the inequality

exp 70000000 √ x ≥ f (x)
holds for large enough x ∈ N, then the Riemann hypothesis is true.

Proof By Proposition 4, if the Riemann hypothesis is false, then there exists a real number 0 < b < 1 2 for which there are infinitely many natural numbers x ≥ 2 such that log f (x) = Ω + (x -b ): Actually Nicolas proved that log f (x) = Ω ± (x -b ), but we only need to use the notation Ω + in this proof over the natural numbers. According to the known definition, this would mean that

∃k > 0, ∀y 0 ∈ N, ∃y ∈ N (y > y 0 ) : log f (y) ≥ k • y -b . That inequality is equivalent to log f (y) ≥ k • y -b • √ y • 1 √ y , but we note that lim y→∞ k • y -b • √ y = ∞ > 70000000
for every possible positive value of k and b < 1 2 . Certainly, no matter how small we can select the absolute value of k, the exponent -b + 1 2 is always greater than 0 in the expression y -b+ 1 2 = y -b • √ y. For that reason, we are able to assure that k • y -b • √ y goes to infinity whenever y tends to infinity. Thus, there must exist some value of y ′ such that for all natural numbers y > y ′ we obtain that the inequality k • y -b • √ y > 70000000 always holds for an arbitrary value k > 0 that we could choose: we pick up the number of 70 million for just simplifying and making a small tribute to the Chinese-American mathematician Yitang Zhang at the same time. In this way, this implies that

∀y 0 ∈ N, ∃y ∈ N (y > y 0 ) : log f (y) > 70000000 √ y .
Note that, the variable k disappears in our previous expression due to we do not need it anymore. Hence, if the Riemann hypothesis is false, then there are infinitely many natural numbers x ≥ 2 such that log f (x) > 70000000 √

x . So, if we have 70000000

√ x ≥ log f (x)
for large enough x ∈ N, then the Riemann hypothesis cannot be false. In fact, we would obtain that 70000000

√ x ≥ log f (x) > 70000000 √
x under the assumption of both conditions. By Reductio ad absurdum, the proof is done after applying the exponentiation to 70000000

√ x ≥ log f (x)
in both sides of the inequality and obtain

exp 70000000 √ x ≥ f (x), since 70000000 √ x > 70000000 √
x is a clear contradiction. □

Main Theorem

This is the main theorem.

Theorem 1 The Riemann hypothesis is true.

Proof If the inequality

exp 70000000 √ x ≥ f (x)
holds for large enough x ∈ N, then the Riemann hypothesis is true by Lemma 1. That previous inequality is the same as

exp 70000000 √ x • 1 f (x) ≥ 1.
We claim that

exp 70000000 √ x • 1 f (x) ≥ 1 is equivalent to exp 70000000 √ x • q≤x q 2 q 2 -1 e γ • R(Mx) ≥ 1.
By definition, we see that

exp 70000000 √ x • 1 f (x) = exp 70000000 √ x • 1 e γ • log θ(x) • q≤x 1 -1 q = exp 70000000 √ x e γ • q≤x q q-1 log θ(x) = exp 70000000 √ x e γ • q≤x q+1 q • q 2 q 2 -1 log θ(x) = exp 70000000 √ x • q≤x q 2 q 2 -1 e γ • q≤x q+1 q log θ(x) = exp 70000000 √ x • q≤x q 2 q 2 -1 e γ • Mx • q|Mx 1 + 1 q Mx • log log Mx = exp 70000000 √ x • q≤x q 2 q 2 -1 e γ • Ψ(Mx) Mx • log log Mx = exp 70000000 √ x • q≤x q 2 q 2 -1 e γ • R(Mx)
after making some distribution. The inequality

exp 70000000 √ x •   q≤x q 2 q 2 -1   ≥ exp 70000000 √ x - 1 √ x • ζ(2)
basically holds for large enough x ∈ N by Propositions 1 and 2. This is because of

exp 70000000 √ x ≥ exp 70000000 √ x - 1 √ x • exp 2 x ≥ exp 70000000 √ x - 1 √ x • q>x q 2 q 2 -1 = exp 70000000 √ x -1 √ x • ζ(2) q≤x q 2 q 2 -1 for large enough x ∈ N, since the inequality exp 70000000 √ x •   q≤x q 2 q 2 -1   ≥ exp 70000000 √ x - 1 √ x • ζ(2)
is the same as

exp 70000000 √ x ≥ exp 70000000 √ x -1 √ x • ζ(2) q≤x q 2 q 2 -1 . The following result exp 70000000 √ x • q≤x q 2 q 2 -1 e γ ≥ exp 70000000 √ x - 1 √ x • ζ(2) e γ
is evident as long as x increases and so,

exp 70000000 √ x • q≤x q 2 q 2 -1 e γ • R(Mx) ≥ 1
necessarily holds for large enough x ∈ N. Certainly, we only need to prove that

R(Mx) ≥ exp - 69999999 √ x • e γ ζ(2) .
Hence, it is enough to show that R(Mx)

e γ ζ(2) ∼ 1 > exp - 69999999 √ x
as x → ∞ by Proposition 3. In conclusion, we can affirm that the Riemann hypothesis is true because of exp 70000000

√ x ≥ f (x)
feasibly holds for large enough x ∈ N. □

Conclusions

Practical uses of the Riemann hypothesis include many propositions that are known to be true under the Riemann hypothesis and some that can be shown to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothesis is closely related to various mathematical topics such as the distribution of primes, the growth of arithmetic functions, the Lindelöf hypothesis, the Large Prime Gap Conjecture, etc. A proof of the Riemann hypothesis could spur considerable advances in many mathematical areas, such as number theory and pure mathematics in general.

Proposition 4

 4 If the Riemann hypothesis is false then there exists a real number b with 0 < b < 1 2 such that, as x → ∞ [9, Theorem 3 (c) pp. 376], [10, Theorem 5.29 pp. 131], log f (x) = Ω ± (x -b ).
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