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Abstract 

We apply the tangent method of Colomo and Sportiello to predict the arctic 

curves of the six vertex model with reflecting (U-turn) boundary and of the 

related twenty vertex model with suitable domain wall boundary conditions on 

a quadrangle, both in their disordered phase. 

 

Keywords: integrable lattice models, arctic phenomenon, domino tilings, six 
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1. Introduction 

 
1.1. Arctic phenomenon 

Geometrically constrained two-dimensional statistical models are known to display the so- 

called arctic phenomenon in the presence of suitable boundary conditions. This includes ‘free 

fermion’ dimer models, where typically dimers choose a preferred crystalline orientation near 

boundaries while they tend to be disordered (liquid-like) away from the boundaries: the arctic 

phenomenon is the formation of a sharp phase boundary as the domain is scaled by a large 

overall factor, the so-called arctic curve separating frozen crystalline from disordered liquid 

phases. The first observed instance of this phenomenon is the celebrated arctic circle arising 

in the domino tilings of the Aztec diamond [JPS98], and a general theory was developed for 

dimers [KO07, KOS06]. The free fermion character of these models can be visualized in their 

formulation in terms of non-intersecting lattice paths, i.e. families of paths with fixed ends, 

subject to the condition that they share no vertex (i.e. avoid each-other), and can consequently 

be expressed in terms of free lattice fermions. A manifestation of the free fermion models is that 
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their arctic curves are always analytic, and usually algebraic at ‘rational’ values of interaction 

parameters, such as in the uniformly weighted cases. 

Beyond free fermions, the archetypical model for paths allowed to interact by ‘kissing’ i.e. 

sharing a vertex at which they bounce against each-other, is the six vertex (6V) model. The 

families of paths describing the model are called osculating paths. With so-called domain wall 

boundary conditions (DWBC) the 6V model exhibits an arctic phenomenon in its disordered 

phase, which was predicted via non-rigorous methods[CNP11, CP10b], the latest of which 

being the tangent method introduced by Colomo and Sportiello [CS16]. The new feature aris- 

ing from these studies is that the arctic curves are generically no longer analytic, but rather 

piecewise analytic. For instance, the arctic curve for large alternating sign matrices (uniformly 

weighted 6V-DWBC) is made of four pieces of different ellipses as predicted in [CP10b] and 

later proved in [Agg20]. 

The tangent method was validated recently in a number of situations, mostly in free fermion 

situations [CKN21, CPS19, DFG18, DFG19a, DFG19b, DFL18, PR19a]. However, a simple 

transformation using the integrability of the models allowed to deduce from the 6V results 

the arctic curves for another model of osculating paths: the twenty vertex (20V) model with 

DWBC1, 2 [DDFG20]. The 20V model is the triangular lattice version of the 6V model: in 

one formulation the configurations of the model are orientation assignments of all edges of the 

lattice, in such a way that the ice rule is obeyed at each vertex, namely that there be an equal 

number of edges pointing toward and outwards (2 + 2 for 6V, 3 + 3 for 20V). In [DFG18], 

four possible variations around DWBC were considered for the 20V model, denoted DWBC1, 

2, 3, 4. In the present paper, we will concentrate on the 20V-DWBC3 model on a quadrangle, 

which was recently shown to have the same number of configurations as domino tilings of the 

Aztec triangle of suitable size [DF21]. The proof uses again the integrability of the model to 

relate its partition function to that of the 6V model with another type of DWBC, called U-turn, 

considered by Kuperberg in [Kup02], and whose partition function has a nice determinantal 

form [Kup02, Tsu98]. 

In this paper, we set the task of deriving the arctic curves for the U-turn 6V model, and as 

by-products, those of the 20V-DWBC3, and of the domino tiling of the Aztec triangle. 

 
1.2. Arctic curves and the tangent method 

The systems we are considering in this note are all described in terms of osculating or non- 

intersecting paths, and are expected to display an arctic curve phenomenon. The rough idea 

behind the tangent method is as follows. The n paths describing the model’s configurations 

have fixed starting and endpoints, and form a ‘soup’ whose boundary tends to a subset of the 

arctic curve. Indeed, this boundary is a solid/liquid separation between an empty phase and 

one with disordered path configurations. Consider the outermost path forming that boundary: 

if we displace the endpoint of this path to a point say L outside of the original domain, the path 

will have to detach itself from the soup, and continue to its endpoint within a mostly empty 

space, once it gets away from the soup formed by the other paths, where it is most likely to 

follow a geodesic (a line in all cases of this paper, due to a general argument of [DFL18]). This 

geodesic is expected to be tangent to the arctic curve in the large n limit. The corresponding 

path is therefore used as a probe into the arctic curve: the geodesic is determined by the point 

L and the point K at which it exits the original domain1. 

The partition function Σn,L of the new model is now a sum over the possible positions of K 
of the product of two partition functions: (1) Zn,K the partition function of the n osculating/non- 

 
1 Both points K and L scale linearly with the size n so that a thermodynamic limit can be reached. 
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intersecting paths on the original domain, in which the outer path is conditioned to end at point 

K instead of its original endpoint. (2) YK,L the partition function of a single path subject to the 

same weighting, in some empty space from the point K to the new endpoint L. The quantity 

Σn,L =    K Zn,KYK,L is dominated at large n by contributions from the most likely exit point 

K(n, L). The arctic curve is then recovered as the envelope of the family geodesics through L 

and K(n, L) for varying L (in rescaled coordinates). 

We see that the crucial ingredient in this method is the refined partition function Zn,K in 
which the outer path is conditioned to exit the domain at point K, or rather its normalized 

version, the ‘refined one-point function’ Hn,K = Zn,K/Zn where we have divided by the original 
partition function Zn. Computing exactly the leading large n, K, L asymptotics of Hn,K and YK,L 

leads to the determination of K(n, L) by solving a steepest descent problem, and eventually to 

the arctic curve. 

After revisiting the case of the 6V model for pedagogical purposes in section 3, we will apply 

the tangent method in section 4 to the case of the 6V′ model on the (2n 1)   n rectangular 
grid (a simplified version of the U-turn 6V model), in section 5 to the case of the 20V model 
with DWBC3 on the quadrangle n, and finally in section 6 to the domino tilings of the Aztec 
triangle n. Note that the tangent method was previously applied in [PR19a] to a particular 

‘free fermion’ case of the U-turn 6V model, where the arctic curve is a half-circle: the results 

of section 3 extend this to arbitrary values of the parameters. 

 
1.3. Outline of the paper and main results 

The paper is organized as follows. In section 2.1 we define the four models studied in this 
paper. These include: the 6V model with DWBC, the 6V model with U-turn boundary con- 

ditions and the related 6V′ model, the 20V model with DWBC3 of reference [DF21], and 
finally the domino tiling problem of the Aztec triangle introduced and studied in references 

[DF21, DFG18]. We show in particular that all models are described by families of weighted 

osculating/non-intersecting paths. In section 2.2, we describe the tangent method in general 

and how it applies to the determination of the arctic curves of our models. 

The next sections are all organized in a similar way, and treat the various models. For each 

case, we first derive compact relations obeyed by the partition function and one-point function 

of the model, allowing for extracting asymptotic results. The latter are used to apply the tangent 

method, and finally obtain the arctic curves of the model. While section 3 revisits the known 

case of the 6V model with DWBC, as a pedagogical warmup, the remaining sections provide 

new results: section 4 is about the 6V′ model, section 5 the 20V model with DWBC3, and 
section 6 the domino tilings of the Aztec triangle. We obtain arctic curves in all cases: theorems 

3.6, 4.15, 5.3 and 6.2 cover respectively the cases of 6V, 6V′, 20V and domino tilings. 
We gather a few concluding remarks in section 7. 

 
2. Models, paths and the tangent method 

 
2.1. The models 

 
In this paper we consider 4 different models: three vertex models with particular domain-wall 

type boundary conditions (6 vertex on an n × n square grid, 6 vertex with U-turn boundaries on 

a 2n − 1 × n rectangular grid, and 20 vertex on the quadrangle Qn), and one model of domino 

tilings of the Aztec triangle Tn. 

2.1.1. 6V model with DWBC. The 6V model is the archetype of integrable ice-type model on 

the two-dimensional square lattice. Its configurations are obtained by orienting the edges of 
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Figure 1. The 6 vertex environments obeying the ice rule on the square lattice (top) and 
their osculating path reformulation (bottom). We have indicated the corresponding types 
(a)–(c). 

 
 

the lattice (with arrows) in such a way that each vertex has exactly two entering and two out- 

going arrows (the so-called ‘ice rule’). This gives rise to the 4 = 6 local environments of 
figure 1 (top row), traditionally called (a)–(c) types. Here we consider the 6V model on an 
n n square grid with fixed DWBC, i.e. the 2n horizontal boundary arrows (n on the West 

(W) and n on the East (E) boundaries) pointing toward the square domain and the 2n vertical 

ones (n on the North (N) and n on the South (S) boundaries) outwards (see figure 2(a) for an 

illustration). Finally, the configurations are weighted by the product of local vertex weights over 

the domain2, parameterized by real ‘spectral parameters’ u, v attached to the horizontal and 

vertical line that intersect at the vertex, taking the following values in the so-called disordered 

regime, which we consider in this paper: 

a = ρ sin(u − v + η), b = ρ sin(u − v − η), c = ρ sin(2η) (2.1) 

for a, b, c type vertices respectively. The overall fixed factor ρ > 0 emphasizes the projec- 

tive nature of the weights and the homogeneity of the partition function (weighted sum over 

configurations), from which ρn2 
factors out. Positivity of the weights imposes the condition: 

π 
η  < u − v < π − η,    0 < η < 

2 
. (2.2) 

In the following we shall consider the homogeneous partition function Z6V[u, v] 

Z6V[u v] in which all horizontal spectral parameters at taking the value u and all vertical ones 

the value v, so that weights are uniformly defined by (2.1), and where we note that both the 

weights and the partition function only depend on the quantity u v. As stressed in [CP10a], 

the partition function enjoys the following crucial symmetry property: 

Z6V[π − (u − v)] = Z6V[u − v]. (2.3) 

This is a consequence of the reflection symmetry of the weights: indeed, the DWBC are 

unchanged if we reflect the domain w.r.t. say a horizontal line. However, such a reflection 

interchanges vertices of types a b while keeping c-type environments unchanged. The same 

result is independently obtained by keeping the original setting, but applying the transformation 

 
2 We restrict throughout the paper to the disordered regime, in which all weights are trigonometric. 
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Figure 2. (a) A sample configuration of the 6V model with DWBC (for n = 9) and 
(b) its reformulation in terms of osculating paths. 

 
 

(u    v)    π     (u    v) which leaves the domain (2.2) invariant, and under which the weights 

a and b are interchanged, while c remains invariant, and (2.3) follows. 

This model was extensively studied [ICK92, Kor82, Lie67], and turned out to play a crucial 

role in Kuperberg’s proof of the alternating sign matrix (ASM) conjecture [Bre99, Kup96]. The 

enumeration of ASM is realized at the ‘ASM point’ where all weights are equal to 1, namely: 

π π 1 
η = 

6 
, u − v = 

2 
, ρ = 

cos(η) 
(2.4) 

while the weighted enumeration (with a factor τ  per entry 1 in the ASM) is provided by 

picking 

u − v = 
π 

, ρ = 
1
 , τ = 4 sin2(η), 0 < η < 

π
 (2.5) 

namely (a, b, c) = (1, 1, 
√

τ ), with the particular cases of 1, 2, 3-enumeration, for the choices 
η = π , π , π respectively. The ‘20V-DWBC1,2 point’ is another interesting combinatorial 

6   4    3 

point, which corresponds to the identification of the number of 20V DWBC1,2 configurations 

in terms of 6V DWBC [DFG18], with the choice: 

η = 
π 

, u − v = 
5π 

, ρ = 
√

2 (2.6) 

corresponding to weights (a, b, c) = (1, 
√

2, 1). 

More recently the thermodynamic free energy of the model was obtained in [BF06, KZJ00, 

ZJ00], and the arctic curves were derived using various semi-rigorous methods, such as the 

tangent method in [CPS19, CS16], and further used in [DDFG20] to determine the arctic curves 

of the 20V DWBC1,2 models. 

The configurations of the model can be rephrased in terms of families of osculating paths as  

follows. Pick a base orientation of arrows, say to the left and down, and mark all the edges of any 

given configurations that respect the base orientation. Note that all the W and S boundary edges  

are marked, while the N and E ones are not. The marked edges can be combined into paths say 
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Figure 3. (a) U-turn boundary 6V model: each U-turn (marked by a black dot along the 
W boundary) transmits the arrow orientation through the dot. (b) When all ui = θ   η, 
the weights yd = 0, hence all arrows go up through the U-turns, which may be cut out as 

shown. The bottom row becomes trivially fixed to the same b-type vertex. (c) The 6V′ 
model is finally obtained by cutting out the trivial b-type vertices. 

 

 
starting at the W boundary and ending at the S one, with right and down steps only, that are non- 

intersecting but may kiss/osculate by pairs at fully marked vertices: the corresponding six local 

configurations are depicted on the second row of figure 1. The osculating path formulation is 

well adapted to the tangent method as we shall see below. For illustration, we have represented 

in figure 2 a sample 6V DWBC configuration both in the arrow (a) and osculating path (b) 

formulations. 

 
2.1.2. 6V model with U-turn boundary and 6V′ model. Kuperberg considered different sym- 

metry classes of ASM, which in turn correspond to different variations around the 6V-DWBC 
model [Kup02]. In particular he found a remarkable connection between vertically symmetric 

ASMs (VSASM) and the 6V model with so-called U-turn boundary conditions (6V-U), also 

considered independently by Tsuchiya [Tsu98]. The 6V-U model is defined on a rectangular 

grid of square lattice of size 2n n with the usual DWBC along the N, S boundaries (each 

with n outgoing vertical arrows) and E boundary (with 2n entering horizontal arrows), while 

the W boundary has U-turns connecting the 2n horizontal boundary edges (which we label 

0, 1, 2, . . .  , 2n 1 from bottom to top) by n consecutive pairs (2i, 2i + 1), i = 0, 1, 2, . . .  , n 1 
(see figure 3(a) for an illustration). Each U-turn transmits the arrow orientation through the 
marked dot. The horizontal lines connected by a U-turn receive horizontal spectral parameters 

ui (even label 2i) and ui (odd label 2i + 1), while vertical spectral parameters are denoted 

by vi, i = 1, 2, . . .  , n from left to right. As before, we consider the disordered regime, with 
trigonometric weights depending on horizontal and vertical spectral parameters as in the case 

of the 6V-DWBC model. The local weights, say at the intersection of a horizontal line with 

spectral parameter u and vertical line with spectral parameter v are: 

 

ao = ρo sin(u − v + η), bo = ρo sin(u − v − η), co = ρo sin(2η) (2.7) 
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on odd rows, while we must apply the transformation u → −u on even rows, resulting in: 

ae = ρe sin(η − u − v), be = ρe sin(−u − v − η), ce = ρe sin(2η) (2.8) 

and where the overall constant factors ρo, ρe > 0 emphasize the projective character of the 

weights. Finally, U-turns receive weights: 

yu(u) = − sin(u − θ + η) yd(u) = sin(u + θ + η) (2.9) 

according to whether the transmitted arrow goes up or down. We must further constrain u, v, θ 
so that the weights of configurations of the 6V-U model are positive. A natural choice is 

0 < θ < π and the following domain for the u, v, η parameters: 
 

π 
η  < u − v < π − η, η − π  < u + v < −η, 0 < η < 

2 
. (2.10) 

For the purpose of this paper, we will consider the uniform case, where all horizontal odd 

spectral parameters are equal with value ui = u for all i, and all vertical ones are equal, with 

value v j = v for all j, so that weights of odd/even rows are given by (2.7) and (2.8) respectively. 

Moreover, we pick θ = u   η, thus enforcing that at each U-turn the arrows go up3. Divid- 
ing each U-turn into two horizontal edges, we now obtain arrows that alternate in/out along 

the W boundary (as shown in figure 3(b)). Note that the bottom row of vertices has all its edge 

orientations fixed by the ice rule. Upon dividing by the corresponding product of local even 

b-type weights, we may safely remove the n vertices of the bottom line. After dividing by the 

weights of the removed vertices and U-turns, we are left with the 6V model on a rectangular 

grid of square lattice with size 2n 1   n, and with usual DWBC along the N, E, S bound- 

aries, while arrows alternate in/out from bottom to top along the W boundary (as depicted in 

figure 3(c)). Note that the rows are now labeled 1, 2, ... , 2n    1 from bottom to top. By lack 

of a better name, we shall refer to this model as the 6V′ model, and denote by Z6V′ 
[u, v] the 

corresponding homogeneous partition function. Similarly to the 6V-DWBC case, this partition 
function enjoys a reflection symmetry property: 

Z6V
′ 
[−u, −π − v] = Z6V

′ 
[u, v]. (2.11) 

 

Indeed, like in the 6V case, applying a reflection w.r.t. a horizontal line to the rectangu- 

lar domain interchanges vertices of type ao bo and ae be while c-type vertices are 

unchanged. The same result is obtained in the original setting by applying the transformation 

(u, v) ( u, π v), which leaves the domain (2.10) invariant, and (2.11) follows. 

We now examine a few ‘combinatorial points’ in parameter space, where the partition 

function of the 6V′ model has some known combinatorial interpretations. Similarly to the 6V- 

DWBC case, the enumeration of VSASM is realized [Kup02] at the ‘VSASM point’ of the 6V′ 
model, where all weights are equal to 1, namely: 

 

π π 1 
η = 

6 
, u = 0, v = − 

2 
, ρo = ρe = 

cos(η) 
(2.12) 

3 This choice simplifies the model by fixing the orientations of all arrows along the W boundary. However, we argue 
that the thermodynamics of the model are insensitive to that choice. For instance, the thermodynamic free energy, a 
bulk quantity, is independent of the choice of θ (see remark 4.2 below). So is the one-point function (see remark 4.12 

below). As a consequence, the arctic curves of the U-turn 6V and of the 6V′ models are expected to be identical. 
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Figure 4. (a) A sample configuration of the 6V′ model (for n = 5) and (b) its reformu- 
lation in terms of osculating paths. 

 
 

 

 

 

 

Figure 5. The twenty vertex environments obeying the ice rule on the triangular lattice 
(top two rows) together with their osculating Schröder path reformulation (bottom two 
rows). 

 

while the refined enumeration corresponds to [Kup02]: 

u = 0, v = − 
π 

, ρo = ρe = 
1
 

 

 

, τ = 4 sin2(η) (2.13) 

with even and odd weights (ai, bi, ci) = (1, 1, 
√

τ ), with the particular cases of 1, 2, 3- 
enumeration of VSASM corresponding respectively to η = π , π , π . The ‘20V-DWBC3 point’ 

6   4    3 

is another interesting combinatorial point, which corresponds to the identification of the 
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Figure 6. (a) A sample configuration of the 20V model with DWBC3 on the quadrangle 

Qn (with n = 9 here) and (b) its osculating Schröder path reformulation. 

number of 20V DWBC3 configurations on Qn in terms of 6V′ DWBC [DF21], with the choice: 

η = 
π 

, u = 
π 

, v = − 
π 

, ρo = ρe = 
√

2. (2.14) 

Like in the 6V-DWBC case, the configurations of the model may be rephrased in terms of 

osculating paths. Using the same recipe, we see that configurations are in bijection with families  

of n osculating paths, starting at odd horizontal edges along the W boundary, and ending at all 

vertical edges along the S boundary. For illustration, we have represented in figure 4 a sample 

6V′ configuration both in the arrow (a) and osculating path (b) formulations. 

The U-turn 6V/6V′ model thermodynamic free energy was derived in reference [RK15], 
boundary correlations were studied in [PR19b], and arctic curves were derived in the 

VSASM case [DFL18] and in the particular free fermion case corresponding to η = π , u = 0, 

v = − π [PR19a]. 

2.1.3. 20V model with DWBC3. The 20V model is a two-dimensional ice-type model defined 

on the triangular lattice. As in the 6V case, edges are oriented in such a way that at each vertex 
6 
3 

local vertex configurations depicted in figure 5. Recently this model was considered with 

special boundary conditions [DFG18] emulating DWBC on some particular domains. For sim- 

plicity, the triangular lattice is represented with vertices in Z2, and edges of the square lattice 

are supplemented by the second diagonal of each square face. Edges are accordingly called 
horizontal, vertical and diagonal. 

In reference [DFG18], four types of boundary conditions (DWBC1, 2, 3, 4) were considered 

on an n × n square grid in this representation, with remarkable combinatorial properties. The 
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Figure 7. The seven classes of vertices of the 20V model (in osculating Schröder path 

formulation), and their corresponding weights ωi, i = 0, 1, 2, . .  . , 6. 

 
 

 

 

Figure 8. (a) A sample domino tiling of the Aztec triangle   n (here for n = 6) and 
(b) its non-intersecting Schröder path formulation. The dictionary for the path steps (hor- 
izontal, vertical, empty, diagonal) is indicated for each of the four (bicolored) domino 
configurations. 

 

DWBC1, 2 are closest to the 6V-DWBC, and correspond to arrows entering the domain on the 

W and E boundaries, and exiting on the N and S boundaries, with a particular choice of the NW 

and SE corner diagonal edges as belonging to the W and S boundaries respectively (DWBC1) 

or to the N and E (DWBC2). The DWBC3 is a more relaxed version of DWBC, where only the 

horizontal arrows point toward the domain on the W boundary, and only vertical arrows point 

outward on the S boundary, while all other arrows point outward on W and N, and inward 

on S and E. In [DFG18], a family of pentagonal extensions of the grid was considered, and 

the corresponding 20V configurations were conjectured to correspond to the domino tilings 

of special domains, viewed as truncations of the Aztec triangle. The conjecture was proved in 

[DF21] for the maximal extension, namely the 20V model with DWBC3 on the quadrangle 

n of shape n n (2n 1) n (see figure 6(a) for an illustration), whose partition function 

was shown to be identical to that of domino tilings of the Aztec triangle n (see figure 8(a)). 

In the present paper, we shall concentrate on this model. 

Like in the 6V case, we may rephrase the arrow configurations of the 20V model in terms 

of osculating paths with horizontal, vertical and diagonal steps along the corresponding edges 

of the lattice (these are usually called Schröder paths). This is done similarly by picking a 

base orientation (right, down, and diagonal down and right) of all the edges of the lattice, and 

marking only those edges of a given configuration of the 20V model that agree with it. The 

selected edges are assembled again into non-intersecting, but possibly kissing paths traveling 

to the right and down. We have represented in figure 5 (bottom two rows) the 20 local path 

configurations at a vertex corresponding to the 20 arrow configurations (top two rows). In the 
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osculating Schröder path formulation, the DWBC3 on n gives rise to families of n osculating 

paths starting at the n odd horizontal edges along the W boundary, and ending at the n vertical 

edges of the diagonal SW boundary, as displayed in figure 6(b). 

As detailed in [DFG18, Kel74], the model receives integrable weights inherited from those 

of the 6V model upon resolving the triple intersections of spectral parameter lines at each 

vertex into three simple intersections corresponding to three 6V models on three distinct lat- 

tices. Integrability was used in [DF21] to transform the partition function of the 20V DWBC3 

model into that of a 6V′ model, for a particular normalization of spectral parameters of the 20V 
model. With this normalization, the seven local vertex weights corresponding to the dictionary 
of figure 7 read respectively: 

ω0 = ν sin(u − v + η) sin(η − u − v) sin(2u + 2η) 

ω1 = ν sin(u − v − η) sin(−u − v − η) sin(2u + 2η) 

ω2 = ν sin(u − v − η) sin(2u + 2η) sin(2η) 

ω3 = ν {sin3(2η) + sin(u − v + η) sin(−u − v − η) sin(2u)}, (2.15) 

ω4 = ν sin(2u + 2η) sin(η − u − v) sin(2η) 

ω5 = ν sin(u − v − η) sin(η − u − v) sin(2η) 

ω6 = ν sin(u − v − η) sin(η − u − v) sin(2u) 

where again the fixed overall factor ν  > 0 emphasises the projective nature of the weights. Note 
that each vertex is the intersection of three lines (horizontal, vertical, diagonal) each of which 

carries a spectral parameter (η + u, v, u respectively). The domain of parameters ensuring 
positivity of the weights is: 

0 < u < 
π 

− η η < u − v < π − η η < −u − v < π − η 0 < η < 
π 

. (2.16) 

(Note the similarity with the domain (2.10) for the 6V′ model, the only extra condition being 
that u > 0). 

Note the existence of a combinatorial point where the weights are uniform and all equal 

to 1: 

η = 
π 

, u = 
π 

, v = −4η = − 
π 

, ν = 
√

2. (2.17) 

identical to the 20V-DWBC3 point of the 6V′ model, where the partition functions of both 
models are related [DF21]. 

2.1.4. Domino tilings of the Aztec triangle. Our fourth class of objects is the tiling configura- 

tions by means of 2 1 dominos of the ‘Aztec triangle’ of order n [DF21, DFG18], denoted 

n, depicted in figure 8(a). The identity between the number of 20V-DWBC3 configurations on 

n and the number of domino tilings of the Aztec triangle n was conjectured in [DFG18] and 

proved in [DF21]. In section 6 below, we will make use of this correspondence to determine 

the limit shape of typical domino tilings of n for large n. 

It proves useful to rephrase the domino tiling problem in terms of non-intersecting lattice 

paths, as indicated in figure 8(b), where the indicated dictionary between bi-colored dominos 

and path steps has been used to reexpress bijectively the tiling configuration into a family 

of non-intersecting lattice paths with fixed ends on the diagonal NW and S boundaries of 

the domain. As indicated, the paths may have horizontal, vertical and diagonal steps and are 

therefore non-intersecting Schröder paths. 
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Figure 9. Application of the tangent method to determine the NE branch of the arctic 

curve, illustrated for the four models studied in this paper: 6V-DWBC (top left), 6V′ 
(bottom left), 20V-DWBC3 (top right) and domino tilings of the Aztec triangle (bottom 
right). In all cases, the endpoint of the topmost path is displaced from its original position 
(white dot) to the right, at some distance l (red dot). The partition function splits into the 
modified partition function of the model Zn,k with exit point at position k (pink domain) 

and that, Yk,l, of a single path from the exit point to the displaced endpoint with the 
same ambient weights (light blue domain). The tangent method uses the most likely 
position k = k(l) namely the one giving the largest contribution to the total partition 
function. The relevant portion of arctic curve is given by the envelope of the family of 
lines through (l, 0) and (0, k(l)) (the green and red points), in rescaled coordinates with 
the origin at the SE corner of the original domain. All dimensions are expressed in units 
of the underlying lattice grid. 

 

 
2.2. Tangent method: combining one-point functions and paths 

This section details how the tangent method of [CS16] works and how we are going to apply 

it to the four models studied in this paper: the 6V-DWBC, 6V′, 20V-DWBC3 and finally the 
domino tiling of the Aztec triangle, all expressed in the (possibly osculating) path formulation. 

 

2.2.1. The tangent method. As explained in the introduction, the tangent method consists in 
finding the most likely exit point from the original domain of the topmost path, given that its 
end has been displaced away from the domain. To determine this point, we consider the full 

partition function Σn,l of the model, which is made of two pieces (corresponding respectively 
to the pink and light blue domains in figure 9): 

The modified partition function Zn,k for the set of n weighted paths in the original domain, 

with the (topmost) nth path constrained to exit the domain along the E border at a 
fixed height k (green dot in figure 9), normalized into the ‘refined one-point function’ 

Hn,k = Zn,k/Zn. 

• 
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The partition function Yk,l  of a single weighted path constrained to start at the previous 

exit point and end at a fixed endpoint (displaced at distance l from its original position, 

second green dot in figure 9). 

The full partition function reads: Σn,l = 
Σμn   

Hn,k Yk,l, where μ = 1 for the 6V-DWBC and 

the domino tiling models, and μ = 2 in the other models. Note that all weights (including those 
of the single path) are those of the underlying vertex model; in particular, the vertices not visited 
by the single path (in the light blue zones of figure 9) receive the weight of the empty vertex 

configuration. 

Next we go to the large n = N scaling limit and use large N estimates of both partition 

functions to find the leading contribution to the sum in Σn,l. More precisely, setting n = N, 

l = λN, the limiting solution of the saddle-point approximation to the sum, in the form of 

some function κ(λ) where k(l) = μNκ(λ) is the most likely position of the exit point. The 
(rescaled) arctic curve is then obtained as the envelope of the family of lines through the most 

likely exit point and the fixed endpoint, both functions of the parameter λ. More precisely, we 

must estimate the large N behavior of the total partition function Σn,l: 

∫ 1 

where we have replaced the summation by an integral over the rescaled variable 

κ = k/(μN). In sections 3–6 below, we work out the explicit asymptotics of both functions in 
the integrand, in the form HN,μκN     eNSH(κ) and YμκN,λN      eNSY (κ). The leading contribution to 

the integral comes from the solution κ = κ(λ) to the saddle-point equation ∂κSH + ∂κSY = 0. 
This gives the most likely exit point (0, μκ(λ)) (in rescaled variables). The tangent line in 
rescaled variables is the line through (0, μκ(λ)) and (λ, 0), with equation 

y + Ax     B = 0,         A = 
μκ(λ) 

,    B = μκ(λ). (2.18) 
λ 

As we shall see, the family of tangent lines is best described in terms of the parame- 

ter ξ (the deviation from uniform vertical spectral parameter in the last (E-most) column 

vn = v + ξ). In particular the relationship between λ and κ(λ) takes the parametric form: 

(κ(λ), λ) = (κ[ξ], λ[ξ]), for ξ ∈ I, I an interval determined by the conditions that λ[ξ] > 0 

and κ[ξ] ∈ [0, 1]. The envelope of the family of lines 

Fξ(x, y) := y + A[ξ]x − B[ξ] = 0 (2.19) 

is determined as the solution of the linear system Fξ(x, y) = ∂ξF(x, y) = 0, and gives rise to 
the parametric equations for the arctic curve: 

x = X[ξ] := 
B′[ξ] 

,        y = Y[ξ] := B[ξ] −
 A[ξ] 

B′[ξ],    (ξ ∈ I). (2.20) 
 

A′[ξ] A′[ξ] 

By the geometry of the problem, only a portion of the arctic curve can be obtained in this 

way: moving the exit point to the right along the line through all other exit points covers a por- 

tion of arctic curve between a point of tangency to the E vertical border of the original domain 

(when the endpoint tends to its original position) and a point of tangency to the horizontal 

N border of the domain (when the endpoint tends to infinity on the right along the line), or 

equivalently corresponding to the slope A[ξ] [0, ). This condition was used to restrict the 

domain of the variable ξ I. This portion of arctic curve is on the NE corner of the domain, 

and we shall refer to it as the NE branch of the arctic curve. 

• 
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Figure 10. From NE to SE branch in the 6V′ model: (a) configuration of the 6V′ model 
(b) after application of the VF (c) after application of the reflection (R), leading to another 

6V′ configuration, with weights of ai and bi types interchanged for i = e, o. 

 

 
The case of the domino tiling of the Aztec triangle is simpler: as a (free fermion) dimer 

model, it is expected on general grounds [KOS06] to have an analytic arctic curve, equal to 

the analytic continuation of its NE branch. As we shall see, the cases of 6V-DWBC, 6V′ and 
20V-DWBC3 are more involved, and lead in general to non-analytic arctic curves. 

 
2.2.2. Other branches. To reach other portions of the arctic curve, we will have to resort to 

various tricks, all based on the same principle: we switch to a different interpretation of the 

configurations of the original model, to express them in terms of different families of paths, to 

which the tangent method can be applied again. 

2.2.2.1. 6V-DWBC and 6V′ cases.In the case of the 6V-DWBC/6V′ model arctic curves, we 
have access to the SE branch by reinterpreting the 6V configurations in terms of paths with 
the same starting points (every point/every other point along the W vertical border) but with 

endpoints along the N border (see figures 10(a) and (b) for an illustration in the 6V′ case). This 
corresponds to redefining the base orientation of edges (and direction of travel of the paths) to 

be to the right and up: we call this transformation on the paths vertical flip (VF). The osculation 

at each vertex must be redefined so that all paths now go horizontally right and vertically up. 

The SE branch of the arctic curve is obtained by applying the tangent method to this new family 

of paths. The easiest way to do so is to reflect the picture w.r.t. a horizontal line, so that the 

setting is that of the 6V′ model again: we call this transformation reflection (R) as shown in 
figure 10(c). The net effect of the composition of VF followed by R on the model is simply to 

interchange the a and b type weights, a transformation also implemented by the involution ∗ 
acting on the spectral parameters as follows: 

 
u → u∗ = π − u (6V − DWBC) (2.21) 

(u, v) → (u∗ = −u, v∗ = −π − v) (6V′). (2.22) 
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Figure 11. The shear trick: (a) configuration of the 20V-DWBC3 (b) after application of 
the VF (c) after application of the reflection (R) (d) after the shear transformation (S). 

 
 

This  gives  rise4  to  the  new  weights  a∗ = b, b∗ = a, c∗ = c  (6V-DWBC)  or  a∗
i   = bi, 

b∗
i   = ai, ci

∗  = ci, i = o, e (6V′). 

The ‘upside-down’ one-point function must also be reinterpreted as Hn,k = Hn
∗
,μn   k  where 

the latter is computed with the new transformed weights. Similarly, the path partition func- 

tion Yk,l with starting point (0, k) and endpoint (l, 0) is reinterpreted as the partition function 

Yμ
∗
n   k,l   with  the  new  weights.  More  precisely  setting  the  origin  of  the  rescaled  domain  at 

the SE corner of the domain, the vertices of the rescaled domain are: SE:(0,0), NE:(0,μ), 

NW:(   1,μ), SW:(   1,0). The large n = N optimization problem leading to the most likely 

exit point (0, μκ(λ)) leads now to the most likely exit point (0, μ(1 κ∗(λ))) and the associ- 
ated family of rescaled lines. The SE branch of arctic curve is obtained by reflecting back the 

envelope of this family, and effectively amounts to applying ∗ to the NE branch and reflecting 

it w.r.t. the line y = μ/2, namely applying the transformation 

(x, y) →› (x, μ − y) (2.23) 

with μ = 1 for the 6V-DWBC model, and μ = 2 for the 6V′ model. 

2.2.2.2. 20V-DWBC3 case In the case of the 20V-DWBC3 model illustrated in figure 11(a), 
the same idea leading to the SE branch must be adapted (by adapting the ‘shear trick’ devised 

in reference [DDFG20]). More precisely, as in the 6V-DWBC and 6V′ cases, we first redefine 
the base edge orientation so that horizontal/diagonal edges point right/down, but vertical edges 

point up. Alternatively, compared to the original base orientation, this simply interchanges ver- 
tical edges which are occupied by path steps with vertical edges which are empty and vice versa 

(like in the 6V, 6V′ cases, we call this VF = VP, see figure 11(b)). The osculation at each vertex 
must be redefined so that all paths now go horizontally right, diagonally down and vertically 

up: in particular the paths now end on the n vertical edges of the N boundary (see figure 11(b)). 
To match this with a 20V configuration of n, we must reflect the configuration w.r.t. a hor- 

izontal line (we call this again R = reflection, see figure 11(c)). However, the quadrangular 
domain  n is not invariant under horizontal reflection: to recover it, we apply a shear transfor- 

mation as indicated in figure 11(d) (we call this S = shear). More precisely setting the origin 

 
4 Here and in the following the superscript ∗ indicates that the corresponding quantity is obtained by changing u → u∗ 

(6V-DWBC) or (u, v) → (u∗, v∗) (6V′). 
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→ − → − 
Q − − 
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›→ − − 
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n 

− 

 

of the rescaled domain at the SE corner of the domain, the vertices of the rescaled quadran- 

gle N/N are: SE:(0,0), NE:(0,2), NW:( 1,2), SW:( 1,1). Applying successively (in rescaled 

variables (x, y)) the reflection (x, y)   (x,  y), shear (x, y)   (x, y   x), and finally translation 

by (0, 2) leaves the domain invariant, but effectively flips the orientation of the vertical edges in 

the 20V-DWBC3 configuration. Note that the final configuration after application of VF, R, S 

(figure 11(d)) is slightly different from a 20V-DWBC3 configuration, as all the starting steps 

along the W boundary are diagonal, as opposed to horizontal. This clearly makes no difference 

in the case of uniform weights, however for non-uniform weights this changes the weights 

along the W boundary. We argue nonetheless that this mild boundary effect does not affect the 

asymptotic behavior of bulk quantities as all other weights are the same in both situations. In 

particular, we expect the arctic curve to be the same in the original 20V-DWBC3 model with 

horizontal starting steps along the W boundary, and in the modified one, where all starting 

steps are diagonal. 

Let us now examine the fate of the local vertex environments of figure 7 under the sequence 

of transformations VF, R, S. It is easy to see that under this transformation the types of vertices 

are mapped as follows: ω0   ω1, ω2   ω4, while all other types are preserved. For illustration, 

the top left vertex of type ω2 of figure 7 is successively transformed into the top left vertex of 

type ω4 as follows: 

 

 
We finally note that the involution ∗ which maps the weights (ω0, ω1, ω2, ω3, ω4, ω5, ω6) 
(ω1, ω0, ω4, ω3, ω2, ω5, ω6) is simply given by 

 

(u, v) ›→ (u∗, v∗) = (u, −v − π) (20V − DWBC3). (2.24) 

As before, we have to reinterpret Hn,k = Hn
∗
,2n   k  and Yk,l = Y2

∗
n   k,l  leading to the most likely 

exit point 2N(1    κ∗(λ)) in rescaled variables κ = k/(2N) and λ = l/N. The SE branch is 
finally obtained by applying the reflection/shear/translation (x, y)   (x,2  x   y) to the NE 

one after applying ∗, namely changing v v π. 

This gives access to the SE branch in all 6V-DWBC, 6V′ and 20V-DWBC3 cases. Except in 
the free fermion cases, where arctic curves are expected to be analytic, we have no prediction 

for other portions of arctic curve when they exist. 

 

3. 6V model 
 

3.1. Partition function and one-point function 

3.1.1. Inhomogeneous partition function. A general result [ICK92] provides a determinant 
formula for the partition function Z6V[u, v] of the inhomogeneous 6V-DWBC model, with 

horizontal/vertical spectral parameters u = u1, u2, . . .  , un/v = v1, v2, . . .  , vn. 

 

Theorem 3.1. Let 

m(u, v) := m(u v) := 
1 

. 
sin(u − v + η) sin(u − v − η) 

→› 
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n 

n 

  

u 

a 

a1,a2 

u 

n 

      i, j=1 
. (3.1) n 

1≤i, j≤n 
i j 

 
1≤i< j≤n 

n u1,u2,...,un→u 
v1,v2 ,...,vn→v 1≤i< j≤n (ui − u j)(vj − vi) 

n−1(i!)2
 

n 

sin (2η) 

 

The full inhomogeneous 6V-DWBC partition function reads: 

2 n 
 

   
sin(ui − v j + η) sin(ui − v j − η) 

 
 

3.1.2. Homogeneous limit. The homogeneous limit Z6V[u − v] of the inhomogeneous parti- 

tion function Z6V[u, v] in which ui → u and vi → v for all i involves the quantity 

Δ [u − v] := lim   
det1≤i, j≤n 

 
m(ui, vj)

 

= : 
1 

 
D [u − v]. (3.2) 

Using Taylor expansion of rows and columns leads to the determinant 

Dn[u] = det 
0≤i, j≤n−1 

 
∂i+ jm(u)

  
. 

This determinant obeys a simple quadratic relation as a consequence of 

Plücker/Desnanot–Jacobi relations (up to some permutation of rows and columns) relating a 

determinant to some of its minors of size 1 and 2 less, summarized in the following lemma. 

 
Lemma 3.2. Given an n + 1 × n + 1 square matrix M, its determinant |M| and minors |M|b

 

(with row a and column b removed), and |M|b1,b2 (with rows a1, a2 and columns b1, b2 removed 
are related via: 

 
n,n+1 

 
n n+1 n 

 
n+1 

|M|× |M|n,n+1 = |M|n × |M|n+1 − |M|n+1 × |M|n . 

Applying this to the matrix M =
 

∂i+ jm(u)
 

0≤i, j≤n
, we easily get 

Dn+1[u]Dn−1[u] = Dn[u]∂2Dn[u] − (∂uDn[u])2 = Dn[u]2∂2 log(Dn[u]). 
u u 

 

As a direct consequence, we have 

 

Theorem 3.3. The quantity Δn[u] obeys the following recursion relation for all n ≥ 1: 
Δn+1[u]Δn−1[u] 

= 
1 

∂2 log(Δn[u]) (3.3) 
 

Δn[u]2
 n2   u 

with the convention that Δ0[u] = 1. 

Note that this relation determines Δn[u] recursively, from the initial data Δ0[u] = 1 and 

Δ1[u] = m[u]. Finally the homogeneous partition function Z6V[u, v] is expressed as 

Z6V[u − v] 2 
 

n     
n = Δn[u − v](ρ sin(u − v + η) sin(u − v − η))n . (3.4) 

 

 
3.1.3. One-point function.   We now consider a slightly more general limit, in which we take 

u1, u2, . . .  , un → u and v1, v2, . . .  , vn−1 → v but the last vertical spectral parameter is kept 

i=1 

sin(ui − u j) sin(v j − vi) 
m(u , v ) sinn(η) det Z6V[u, v] = ρn 
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n 

n 

v 
→ 

— − 

i=1 

n 

n 

    

n 
u1,u2,...,un   u 

1,v2,...,vn−1→v 
vn→v+ξ 

u 
0≤ j≤n−2 

u 

 

arbitrary, say vn = w = v + ξ. The corresponding partition function Z6V[u − v; ξ] is again 

obtained as a limit of the inhomogeneous formula (3.1). We have 

Z6V[u − v; ξ] 
 n 

sinn(2η) = Δn[u − v; ξ] (ρ sin(u − v + η) sin(u − v − η))n(n−1) 

× (ρ sin(u − v − ξ + η) sin(u − v − ξ − η)) (3.5) 

in terms of a function 

 

Δ [u − v; ξ] := lim 
det1≤i, j≤n  

  

m(ui − vj)
 

 
 

 

 
 

 
 

 
where 

(   1)n−1 (n 1)! 

=: 
sinn−1(ξ) 

 n−1
(i!)2 

Dn[u − v; ξ], 

Dn[u; ξ] = det 

  

{∂i+ jm(u)} 0≤i≤n−1 . {∂
i m(u − ξ)}0≤i≤n−1

 

(3.6) 

 

identical to Dn[u] except for its last column. 

We define the ‘one-point function’ as the ratio 

 
H6V[u; ξ] := Z

6V[u; ξ] = 
 

 

 

Δn[u; ξ]
  

sin(u − ξ + η) sin(u − ξ − η) 
 n

 

n Z6V[u] Δn[u] sin(u + η) sin(u − η) 

Applying again lemma 3.2 this time with the matrix M in the expression (3.6) for Dn+1[u; ξ], 

we find that 
 

Dn+1[u; ξ]Dn−1[u] = Dn[u]∂uDn[u; ξ] − Dn[u; ξ]∂uDn[u]. (3.7) 

We also introduce the reduced one-point function 

Hn[u; ξ] := (−1)n−1 (n − 1)! 
Dn[u; ξ] 

= sinn−1(ξ) 
Δn[u; ξ]

 (3.8) 

 

in terms of which 

Dn[u] Δn[u] 

 

H6V[u; ξ] = sin(ξ)Hn[u; ξ] 
sin(u − ξ + η) sin(u − ξ − η) n 

sin(u + η) sin(u − η) sin(ξ) 

 
. (3.9) 

The reduced one-point function is determined by the following relation, as a direct 

consequence of (3.7). 

 

Theorem 3.4. The reduced one-point function Hn[u; ξ] of the 6V-DWBC model satisfies the 

following relation: 

Hn+1[u; ξ] Δn+1[u]Δn−1[u] 1 
Hn[u; ξ] 

Δ [u]2 
+ 

n
∂u log(Hn[u; ξ]) = 0. (3.10) 

n 

1≤i< j≤n 

n 

sin(ui − u j) sin(v j − vi) 

. 
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N 

u 

→ 

→ − 

−i 
 j 

n 
   1≤i, j≤n i j    +xi − j                

N→∞ N2 . ϵ→ 

 

3.2. Large n limit: free energy and one-point function asymptotics 

In the following sections, we use the fact that the 6V weights depend on the quantity u v 

only. Without loss of generality we shall set v = 0 from now on. 

3.2.1. Free energy. In this section, we reproduce an argument of [CP10a, KZJ00] leading to 

the large n asymptotics of the partition function of the 6V-DWBC model. 

The free energy per site f 6V[u] of the 6V-DWBC model is defined via the large n = N limit 

f 6V[u] = − lim
 1 

log(Z6V[u]) 

N→∞ N2 N
 

or equivalently as the leading asymptotics Z6V[u]  
 

N→∞ e−N2 f 6V[u]. Substituting this into (3.4), 

we get:  
f 6V[u] = f [u] − log (ρ sin(u + η) sin(u − η)) (3.11) 

in terms of the limit 

1 
f [u] := − lim log(ΔN[u]). 

 

N→∞ N2
 

Finally, substituting the large N asymptotics ΔN 

 
[u]  

 
N→∞ 

 
e−N2 f [u] into (3.3) yields the follow- 

ing differential equation (1D Liouville equation) 

e−2 f [u] + ∂2 f [u] = 0. 

To fix the solution, let us derive some symmetry and some limit of ΔN[u]. 

First note that the reflection symmetry u π u from (2.3), together with the relation 

(3.11) imply that 

f [π − u] = f [u]. 

Next let us consider the limit u η of Δn[u]. Setting u = η + ϵ, we may perform the homo- 
geneous limit (3.2) by setting ui = u + ϵxi, vi = ϵyi (recall we have set v = 0) and taking all 

xi, yi → 0. We have for small ϵ 

m(u v ) =
 1 

+ O(1). 
ϵ sin(2η)(1 + xi − y j) 

Using the Cauchy determinant formula, we find that 

 
det (m(u − v )) 

 
    

1 det
  

1
 

 

  

1  

y  

  

 

  

1 1 1 
 

 
 

   (u − u )(v 
— v ) 

 ϵ→0 
ϵn2  
  

(x − x )(y — y ) 
= 

ϵn2
 1 + x 

— 
y 

→ xi→0 
ϵn2 . 

We deduce that 

  

lim −
 1 

log(ΔN[η + ϵ])

 

. log(ϵ) ⇒ f [η + ϵ]| 0  log(ϵ). 

 

Defining W[u] := e f [u], we find that W satisfies the following conditions: 

ϵ→0 

y j→0 j i 
i, j=1 

i j j i i< j i j j i 

1≤i< j≤n 
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u 
u ∂uW[u]    ∂2W[u] 

W[u]∂2W[u] − (∂uW[u])2 = . 
W[u] ∂uW[u]

. = 1 
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α 

− 

   

−

 

u − 

N 

  

 

W[π − u] = W[u], W[η] = 0. 

The constant Wronskian condition implies that W[u] obeys a second order linear differential 

equation, with general solution of the form W[u] = sin(αu+β) . The parameter β is fixed by the 

vanishing condition W[η] = 0, and α by the symmetry condition W[π u] = W[u]. We find 
the solution 

W[u] = 
sin(α(u − η)) 

, (3.12) 
α 

where α(π − u − η) = π − α(u − η), and finally 

f [u] = log

  
sin(α(u − η))

  

, α =
    π 

. (3.13) 

α π − 2η 

Substituting this into (3.11), we finally get the thermodynamic free energy of the 6V-DWBC 

model in the disordered regime: 

f 6V[u] = log 
αρ sin(u + η) sin(u − η) 

(3.14) 
sin(α(u − η)) 

with α as in (3.13). 

3.2.2. One-point function. We present now a simplified version of the argument given in 
[CP10a] to derive the asymptotics of the one-point function Hn[u; ξ]. By equation (3.10) we 

may infer the large n = N leading behavior of Hn[u; ξ] to be: 

HN[u; ξ]    N→∞e−Nψ[u;ξ]. (3.15) 

Substituting this into (3.10) yields the differential equation: 

e−ψ[u;ξ]−2 f [u] − ∂uψ[u; ξ] = 0 ⇒ ∂u e
ψ[u;ξ] = e−2 f [u]. 

Using the result (3.13) for f [u], this is easily integrated into 

eψ[u;ξ] = c[ξ] − α cot(α(u − η)) 

for some integration constant c[ξ] independent of u, and α as in (3.13). To fix the integration 

constant, let us consider the limit when u − ξ − η → 0, by setting ξ = u − η + ϵ for a small 

ϵ → 0. Noting that 

 
∂i m[u − ξ]

}
. 
 

ξ=u−η+ϵ 
= 

   i! 
+ O(ϵ−i) 

sin(2η) ϵi+1
 

we see that the determinant for DN[u; ξ] (3.6) is dominated by the term in the last row and 

column i = j = N − 1, resulting in the leading behavior 

DN[u; ξ]      DN−1[u]  W2N 
 

 

D [u]    
   −(N − 1)! 

sin(2η)ϵN D [u] 
 (N − 1)! 

ϵN
 

⇒ HN[u; u − η + ϵ]   ϵ→0 
W2 N 

, 
ϵ sin(u − η) 

where we have used the defining relation (3.8) for HN[u; ξ]. Sending ϵ → 0, we conclude that 

lim 
ξ→u−η 

eψ[u;ξ] = 0. 

  
N 



J. Phys. A: Math. Theor. 54 (2021) 355201 P Di Francesco 

22 

 

 

n 

N 

   

−

 

    

n 

n,k 

n,k 

n 

n,k 

Z6V[u; ξ] = 
Σ 

Z6V[u]b̄k−1c̄ān−k = ān−1
Σ 

τ k−1Z6V[u] 

 

This immediately gives c[ξ] = α cot(αξ), and finally 

eψ[u;ξ] =
 α sin(α(u − ξ − η)) 

. (3.16)
 

sin(α ξ) sin(α(u − η)) 

Collecting all the above results, we finally get the asymptotics of the 6V one-point function. 

 
Theorem 3.5. The 6V-DWBC one-point function H6V[u; ξ] has the following large n = N 

behavior: 

6V 

H6V[u; ξ]      e−Nψ     [u;ξ] 

ψ6V[u; ξ] = log 
sin(αξ) sin(α(u − η)) sin(u − ξ + η) sin(u − ξ − η) 

α sin(α(u − ξ − η)) sin(ξ) sin(u + η) sin(u − η) 

with α as in (3.13). 

 

Proof. By the relation (3.9), we immediately get 

ψ6V[u] = ψ[u] + log 
sin(ξ) sin(u + η) sin(u − η)   

sin(u − ξ + η) sin(u − ξ − η) 

and the theorem follows. Q 

 
3.2.3. Refined partition functions and one-point functions. To apply the tangent method, we 

need the large n, k asymptotics of the refined partition functions Z6V[u], k = 1, 2, . . .  , n, defined 
as follows. Given a configuration of n osculating paths contributing to Z6V[u] (with all hori- 
zontal spectral parameters equal to u and all vertical ones to 0), let us focus on the topmost 

path: let us record the first visit of this path to the east-most vertical line, say at the intersection 

with the kth horizontal line from the bottom. Note that the path accesses the last vertical via 

a horizontal step, and ends with k vertical steps until the east-most endpoint. We define the 

refined partition functions Z6V[u] to be the sum of all contributions in which the topmost path 

has these k + 1 last steps. 
The quantities Z6V[u] turn out to be generated by the semi-inhomogeneouspartition function 

Z6V[u; ξ] (3.5), for which the last vertical spectral parameter is replaced by ξ. Introducing 

relative weights (ā, b̄, c̄) for the last column, as the following ratios of weights at v = ξ  by 

those at v = 0: 

ā = 
sin(u − ξ + η) 

,
 

sin(u + η) 

we have the following decomposition: 

b̄ = 
sin(u − ξ − η) 

, c̄ = 1, 
sin(u − η) 

 
n n 

 

n 

 

 

in terms of a parameter 

 
 

k=1 

 

n,k 
 
 

k=1 

 

n,k 

τ := 
b̄ 

= 
sin(u − ξ − η) sin(u + η) 

. (3.17)
 

  

sin(u − ξ + η) sin(u − η) 
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− 

Σ 
n,k 

N 

   

−

 

n,k 

Z6V[u] 

κ 
2iπt 

n 

 

In applying the tangent method, we truncate the topmost path after its last horizontal step (see 
an illustration in the top left of figure 9 in the pink domain). The effect of removing the last 
k vertical steps and replacing them by empty edges is an overall multiplication by a factor 

(1/c)(a/b)k−1 (as we have cut5 the turning c-type vertex and replaced the k   1 b-type vertices 
by a-type ones). This suggests to define refined one-point functions as the ratios 

 
1

 
a 

  k−1 Z6V[u] 
 

The above relation between refined partition functions turns into the following relation between 

one-point function and refined one-point functions: 
 

6V n 

c 
Hn   [u; ξ] 

= tk−1H   [u], (3.18) 
ān−1 

k=1 
 

where we have used a new parameter 
 

t = 
b

τ  = 
sin(u − ξ − η) 

=: t6V[ξ]. (3.19) 
  

a sin(u − ξ + η) 
 

Let us now consider the large n = N scaling limit of Hn,k[u] in which the ratio κ = k/N is 
kept finite. Using the relation (3.18) and the asymptotics of the one-point function H6V[u; ξ] 

of theorem 3.5, we have at leading order as N → ∞: 

HN, N [u]    

     
   dt  

e−NS0(κ,t), S0(κ, t) = κ log(t) + ϕ6V[u; ξ], (3.20) 

where we have defined 

ϕ6V[u; ξ] := ψ6V[u; ξ] + log(ā) = log 
sin(α ξ) sin(α(u − η)) sin(u − ξ − η) 

.
 

α sin(ξ) sin(u − η) sin(α(u − ξ − η)) 

Here the variable t is integrated over a contour around the origin to extract the coefficient of 

tk−1 in Hn,k[u], and ξ is an implicit function of t upon inverting the equation t6V[ξ] = t. 

The integral is dominated by the solution of the saddle-point equation ∂tS0(κ, t) = 0 or 

equivalently ∂ξS0(κ, t6V[ξ]) = 0 resulting in 
 

κ = κ6V[ξ] := − 
  t6V[ξ] 

∂ ϕ6V[u; ξ] 

∂ξt6V[ξ] ξ 

= {cot(u − ξ − η) + cot(ξ) − α cot(αξ) − α cot(α(u − ξ − η))} 

sin(u − ξ + η) sin(u − ξ − η) 

sin(2η) 

 

 
(3.21) 

 

with α as in (3.13). 

 
5 Here we choose not to attach any weight to the end vertex at height k, as it will be part of the partition function of 

the single path treated in next section. 

× 

Hn,k[u] := 
c b 

. 
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=6V

 

γ
2 

P(z, w) =
 

0 1
 

· (I − T6V)−1 

 
1
  

=
 c0w 

. 

dp2 e 1 2 

. 

0 

 

3.3. Paths 

3.3.1. Partition function. The second ingredient of the tangent method is the partition function 

Yk,l for a single weighted path in empty space with the same weights as the 6V osculating paths 

(see an example of such a path in the light blue domain of figure 9 top left). Note that the path 

starts where the topmost one in Hn,k[u] stopped, namely with a preliminary horizontal step, 

and end with a vertical step at position l (measured from the original position in Zn) on the 

S boundary. Note also that all empty vertices receive the weight a of (2.1). We may therefore 

factor out an unimportant overall weight anl, and weight the path by the product of its relative 

vertex weights: 

a0 = 1, b0 = 
b 

= 
sin(u − η) 

, c0 = 
c 

= 
sin(2η) 

,
 

   

a sin(u + η) a sin(u + η) 

for respectively a, b and c type vertices. 

Let us use a step-to-step transfer matrix formulation of the path, namely a matrix T describ- 

ing the transfer from a step to the next. Each step may be in either of two states: horizontal 

or vertical, and the matrix entry is the corresponding 6V weight at the vertex shared by the 

step and its successor, which we multiply by an extra weight z, w if the next step is horizontal, 

vertical respectively. This gives the matrix 

T  
b0 z  c0 z 

c0 w b0 w 

allowing to express the generating function P(z, w) := 
Σ

k,l≥0 Yk,lzlwk+1 as 

 

0 
1 − b z − b w

 
1 + 

c2−b2 

z
 

 
 

Using the new weights 

0      0 
0 0 b0

 

: 
sin(u − η) 

,
 

:  
c2 − b2 

 
 

sin(3η − u) 

γ1 = b0 = 
 

We deduce that 

sin(u + η) 
γ2 = 0 0 = 

b0 
. 

sin(u − η) 

k (1 + γ2 z)k 
 

 

Σ   P1 + k
    

k  
   

k+P1    P2 

Yk,l = c0γ1 
(1 − γ1 z)k+1 .

zl 
= c0 

P1≥0 
k
 

0≤P2≤k 

P1+P2=l 

P2 

γ1 γ2   . (3.22) 

 

3.3.2. Asymptotics. We now consider the scaling limit of large n = N and κ = k/N, λ = l/N 

fixed. Replacing the summation in (3.22) with an integral over p2 = P2/N and using the Stirling 
formula, we find the leading large N behavior of Yk,l: 

∫ κ 
−NS (κ,p ) 

S1(κ, p2) = p2 log

  
p2

  

+ (κ − p2)log(κ − p2) + (λ − p2)log(λ − p2) 

— (κ + λ − p2)log(γ1(κ + λ − p2)). 

YκN,λN    
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∈ − 
− 

λ    [ξ] 

SE NE SE NE 

 

3.4. Arctic curves 
 

We now apply the tangent method. We must solve for the saddle-point equations for the 

total action S(κ, ξ, p2) = S0(κ, t[ξ]) + S1(κ, p2), namely ∂κS = 0 and ∂p2 
S = 0, while the last 

equation ∂ξS = 0 eventually allows us to solve for κ = κ[ξ] by using the result (3.21). We get: 

    t(κ − p2) 
= 1, 

γ1 p2(κ + λ − p2) 
= 1

 

γ1(κ + λ − p2) γ2 (κ − p2)(λ − p2) 

with the following unique solution: 

p2 
=

  sin(u − 3η) sin(ξ) 
, 

κ 
= 

sin(u − ξ + η) sin(u − ξ − η) 
  

κ sin(u − ξ − η) sin(2η) λ sin(ξ) sin(ξ − 2η) 

parameterized by ξ via t = t6V[ξ] (3.19) and κ = κ6V[ξ] (3.21). In particular this determines 

κ as a function of λ in the parametric form (κ, λ) = (κ6V[ξ], λ6V[ξ]), where 

λ6V[ξ] := κ6V[ξ]
 sin(ξ) sin(ξ − 2η) 

.
 

sin(u − ξ + η) sin(u − ξ − η) 

This allows us to identify the slope A[ξ] = κ6V[ξ] and the intercept B[ξ] = κ6V[ξ] for the family 
6V 

of tangents: Fξ[x, y] = y + A[ξ]x B[ξ] = 0. The parameter ξ is constrained by the condition 

that A[ξ] > 0 which implies that ξ [u + η   π, 0]. Using the expression for the envelope 
(2.20), we arrive at the final result. 

 
Theorem 3.6. The NE portion of the arctic curve for the 6V-DWBC model in the disordered 

regime is predicted by the tangent method to be given parametrically by: 

x = X6V[ξ] := 
B′[ξ] 

, y = Y6V[ξ] := B[ξ] −
 A[ξ] 

B′[ξ], (ξ ∈ [u + η − π, 0]), 
 

NE 

 

where 

A′[ξ] NE A′[ξ] 

A[ξ] = 
sin(u − ξ + η) sin(u − ξ − η) 

sin(ξ) sin(ξ − 2η) 

B[ξ] = {cot(u − ξ − η) + cot(ξ) − α cot(αξ) − α cot(α(u − ξ − η))} 

sin(u − ξ + η) sin(u − ξ − η) 

sin(2η) 

with α as in (3.13). 

As explained in section 2.2.2, we easily get the SE portion of the arctic curve, by applying 

the transformation ∗: u u∗ = π − u, and the change of coordinates (2.23) for μ = 1. As a 

result we have the following. 

 
Theorem 3.7. The SE portion of the arctic curve for the 6V-DWBC model in the disordered 

regime is predicted by the tangent method to be given parametrically by: 

x = X6V[ξ] := X6V[ξ]∗, y = Y6V[ξ] := 1 − Y6V [ξ]∗, (ξ ∈ [η − u, 0]) 

with X6V, Y6V as in theorem 3.6. 
NE NE 

× 
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→› −  − − 

2 

− 

2 

− 

n 

   
i, j=1 

— − 

    n  

e o 
1≤i, j≤n 

U i j 

e i=1 

 

Finally, we note that the weights (2.1) and the DWBC are invariant under central symmetry, 

which reflects all arrow orientations. As a consequence, the arctic curve of the 6V-DWBC 

model is centro-symmetric as well, and it can be easily completed by applying the central 

symmetry (x, y)  ( 1   x,1  y) to the NE and SE branches to respectively produce the SW 

and NW ones. 

 
Remark 3.8. At the self-dual point u = u∗ = π , the arctic curve is symmetric w.r.t. the hor- 

izontal line y = 1/2, as well as the vertical line x = 1/2 by the central symmetry. The full 
curve is then obtained by successive reflections of the NE branch; as an example the limit shape 

of ASMs [CP10b] is made of 4 reflected portions of ellipse. This is no longer true if u /= π . 

 
4. 6V′ model 

4.1. Partition function and one-point function 

4.1.1. Inhomogeneous partition function.   The partition function of the inhomogeneous U- 

turn boundary 6V model was derived by Kuperberg and independently by Tsuchiya [Kup02, 

Tsu98]. Let 

mU(u, v) := 
1

 

sin(u − v + η) sin(u − v − η) 

1 

— sin(u + v + η) sin(u + v − η) 
.
 

Note that as opposed to the 6V case, this is no longer a function of u v only, but includes a 

reflected term which is a function of u + v. 

 
Theorem 4.1.   The U-turn boundary 6V partition function reads: 

Z6V−U[u, v; θ] 

= (ρ ρ )n2     
det 

,
m  (u , v )

 
 

 

 
n 
i=1 sin(θ − vi) sin(2ui + 2η) sin(2η)

      n
 sin(ui − vj + η) sin(ui − vj − η) sin(ui + vj + η) sin(ui + vj − η)

 
 × 

sin(u u ) sin( 
)
     sin(u u ) sin( 

)
 . 

1≤i<j≤n i − j vj − vi 1≤i≤ j≤n i +   j vi + vj 
 

(4.1) 

As mentioned above and illustrated in figure 3, the 6V′ model corresponds to the choice 

of parameter θ =   u    η, which ensures that yu(u) = 0 for all U-turns. The partition func- 
tion corresponding to this choice, where we cut out the U-turns of figure 3(a) and remove 

their weights, as well as the weights of the trivially fixed b-type vertices of the bottom row in 

figure 3(b), reads: 

 
Z6V

′ 
[u, v] = lim (−1)nZ6V−U[u, v; θ]  , (4.2) 

n ui→u sinn(2u + 2η) ρn
      n 

sin(−u − vi − η) 

where we have identified the limit of the U-turn weights to be yd(ui) → −sin(2u + 2η) and that 

of the b weights of the bottom (even) row to be be → ρe sin(−u − vi − η). 

θ→−u−η 
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i=
−
0 (i!)

2
 

0≤i, j≤n−1 
u v 

0≤i, j≤n−1 

 

Remark 4.2. Note that in (4.1) the dependence on the parameter θ is only through the pref- 
actor i sin(θ − vi). The ‘worst case scenario’ is the homogeneous limit where all vi → v, and 

where this gives a factor sinn(θ − v). In any case, this does not affect the value of the thermody- 
namic free energy f = limn→∞ − 1 log(Z6V′ ), which is independent of θ. We may therefore 

n2 n 

safely fix the value of θ to suit our needs. 
 

4.1.2. Homogeneous limit.   Like in the 6V case, the homogeneous limit where we take all 

ui → u and all vi → v involves the quantity: 

 
[u, v] := lim det1≤i, j≤n  

  

mU (ui, vj)
    

.
 

 
 Δn 

u→ui (ui − u j)(vj − vi) 
v→vi 

1≤i< j≤n 

Upon Taylor-expanding rows and columns, we may rewrite: 
  

∂i ∂ jmU(u, v) 
  

   1  
 

Δn[u, v] = (−1)n(n−1)/2 det u  v 

 n   1 Dn[u, v], 

Dn[u, v] = det (−1) j∂i ∂ jmU(u, v)
 

. (4.3) 
 

Using the relation (4.2) and the result of theorem 4.1, we obtain the homogeneous partition 

function of the 6V′ model: 

Z6V′ 
[u, v] 

 
 

(sin(u − v + η) sin(u − v − η) sin(u + v + η) sin(u + v − η))n
2

 
 

n 
2 

2 n = Δn[u, v] . 
ρn −nρn sin (2η) (sin(2u) sin(2v))n(n+1)/2 

e o 

(4.4) 

To determine Δn[u, v] one uses like in the 6V case the Plücker/Desnanot–Jacobi relation of 

lemma 3.2 applied to the n + 1 × n + 1 matrix M in the definition of Dn+1[u, v] (4.3): 

Dn+1[u, v]Dn−1[u, v] = ∂uDn[u, v]∂vDn[u, v] − Dn[u, v]∂u∂vDn[u, v] 

which implies  
Dn+1[u, v] Dn−1[u, v] 

+ ∂u∂
 

 

 
log (D [u, v]) = 0. (4.5) 

(Dn[u, v])2 v n
 

As a direct consequence, we have: 

 

Theorem 4.3. The quantity Δn[u, v] obeys the following recursion relation: 

Δn+1[u, v]Δn−1[u, v] 
+ 

1 
∂u∂

 
 

 

log (Δ [u, v]) = 0. (4.6) 

Δn[u, v]2
 n2 v n 

Note that the latter can be used to determine Δn[u, v] recursively, starting with Δ0[u, v] = 1 

and Δ1[u, v] = mU(u, v), as we illustrate now with a few simple examples. 

 

Example 4.4. Let us consider the ‘classical limit’ η → 0, where: 

mU(u, v) = 
1

 

sin2(u − v) 

1 

— sin2(u + v) 

sin(2u) sin(2v) 

= 
sin2(u − v)sin2(u + v) 

.
 

=: 

where the determinant Dn[u, v] reads 

i! j! 
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→ 

− 
→ 

4 

, ) = 

 
   sin(2u) sin(2v) 

n(n+1)/2
 

e o 

 

We have: 

 

Theorem 4.5. In the classical case η = 0, we have for all n ≥ 1: 
 

Δn[u, v] = n! 
sin2(u − v)sin2(u + v) 

Proof. The proof is by induction on n, using (4.6), and follows from the relation 

sin(2u) sin(2v) 

sin2(u − v)sin2(u + v) 
− ∂u∂v log (sin(u − v) sin(u + v)) = 0. 

Q 

Note that the corresponding 6V′ partition function vanishes, however we get a finite limit 
for the quantity 

Z6V′ 
[u, v] 

lim 2      
n   

2 n = n!(sin(u − v) sin(u + v))n(n−1). 
η→0 ρn −nρn sin (2η) 

This result has a simple interpretation: sending η 0 implies both ce and co type vertices have 

vanishing weights. However, without the ability to turn right, none of the osculating paths can 

satisfy the boundary conditions, unless each path is allowed at least one right turn. In this for- 

mulation, we must no longer see the paths as osculating, but rather as crossing at fully occupied 

a-type vertices. The minimal case is if each path has exactly one turn (and the vanishing weight 

sinn(2η) is divided before taking the η   0 limit). For each i = 1, 2, . . .  , n, the ith path from 

the bottom starts with say j = σ(i) horizontal steps, then turns right and ends with 2i 1 ver- 
tical steps at the jth endpoint. Clearly there are as many such configurations as permutations 

σ of the n path ends, which accounts for an overall factor of n!. Collecting all the Boltzmann 
weights gives the remaining factor. 

 
Example 4.6. We now consider the ‘free fermion’ case η = π , where 

 
mU(u 

1 v 
sin

 
u − v + π

 
sin

 
u − v − π 

 
 

  

 
 

1 
— sin

 
u + v + π

 
sin

 
u + v − π 

 
 

  

4 4 4 4 

4 sin(2u) sin(2v) 
= 

cos(2(u − v)) cos(2(u + v)) 
. 
Theorem 4.7. In the free fermion case η = π , we have for all n ≥ 1: 

(4 sin(2u) sin(2v))n(n+1)/2(4 cos(2u) cos(2v))n(n−1)/2 

Δn[u, v] = 
(cos (2(u − v)) cos (2(u + v)))n2 

.
 

Proof. The proof is by induction on n using (4.6), and follows from the relation 

4 sin(4u) sin(4v) 

cos2(2(u − v))cos2(2(u + v)) 
+ ∂u∂v log (cos(2(u − v)) cos(2(u + v))) = 0. 

Q 

4 

. 
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    n  

.− 

i=0 

n 

′6V 

n 

    

n u1,...un→u 
v1,...,vn−1→v,vn→v+ξ sin(ui − u j) sin(v j − vi) 

u v 
u 

u v 
j=0,...,n−2 

u 

 

The corresponding 6V′ partition function reads: 

Z6V′ 
[u, v] 

n 

ρn2−nρn2 = (cos(2u) cos(2v))n(n−1)/2. (4.7) 
e o 

 

4.1.3. One-point function. As in the case of the 6V model, we consider the semi-homogeneous 

partition function Z6V′ 
[u, v; ξ] with the same boundary conditions as Z6V′ 

[u, v] but with a dif- 
n n 

ferent vertical spectral parameter in the last column, set to vn = v + ξ. It is again obtained as 
a limit of (4.2) and reads: 

Z6V′ 
[u, v; ξ] 

ρn2−nρn2 
sinn(2η) 

e o 

 

= Δn[u, v; ξ] 
(sin(u − v + η) sin(u − v − η) sin(u + v + η) sin(u + v − η))n(n−1) 

 sin(2ξ + 2v)(sin(ξ + 2v))n−1(sin(2u)) 
n(n+1) 

(sin(2v)) 
n(n−1)

 
2 2 

 n 

× (sin(u − v − ξ + η) sin(u − v − ξ − η) sin(u + v + ξ + η) sin(u + v + ξ − η)) 

(4.8) 
 

in terms of the semi-homogeneous quantity 

 

Δ [u, v; ξ] := lim 
det1≤i, j≤n  

  

mU(ui, vj)
 

.
 

 

Repeating the Taylor expansion of rows and columns except the last one, we may rewrite: 

(−1)n(n−1)/2 

Δn[u, v; ξ] = 
sinn−1(ξ) 
   

∂i ∂ jmU(u, v) 
 

 
 

 

 

.
   

∂i mU(u, w) 
 

 
 

  
(−1)n−1 (n − 1)! 

 

0,...      2 

sinn−1(ξ)
    n−1

(i!)2
 
Dn[u, v; ξ], (4.9) 

where the determinant Dn[u, v; ξ] reads 

Dn[u, v; ξ] = det 

 
 

(−1) j∂i ∂ jmU(u, v)
} 

i=1,...,n−1 . 
 

∂i mU(u, v + ξ)
}

 

   

. (4.10) 

 

As before, we define the one-point function H6V′ 
[u, v; ξ] as the ratio: 

H6V
′ 

[u, v; ξ] := 
Zn    [u, v; ξ]

 
n Z6V′ 

[u, v] 

Δn[u, v; ξ]   sin(ξ + 2v)  
 
     sin(2v)     

  n
 

Δn[u, v]   sin(2ξ + 2v)   sin(ξ + 2v) 

sin(u − v − ξ + η) sin(u − v − ξ − η) sin(u + v + ξ + η) sin(u + v + ξ − η) n 

sin(u − v + η) sin(u − v − η) sin(u + v + η) sin(u + v − η) 
. (4.11) 

=: 

i=0,...,n−1 
i=1,...,n  1 

j=      ,n− i! j! 

1≤i< j≤n 

× det i! 

i=0,...,n−1 

= 

× 
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× 

n 

    

N 

1 

 

The Plücker/Desnanot–Jacobi relation of lemma 3.2 applied to the n + 1 n + 1 matrix M 

in the definition of Dn+1[u, v; ξ] (4.10) implies the following: 

Dn+1[u, v; ξ]Dn−1[u, v] = Dn[u, v; ξ]∂uDn[u, v] − Dn[u, v]∂uDn[u, v; ξ]. 

Introducing the reduced one-point function 

Hn[u, v; ξ] := (−1)n−1(n − 1)! 
Dn[u, v; ξ] 

= sinn−1(ξ) 
Δn[u, v; ξ] 

, (4.12) 

 
we may recast the above into the following. 

Dn[u, v] Δn[u, v] 

 

Theorem 4.8. The reduced one-point function of the 6V′ model obeys the following 
relation: 

Hn+1[u, v; ξ] Δn−1[u, v] Δn+1[u, v] 1 
Hn[u, v; ξ] 

Δ [u, v]2 
+ 

n
∂u log(Hn[u, v; ξ]) = 0. (4.13) 

Together with (4.6), this determines Hn[u, v; ξ] recursively, using the initial data 
H1[u, v; ξ] = mU(u,v+ξ) , and in turn the one-point function H6V′ 

[u, v; ξ] via: 
mU(u,v) n 

H6V
′ 
[u, v; ξ] 

sin(ξ) sin(ξ + 2v) sin(2v) 
n
 

  

sin(u − v − ξ + η) sin(u − v − ξ − η) sin(u + v + ξ + η) sin(u + v + ξ − η) n 

sin(u − v + η) sin(u − v − η) sin(u + v + η) sin(u + v − η) 

(4.14) 

 

4.2. Large n limit: free energy and one-point function asymptotics 

4.2.1. Free energy. For large n = N, like in the 6V case, the relation (4.6) leads to the 

following leading behavior for the function Δn[u, v]: 

Δ [u, v]     e−N
2  f [u,v] (4.15) 

for some function f[u, v] to be determined (see [RK15] for a full derivation). 

4.2.1.1. Liouville equation and free energy For large n = N, substituting the behavior (4.15) 

into equation (4.6), and expanding at leading order in N−1, we get the following 2D Liouville 
partial differential equation for the function f [u, v]: 

∂u∂v f [u, v] − e−2 f [u,v] = 0. (4.16) 

Introducing the function W[u, v] := ef[u,v] this may be rewritten as: 

W∂u∂vW − ∂uW∂vW = 1. 

The general solution W of this equation is known to be [Cro97, Lio53]: 

W[u, v] =
 g(u) − h(v) 

 
 

|g′(u)h′(v)| 2 

 
(4.17) 

sin(ξ) sin(ξ + 2v) sin(2ξ + 2v) 

n 

= Hn[u, v; ξ] 

× . 
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1 

1 

N 

  √ 

. .f [u, v] = log 

  

N   

2 

n 

n 

   

6V′ 1    sin(2u) sin(2v)  

3 3 

 

for some arbitrary differentiable functions g, h. In [RK15], the functions g, h are fixed by use 

of symmetries and known limits of W, leading to the following. 

 
Theorem 4.9 ([RK15]). The leading asymptotics of the determinant Δn[u, v] is given by 

W[u, v] = limN→∞ ΔN[u, v]− N2 where: 

 

 
 

with 

W[u, v] = 
sin(α(u − v − η)) sin(α(−u − v − η)) 

α | sin(2αu) sin(2α(v + η))| 2 

 

(4.18) 

π 
α = 

π − 2η 
. (4.19) 

Theorem 4.9 gives access to the full free energy f 6V′ of the 6V′ model, as defined by the 

large N asymptotics Z6V′ [u, v] e−N2 f 6V
′ 
[u,v], where as a consequence of (4.4), we have: 

f 6V
′ 
[u, v] = f [u, v] 

 

+ log 
| sin(2u) sin(2v)| 

ρeρo sin(u − v + η) sin(u − v − η) sin(u + v + η) sin(u + v − η) 

 
This leads immediately to the following. 

  

.

 

(4.20) 

 

Corollary 4.10 ([RK15]). The free energy of the 6V′ model in the disordered regime reads: 

 

2 . sin(2αu) sin(2α(v + η)). 

 

+ log 
sin(α(u − v − η)) sin(α(−u − v − η)) 

α ρeρo sin(u − v + η) sin(u − v − η) sin(u + v + η) sin(u + v − η) 

(4.21) 

We also have access to the free energy f20V of the 20V DWBC3 model defined in 

section 2.1.3, which will be studied in section 5 below. The free energy is defined via 

Z20V[u, v] e−N2 f 20V[u,v] for large N. As a consequence of (5.2) which relates the partition 

functions of the 20V-DWBC3 and 6V′ models (see also reference [DF21]), we have the 
relation: 

f 20V[u, v] = f 6V
′ 
[u, v] + 

1 
log

 
ν3 sin3(2u + 2η) sin(u − v − η) sin(u + v − η)

 
. (4.22) 

Let us apply this to the uniform case (2.17), where the partition function Z6V′ 
of the 6V′ 

model on the (2n − 1) × n grid is related to the number of configurations Z20V of the 20V 

model with DWBC3 on the quadrangle Qn [DF21] (see section 2.1.3). Using theorem 4.9 and 
the relations (4.21) and (4.22),√and approaching the desired value v = −4η + ϵ, while u = η, 

 we get for η = π , α = 4 , ν = 2: 
8 3 

 
. . 

1 
16 8 

 
 

 
 

 

 
9/4 

e f 
20V 

  

.
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lim . 

sin(2η) sin(−8η + 
2ϵ)

 . 
2 3 sin 

3 η sin 3 η 3  

= 
ϵ→0 . sin

 
8 η

 
) sin

 
−8η + 8 ϵ . 4 ν3/2 sin2(4η) sin(6η) sin(2η) 

= 
29/2 

.
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N 

      (4i + 2)!  
    

n 

→ − − − → 
— − − 

—   −   − − −N 

 

This is in agreement with the asymptotics of the exact conjectured formula of reference 

[DF21] for the uniformly weighted partition function, namely: 

 
Z20V = 2N(N−1)/2 

N−1 

(n + 2i + 1)! 
i=0 

29/2     N
2

 

 
 

39/4 

 

, (4.23) 

easily derived by use of the Stirling formula. 

 

4.2.2. One-point function. We now derive the large n = N asymptotics of the one-point func- 
tion H6V′ 

[u, v; ξ] (4.11). From equation (4.14), the latter is simply expressed in terms of the 

reduced one-point function Hn[u, v; ξ] (4.12). Like in the 6V case, we first derive a differ- 

ential equation governing the asymptotic behavior of Hn[u, v; ξ], and compute a number of 

limits to fix integration constants. It turns out that our conjecture 4.9 is sufficient to determine 

asymptotics completely. 

By theorem 4.8, Hn[u, v; ξ] must satisfy (4.13), which implies the leading asymptotic 

behavior 

HN[u, v; ξ]    N→∞ e−Nψ[u,v;ξ] (4.24) 

for some function ψ[u, v; ξ]. As a simple confirmation, using the definition (4.12) and the fact 

that Δn[u, v; 0] = Δn[u, v], we find that Hn[u, v; ξ] ξ→0 ξn−1, resulting in: 

ψ[u, v; ξ]    ξ→0 −log(ξ). (4.25) 

4.2.2.1. Differential equation Substituting the expressions (4.15) and   (4.24)   into 

equation (4.13) for n = N, and expanding to leading order in N−1, we get the following 
partial differential equation: 

∂uψ[u, v; ξ] − e−2 f [u,v]−ψ[u,v;ξ] = 0. (4.26) 

4.2.2.2. Limits   In addition to the limit (4.25) above, let us consider the limit u    v     ξ 

η 0, by setting ξ = u v η ϵ and sending ϵ 0. The entries of the last column of the 

determinant DN[u, v; v + ξ] (4.10) read: 

i 1 (−1)i i! −i ∂umU(u, u − η − ϵ) = 
sin(2η)  ϵi+1 

+ O(ϵ ). 
 

The dominant term is in the last row and results in 

(−1)N−1(N − 1)! 
DN[u, v; u − η − ϵ]   

We deduce that 
sin(2η)ϵN 

DN−1[u, v].
 

H [u, v; u v η ϵ] = (   1)N−1(N 1)! 
DN [u, v; u − η − ϵ]

 
DN[u, v] 

(N − 1)!2 DN−1[u, v] 
 ϵ→0 

sin(2η)ϵN    DN[u, v] 

1 
 

   
ϵN

 

, 

ΔN−1[u, v] 

ΔN[u, v] 

W[u, v]2N 
 

 

ϵN   
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  ϵ  

  ϵ  

− 

— − 

    

n 

N 

   

−

 

   

−

 

n 

 

where we have used the large N asymptotics ΔN 

asymptotics (4.24), we conclude that 
[u, v]     W[u, v]−N2. Matching this with the 

 

ψ[u, v, u − v − η + ϵ] ϵ→0   log . W[u, v]2 . . (4.27) 

Repeating the analysis for ξ = η − u − v + ϵ, we find analogously: 
 

ψ[u, v, η − u − v + ϵ] ϵ→0   log . W[u, v]2 . . (4.28) 

 

4.2.2.3. Solution Note that equation (4.26) may be rewritten in the form ∂u(eψ) = e−2f = 

W−2. This can be integrated w.r.t. the variable u as follows: 

eψ[u,v,ξ] = c[v, ξ] 
  α sin(2α(v + η))  

sin(α(u − v − η)) sin(α(u + v + η)) 

for some integration constant c[v, ξ] independent of u. 

 
(4.29) 

We now use the limit (4.27) to express that, for ξ = u − v − η + ϵ and ϵ → 0, we have 

eψ[u,v;ξ] → 0. This gives: 

c[v, u v η] =
 α sin(2α(v + η))  

sin(α(u − v − η)) sin(α(u + v + η)) 

which is valid for all u, v. In particular, setting u = v + η + ξ yields the integration constant 

c[v, ξ] = 
α sin(2α(v + η)) 

sin(αξ) sin(α(ξ + 2v + 2η)) 

which we plug back into (4.29) to finally get: 

 

ψ[u, v; ξ] = log 
α sin(2α(v + η)) sin(α(u − v − ξ − η)) sin(α(u + v + ξ + η)) 

.
 

sin(α(u − v − η)) sin(α(u + v + η)) sin(αξ) sin(α(ξ + 2v + 2η)) 

(4.30) 
 

Using the relation (4.14) this leads to the following result for the one-point function 

asymptotics. 

 

Theorem 4.11. The one-point function H6V′ 
[u, v; ξ] has the following large n = N behavior: 

H6V [u, v; ξ]     e−Nψ6V′ 
[u,v;ξ] 

ψ6V′ 

[u, v; ξ] =   log    
sin(α(u − v − η)) sin(α(u + v + η)) sin(αξ) sin(α(ξ + 2v + 2η)) 

α sin(2α(v + η)) sin(α(u − v − ξ − η)) sin(α(u + v + ξ + η)) 

log  
sin(2v) sin(u − v − ξ + η) sin(u − v − ξ − η) sin(u + v + ξ − η) sin(u + v + ξ + η) 

sin(ξ) sin(ξ + 2v) sin(u − v + η) sin(u − v − η) sin(u + v − η) sin(u + v + η) 

with α as in (3.13). 

As a consistency check, we find that limξ→0 ψ6V′ 
[u, v; ξ] = 0, in agreement with the fact 

that H6V′ 
[u, v; 0] = 1 by definition. 
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√ 

  

− 
    

−

 

+ 

 

 

Remark 4.12. In the case of the more general U-turn 6V model (with arbitrary value of 

the parameter θ), we already showed in remark 4.2 that the thermodynamic free energy of the 

model is independent of θ, therefore identical to that of the 6V′ model. The same argument 
may be applied to the one-point function, whose leading asymptotics is independent of θ as 

well, and therefore the same for U-turn 6V and 6V′ models. 

 
Remark 4.13. Independently of theorem 4.9, equation (4.26) can be solved in terms of the 
generic function g which determines the general solution (4.17) to the Liouville equation with 

the correct symmetries and limits, namely such that h(v) = g(v + η), with the expression: 

W[u, v] =
 g[u] − g[v + η] 

.
 

|g′(u)g′(v + η)| 

Solving equation (4.26) in the same manner as above, we obtain: 

ψ[u, v; ξ] = log 
(g(u) − g(v + ξ + η))g′(v + η) 

(g(u) − g(v + η))(g(v + ξ + η) − g(v + η)) 

In particular, we recover the solution for the 6V-DWBC case by picking g(u) = tan(αu), which 
leads to 

W[u, v] = 
sin(α(u − v − η)) 

= W[u v] 
α 

ψ[u, v; ξ] = log 
α sin(α(u − v − η − ξ)) 

= ψ[u v; ξ] 
sin(αξ) sin(α(u − v − η)) 

in agreement with (3.12) and (3.16). 

 
4.3. Paths 

 
4.3.1. Partition function. With the setting of figure 9 (bottom left, light blue domain), we wish 

to compute the partition function Yk,l  of a single path of the 6V′ model in the first quadrant 

Z2 , with starting point (0, k) and endpoint (l, 0). The weights of the path are those of the 6V′ 
model, namely (bo, co) for a path (going straight, turning) at a vertex with second coordinate 

y = 2 j, j = 0, 1, 2, . . .  and (be, ce) for a path (going straight, turning) at a vertex with second 

coordinate y = 2 j + 1, j = 0, 1, 2, However the path crosses a domain of empty vertices, 
each receiving weights ae, ao depending on the parity of their second coordinate y. Factoring 

an overall weight (ao)nl(ae)(n−1)l which does not affect our study, the weights of the path steps 
must be divided by ae, ao and finally read: 

b0 = 
bo 

= 
sin(u − v − η) 

, c0 = 
co 

= 
sin(2η) 

,
 

 

ao sin(u − v + η) ao sin(u − v + η) 

b1 = 
be 

= 
sin(u + v + η) 

, c1 = 
ce 

= 
sin(2η) 

  

(4.31) 

ae sin(u + v − η) ae sin(η − u − v) 

for vertices with y = 2 j and y = 2 j + 1 respectively. Note that the path has a horizontal step 
just before entering the first quadrant, and has a final vertical step. 

The partition function Yk,l  is computed by use of a transfer matrix technique. Each path 

is traveled from N, W to S, E, and the transfer matrix is a 4 × 4 matrix T6V′ whose entries 

  

.
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— | − | 

⎛

⎜

 

⎟
⎠
 

⎝  ⎠1 
′ )−1 ⎜0⎟ 

w2 j+1 0 0 1 1 

0 0 1 1 

ϵ 

(1 − γ1z) 
1+ k−

2 
ϵ 

(1 − γ2z) 
k+ϵ 

2 

γ1 
2 γ2 

2 
γ3 

3 γ4 
4

 

dp2 dp3 dp4 e 1 κ 2 3 4 

⎞ 

0 

0 

 

correspond to the vertex weight for the transition from the entering step at each visited vertex 

to the outgoing step, with the four possible configurations ( , o), ( , o), ( , e), ( , e) of horizon- 

tal/vertical step ending at an odd/even vertex. Moreover we include an extra weight z, w per 

horizontal, vertical outgoing step respectively. The matrix T6V′ reads: 

b0z c0z 0 0 
0 0 c1w b1w⎟ 

T6V′  = ⎜⎝ 0 0 b1z c1z 
.
 

c0w b0w 0 0 

We deduce the generating function for the Yk,l: 

 
Σ 

 

 

⎛
1

⎞ 

 
 

w(c0(1 − b1z) + c1w(b0 + (c2 − b2)z)) 
 = 

2 2 

0 

2 2 
 

(1 − b0z)(1 − b1z) − w2(b0 + (c0 − b0)z)(b1 + (c1 − b1)z) 

Σ (b0 + (c2 − b2)z) j(b1 + (c2 − b2)z) j 
 

j≥0 

Σ 
 

 

(1 − b0z) j+1(1 − b1z) j 

2 j+2 (b0 + (c2 − b2)z) j+1(b1 + (c2 − b2)z) j 
 

 
k+ϵ k−ϵ 

= 
Σ

wk+1c  
(γ1(1 + γ3z))  2    (γ2(1 + γ4z))  2     

, (4.32)
 

 

where we have used the notation ϵ := k mod 2 (with ϵ ∈ {0, 1}), and the following weights: 

γ1 = b0 = 
sin(u − v − η) 

, γ2 = b1 = 
sin(u + v + η)

,
 
 

sin(u − v + η) sin(u + v − η) 
c2 − b2 

 
 

sin(u − v + 3η) 
,
 c2 − b2 

 
 

sin(u + v + 3η) 
 

 

(4.33) 

γ3 = 0 0  = 
b0 sin(u − v − η) 

γ4 = 1 1  = 
b1 

sin(u + v + η) 
.
 

To obtain (4.32), we have used the fact that the first step of path is horizontal with y parity 

unspecified (and receives no weight z), and the last step is vertical, with y = 0 (and receives 
the weight w). 

4.3.2. Asymptotics.   We wish to take the large n = N scaling limit with κ = k/(2N) and 

λ = l/N finite. Further expanding (4.32) in powers of z, we find: 

Σ   
k−
2 

ϵ  + P1 

   
k+ϵ−2  + P2 

   
k+ϵ  
  

 

Yk,l = 
P1 ,P2,P3,P4≥0 

P1
 

P1+P2+P3+P4=l 

2 2 

P2 P3 

  
k−ϵ  
  

 

P1+ k+ϵ P2+ k−ϵ     
P     P

 

∫ 
1 

−NS6V′ 
( ,p ,p ,p ) 

× 

k≥0 

(1 − b0z) j+1(1 − b1z) j+1
 j≥0 

0 

k,l≥0 

Y6V
′ 
(z, w) = Yk,l wk+1zl = (0, 0, 0, 1)(I − T6V 

= c0 

+ c1 w 

2 

P

4 

Y2κN,λN    

− − 
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1 

n 

— × 

∈ − 

n,k 

— − 
n,k − 

n 

n−1 

n,2 j 

n,2 j−1 n,2 j 

n n,2 j−1 

 

S6V
′ 
(κ, p2, p3, p4) = −(κ + λ − p2 − p3 − p4) log(κ + λ − p2 − p3 − p4) 

+ (λ − p2 − p3 − p4)log(λ − p2 − p3 − p4) 

— (κ + p2)log(κ + p2) + p2 log(p2) + p3 log(p3) 

+ (κ − p3)log(κ − p3) + p4 log(p4) + (κ − p4) log(κ − p4) 

— (κ + λ − p2 − p3 − p4) log(γ1) − (κ + p2) log(γ2) 

— p3 log(γ3) − p4 log(γ4). (4.34) 

Here we have eliminated P1 and replaced the remaining summations over Pi by integrations 

over pi = Pi/n in [0, 1]. Note that this covers the case of vanishing weights γi for i = 3 or4 as 

well: if γi = 0 we simply suppress Pi from the above expression, which in turn corresponds to 

taking the pi → 0 limit at finite γi in (4.34). 

4.4. Refined one-point functions and asymptotics 

4.4.1. Refined partition function. Let Z6V′ 
[u, v] denote the refined partition function of the 

6V′ model on the rectangular grid of size (2n    1)    n with uniform weights (2.7) and (2.8), 
in which the rightmost path is conditioned to first visit the rightmost vertical line at a point at 

position k [1, 2n 1] (counted from bottom to top), before going vertically down until its 
endpoint, as illustrated in figure 9 (bottom left, pink domain, with the k final steps removed). 

This quantity is easily related to the semi-homogeneous partition function Z6V′ 
[u, v; ξ] as fol- 

lows. In the latter, only the weights of the last column (with spectral parameter vn = v + ξ) 

are different, and depend on the parity of the vertex height. Let us denote by (āi, b̄i, ̄ci), i = o, e 
the relative 6V′ weights (ratio of the value at v + ξ by that at v): 

āo  = 
sin(u − v − ξ + η) 

,
 

sin(u − v + η) 

āe  = 
sin(u + v + ξ − η) 

,
 

sin(u + v − η) 

b̄o  = 
sin(u − v − ξ − η) 

, c̄o  = 1 
sin(u − v − η) 

b̄e  = 
sin(u + v + ξ + η)

, c̄e  = 1. 
sin(u + v + η) 

Contributions to Z6V′ 
[u, v] have a last column with k 1 bottom vertices of type b (vertical 

step), the kth vertex of type c (right turn), and the top 2n 1 k vertices of type a (empty). 

Splitting contributions according to the parity of the position of the point of entry into the last 

column of the rightmost path, we arrive at: 

Z6V
′ 
[u, v; ξ] = 

Σ 
Z6V

′
 

 

 

[u, v](b̄ob̄e) j−1c̄o(āeāo)n− j 

+ 
Σ 

Z6V
′ 
[u, v](b̄ob̄e) j−1b̄oc̄eāo(āeāo)n− j−1 

j=1 

n 

= (āeāo)n−1
Σ 

τ j−1{Z6V
′ 

[u, v] + Z6V
′ 
[u, v]σ}, 

j=1 

 

where we have used the values ̄co = ̄ce = 1 and the parameters 

τ := 
b̄ob̄e  

= 
sin(u − v − ξ − η) sin(u + v + ξ + η) sin(u − v + η) sin(u + v − η) 

 

āeāo sin(u − v − η) sin(u + v + η) sin(u − v − ξ + η) sin(u + v + ξ − η) 

j=1 
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− 

− 
n,k 

n,2 j− 

n,2 j 

n 

n 

n 

N 

  

∫ , 

∫ ,

−

 

∫ ,

−

 

N,2κN 
2iπt 

0 

 

σ := 
b̄o   

= 
sin(u − v − ξ − η) sin(u + v − η) 

.
 

 

āe sin(u − v − η) sin(u + v + ξ − η) 

For use with the tangent method, we need to consider the refined one-point function 

Hn,k[u, v] defined as the ratio of the partition function of the 6V′ model in which the topmost 
path ends at position k with a horizontal last step between the n    1st vertical and the rightmost 

vertical, to that of the usual 6V′ partition function. Note that the numerator is slightly differ- 
ent from the refined partition function Z6V′ 

[u, v] as the rightmost path does not continue with 
k vertical steps after hitting the rightmost vertical. Consequently, we must replace the k 1 

corresponding b-type weights with a-type weights: 

 
Hn,2 j−1[u, v] := 

  
aoae  

    j−1 Z6V′ 

 

 

1[u, v]
,
 

bobe Z6V′ 
[u, v] 

 
Hn,2 j[u, v] := ao 

   
aoae 

   j−1 Z6V′ 
[u, v] 

 
 

 

 bo bobe Z6V′ 
[u, v] 

In terms of the one-point function H6V′ 
[u, v; ξ] (4.11), the above identity reads: 

 

H6V
′ 
[u, v; ξ] = (āeāo)n−1

Σ 
t j−1{Hn,2 j−1[u, v] + Hn,2 j[u, v] s}, 

 
where 

j=1 

 

 

 

t = τ 
bobe 

= 
sin(u − v − ξ − η) sin(u + v + ξ + η) 

aoae sin(u − v − ξ + η) sin(u + v + ξ − η) 

s = σ
bo 

= 
sin(u − v − ξ − η) sin(u + v − η) 

.
 

ao sin(u − v + η) sin(u + v + ξ − η) 

 

4.4.2. Asymptotics. We wish to estimate the leading behavior of the one-point function 

HN,k[u, v] for large N and κ = k/(2N) finite. To this end, we use the asymptotics of the function 

H6V′ 
[u, v; ξ] (theorem 4.11) to estimate for large N: 

H6V′ [u, v; ξ] 
    N  e−Nϕ 

(āe ̄ao )N−1
 

 
6V′ 

 
 

[u,v;ξ] 

ϕ6V′ 
[u, v; ξ] = ψ6V′ 

[u, v; ξ] + log  
sin(u − v − ξ + η) sin(u + v + ξ − η) 

sin(u − v + η) sin(u + v − η) 

= log 
sin(2v) sin(u − v − ξ − η) sin(u + v + ξ + η) 

sin(2v + ξ) sin(u − v − η) sin(u + v + η) 

log 
  sin(αξ) sin(α(ξ + 2v + 2η)) sin(α(u − v − η)) sin(α(u + v + η))       

. (4.35)
 

α sin(ξ) sin(2α(v + η)) sin(α(u − v − ξ − η)) sin(α(u + v + ξ + η)) 

This leads finally to the following result. 

 
Theorem 4.14. The large N asymptotics of the refined one-point function for the 6V′ model 
are given by: 

H [u, v]    

     
   dt   

e−NS6V′ 
(κ,t) 

n 

n 

. 
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0 

ξ 

 

S6V
′ 
(κ, t) = ϕ6V

′ 
[u, v, ξ] + κ log(t), (4.36) 

where the variable t is integrated over a contour around the origin, ϕ6V′ 
[u, v, ξ] is as in (4.35), 

and where ξ can be thought of as an implicit function of the variable t, upon inversion of the 

relation 
 

t = t 
′ [ξ] := 

sin(u − v − ξ − η) sin(u + v + ξ + η) 
. (4.37)

 

sin(u − v − ξ + η) sin(u + v + ξ − η) 

The leading contribution to (4.36) is determined by the solution of the saddle point equation 
∂tS6V′ 

(κ, t) = 0 or equivalently ∂ξS6V′ 
(κ, t6V′ [ξ]) = 0, leading to: 

0 0 
 

  t6V′ [ξ]   
 

6V′ 

κ = κ6V′ [ξ] := − 
∂ t

 ∂ ϕ 
′ [ξ] [u, v; ξ]. (4.38) 

 
Explicitly we have: 

ξ 6V 

 

κ6V′ [ξ] = {cot(u − v − η − ξ) + cot(ξ) + cot(ξ + 2v) − cot(u + v + η + ξ) 

— α (cot(α(u − v − η − ξ)) + cot(αξ) 

+ cot(α(ξ + 2v + 2η)) − cot(α(u + v + η + ξ)))} 

sin(u + v − η + ξ) sin(u + v + η + ξ) sin(u − v − η − ξ) sin(u − v + η − ξ) 

sin(2η) (cos(2η) − cos(2u) cos(2v + 2ξ)) 

(4.39) 

with α =   π    as usual. 
π−2η 

4.5. Arctic curves 

4.5.1. NE branch. As explained above, the first application of the tangent method gives access 

to the portion of the arctic curve situated in the NE corner of the rectangular domain. 

 
Theorem 4.15. The NE branch of the arctic curve for the 6V′ model as predicted by the 
tangent method is given by the parametric equations 

x = X6V
′ 
[ξ] = 

B′[ξ] 
y = Y6V

′ 
[ξ] = B[ξ] −

 A[ξ] 
B′[ξ] 

 

NE A′[ξ] NE 

with the parameter range: 

A′[ξ] 

 

 
and where 

ξ ∈
 

η + |u|− v − π, 0
 
 

A[ξ] = 2 
sin(u − v − η − ξ) sin(u − v + η − ξ) sin(u + v − η + ξ) sin(u + v + η + ξ) 

sin(ξ − 2η) sin(ξ) (cos(2η) − cos(2u) cos(2v + 2ξ)) 

and B[ξ] = 2κ6V′ [ξ], with κ6V′ [ξ] is as in (4.39). 

 
Proof. We may now bring together the ingredients of the tangent method. We determine the 

family of tangents Fξ(x, y) = y + A[ξ]x − B[ξ] defined in section 2.2. We already identified the 

× 

6V 
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Σ 
2 4 5 

 

intercept B[ξ] = 2κ6V′ [ξ] with κ6V′ [ξ] given by (4.39). To determine the slope A[ξ] = 2κ/λ, 
we must find the leading contribution to the total partition function 

 

2n−1 

 
k=1 

HN,k[u, v]Yk,l   

 

1 

dκHN,2κN [u, v]Y2κN,λN 

0 

 
1 

dκ dp dp , dp e−NS
6V

′

 

0 

 
(κ,p2 ,p4,p5,t) 

S6V
′ 
(κ, p2, p4, p5, t) := S6V

′ 
(κ, t) + S6V

′ 
(κ, p2, p4, p5) 

0 1 
 

with S6V′ 
(κ, t) as in (4.36) and S6V′ 

(κ, p2, p3, p4) as in (4.34). As in the 6V case, the saddle- 
0 1 

point equation ∂ξS6V′ 
= 0 is solved by (4.39), and amounts to parameterizing κ = κ6V′ [ξ] in 

terms of the parameter ξ. The saddle-point equations ∂κS6V′ 
= ∂p2 

S6V′ 
= ∂p3 

S6V′ 
= ∂p4 

S6V′ 
= 

0 give rise to the system of algebraic equations: 
 

t 
 

 

γ1γ

2 

= 
(p2 + κ)(κ + λ − p2 − p3 − p4) 

(p3 − κ)(p4 − κ) 

γ1 
= 

(p2 + κ)(λ − p2 − p3 − p4) 

γ2 p2(κ + λ − p2 − p3 − p4) 

γ1 
= 

(κ − p3)(λ − p2 − p3 − p4) 

γ3 p3(κ + λ − p2 − p3 − p4) 

γ1 
= 

(κ − p4)(λ − p2 − p3 − p4) 
.
 

γ4 p4(κ + λ − p2 − p3 − p4) 

Substituting the values of the weights γi (4.33) and t = t6V′ [ξ] (4.37), we find the unique 
solution such that λ, κ > 0: 

p2 sin(u + v + η) sin(ξ)  
= − p3 

=
    sin(u − v − 3η) sin(ξ)  

κ sin(2η) sin(u + v − η + ξ) 

p4 sin(u + v + 3η) sin(ξ) 

κ 
= 

sin(2η) sin(u + v + η + ξ) 

κ sin(2η) sin(u − v − η − ξ) 

κ 
= 

sin(u − v − η − ξ) sin(u − v + η − ξ) sin(u + v − η + ξ) sin(u + v + η + ξ) 
. (4.40)

 

λ sin(ξ − 2η) sin(ξ) (cos(2η) − cos(2u) cos(2v + 2ξ)) 

Using the parametrization κ = κ6V′ [ξ], we may interpret the last equation as determining λ 
as a function λ6V′ [ξ] of the parameter ξ, where: 

 
λ6V′ [ξ] := κ6V′ [ξ] 

   sin(ξ − 2η) sin(ξ) (cos(2η) − cos(2u) cos(2v + 2ξ)) 
.
 

sin(u − v − η − ξ) sin(u − v + η − ξ) sin(u + v − η + ξ) sin(u + v + η + ξ) 

(4.41) 

 
To summarize, we have found the most likely exit point κ as an implicit function of the arbi- 

trary parameter λ, via the parametric equations (κ, λ) = (κ6V′ [ξ], λ6V′ [ξ]), which results in the 

family of tangent lines with equations Fξ(x, y) = 0. The theorem follows from the expressions 

(2.20), by identifying the slope A[ξ] = 2κ6V′ [ξ]/λ6V′ [ξ], while the range of the parameter ξ 
corresponds to imposing A[ξ] ∈ [0, ∞). Q 

∫ ∫ 

× 
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4.5.2. SE branch. As mentioned in section 2.2.2, a simple transformation of the model gives 
access to the portion of the arctic curve situated in the SE corner of the rectangular domain: 

we must change parameters (u, v) ›→ (u∗, v∗) = (−u, −v − π) and coordinates (x, y) ›→ (x,2 − 
x − y). 

Theorem 4.16. The SE branch of the arctic curve for the 6V′ model is given by the 
parametric equations 

x = X6V
′ 
[ξ] = X6V

′ ∗
[ξ] y = Y6V

′ 
[ξ] = 2 − Y6V

′ ∗
[ξ] (ξ ∈ [η + |u| + v, 0]) 

with X6V′ 
, Y6V′ 

as in theorem 4.15, and where the superscript ∗ stands for the transformation 
NE NE 

(u, v) (u∗, v∗) = (−u, −v − π), which we have also applied to the parameter range. 

 

Remark 4.17. In the case v = − π = v∗, we note that the equation of the tangent is invariant 

under u → −u = u∗. We deduce that the arctic curve is symmetric w.r.t. the line y = 1, and that 

the SE branch is simply the reflection of the NE branch: XSE = XNE, YSE = 2 − YNE. This is 

no longer true when v /= − π . 

 
4.6. Examples 

In this section, we illustrate theorems 4.15 and 4.16 with some concrete examples. 

4.6.1. The ‘6V’ case u = 0, v = π . The condition u = 0 implies that all horizontal spectral 
parameters are equal, and that the Boltzmann weights (2.7) and (2.8) lose their dependence on 

the parity of the row (upon taking ρe = ρo = ρ). In fact this gives a mapping to the weights 

(2.1) of the ordinary 6V model via (u6V′ , v6V′ ) (0, −u6V). We may wonder how the U-turn 
boundary condition has affected the thermodynamics of the 6V-DWBC model. In fact, extend- 

ing the usual connection between ASM and VSASM, it is easy to identify the 6V′ model at 

u = 0 with a 6V-DWBC model on a grid of ‘double’ size 2n + 1 2n + 1, and whose configu- 
rations are vertically symmetric, i.e. invariant under reflection w.r.t. a vertical line. As noted in 

remark 3.8, the parameter u in the 6V-DWBC case may be interpreted as an anisotropy param- 

eter. Indeed, the value u = π corresponds for the 6V-DWBC model to identical weights a = b 
which imply invariance of the partition function under reflection w.r.t. a horizontal line. How- 

ever, when u = π , this is no longer true, as the weights a = b are interchanged in the reflection. 
As a consequence, the tangency points of the arctic curve to the boundary of the domain move 

away from their symmetric positions. We expect therefore a connection between 6V-DWBC 

and 6V′ models only at the isotropic point u6V = π , corresponding to (u6V′ , v6V′ ) = (0, − π ). 

Note that this point corresponds to the τ -enumeration of VSASM (for the 6V′ side) and ASM 

(for the 6V side), with τ = 4 sin2(η). 

 
Theorem 4.18.   For arbitrary 0 < η < π , the arctic curve for the 6V′ model with 

(u6V′ , v6V′ ) = (0, − 
2 
) as obtained via the tangent method assuming conjecture 4.9 holds is 

identical to that of the 6V-DWBC model with u6V = π in the NE/SE sector, up to global 
rescaling. 

 

Proof. As our choice of parameters is invariant under the symmetry ∗ for both the 6V′ case 
(u6V′ , v6V′ )∗ = (u6V′ , v6V′ ) = (0, − π ) and the 6V case u6

∗
V  = u6V = π , we simply have to com- 

pare the envelope of the corresponding families of tangent lines leading to the NE branches, 
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Figure 12. Arctic curves for the 6V′ model with parameter u = 0. Left: case v = π , 

with η ranging from 0+ (outermost curve) to π − (innermost curve): all curves are sym- 
metric w.r.t. the line y = 1, and coincide with those of the 6V-DWBC model (NE/SE 

portions). Right: arctic curve of the 6V′ model for η = π , u = 0 and v = − π − π (red 
curve) compared with the arctic curve of the 6V-DWBC model (scaled by a factor of 
2) for the same value of η and the value u = π + π  leading to the same Boltzmann 

 

weights (blue curve). 
2 12 

 

as given by theorems 3.6 and 4.15. We have the two families (we add a superscript 6V, 6V′ to 
avoid ambiguities): 

y + A6V[ξ]x − B6V[ξ] = 0 and y + A6V
′ 
[ξ]x − B6V

′ 
[ξ] = 0. 

We find: 
 

 
lim 

u→0,v→− π 

 

A6V
′ 
[ξ] = lim 

u→ π 

 
 
A6V[ξ], lim 

u→0,v→− π 

 

B6V
′ 
[ξ] = 2 lim 

u→ π 

 
 
B6V[ξ] 

while the 6V and 6V′ ranges of the parameter ξ coincide with ξ [η π , 0]. We deduce that 
upon rescaling of x and y by a factor of 2 the two families are identical, and conclude that 
(X6V′ 

[ξ], Y6V′ 
[ξ]) = 2(X6V[ξ], Y6V[ξ]). The SE branch identification follows immediately from 

NE NE NE NE 
our remark on the symmetry ∗, leading to (X6V′ [ξ], Y6V′ [ξ]) = 2(X6V[ξ], Y6V[ξ]) as well, and 

SE SE SE SE 

the theorem follows. Q 

A particular case of theorem 4.18 corresponds to the uniform case where the 6V-DWBC 

model boils down to the enumeration of ASM, and the 6V′ model to that of VSASM. The 
arctic curves for both these cases were derived in [CP10a, CP10b] and [DFL18] respectively, 
and shown to coincide. 

For illustration, we have represented in figure 12 (left) the corresponding arctic curves for 

some values of η ranging from 0+ to π −: the curves are identical to the NE/SE portions of the 

arctic curve of the 6V-DWBC model, upon a rescaling by a global factor of 2. For η → 0+, we 
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2 

π π 2 

 
 

  
 

Figure 13. Arctic curves for the free fermion case η = π of the 6V′ model. Left: sym- 
 

metric case v = − π , with u 
 

 

ranging from 0+ 
4 

(outermost curve on the vertical x = −1) 

to π − (innermost curve on the vertical x = −1): all curves are symmetric w.r.t. the line 
 

y  
4 

π π + 
 

= 1. Right: asymmetric case v = − 2 − 12 , with u ranging from 0   (outermost curve 
on the vertical x = −1) to π − (innermost curve on the vertical x = −1 degenerating to a segment). 

 

find the following limiting arctic curve: 

(XNE, YNE)| 0 = 

  
1 

(2ξ − sin(2ξ)), 1 − 
1 

(2ξ + sin(2ξ))

   
ξ ∈ 

 
− 

π 
, 0
!  

. 
 

The limit η → π − 
is singular, as the parameter α = π/(π − 2η) diverges. However, one 

can take a double scaling limit η = π − ϵ, ξ = ϵζ, and ϵ → 0, in which case the limiting curve 
reads: 

 

XNE|ϵ→0 = 

 

YNE|ϵ→0 = 

 

(2 + ζ)2 (cos(2πζ) − 1 + 2πζ2(π(1 − ζ2) cos(πζ) + 2ζ sin(πζ)) 

4(1 + ζ + ζ2)sin2(πζ) 

(1 + ζ)2 (3 sin2(πζ) + π(1 − ζ)2(πζ(2 + ζ) cos(πζ) − 2(1 + ζ) sin(πζ)) 

2(1 + ζ + ζ2 )sin2(πζ) 

for ζ ∈ (−1, 0]. 

η→ 
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In particular, the 6V′ curve is anchored at the endpoints (−1, 0) and (−1, 2 ) with horizo ntal 

 
 

 
 

Figure 14. Arctic curve (NE and SE portions) of the ‘20V point’ of the 6V′ model, 
with η = u = π , v = − π (symmetric curve in red) together with the arctic curve of the associated 6V model, with η = π , u = 5π , scaled by a factor of 2. 

8 8 

 

 
π π 

By contrast, in the anisotropic case where u6V′ = 0 but v6V′ = 
2 

(and u6V = v6V′ = 
2 
), 

the arctic curves no longer coincide. For illustration, the predicted NE and SE portions of 

arctic curve of the 6V′ model at η = π , u6V′ = 0, v6V′ = − π − π  are depicted in figure 12 
(right), together with the arctic curve of the 6V-DWBC model with the same values of the π π 

weights (i.e. with same η and u6V = −v6V′ = 
2 

+ 
12 

): the resulting curves are very different. 
 

tangents, whereas the 6V curve has horizontal tangents at different points 

(−0.309, 2) and 
 

4( √1    − 1), 0
  
  (−1.69, 0). 

2(1 − √2   ), 2 

4.6.2. The ‘free fermion’ case η = π . This case is nicer in the sense that arctic curves are 

expected to be analytic. In particular, we checked that the SE portion of the arctic curve is 

indeed the analytic continuation of the NE one. In figure 13 (left) we represent arctic curves for 
η = π and the isotropic value v = − π with u ranging from 0+ to π −. The u = 0 arctic curve is 

4 2 4 
2 2

 

given by (x, y) = (cos(2ξ) − 1, sin(2ξ) + 1): it is the half-circle (x + 1) + (y − 1) = 1 with 

x ≥ −1, first obtained in [PR19a]. The case u = π is singular. As before, we consider the 
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4 

− 

4 

— − × 

2 2 12 (rightmost curve on top). 

2 12 6 

 
 

 
 

Figure 15. Arctic curve (NE and SE portions) of the 6V′ model with η = π , u = π and 
 

v varying from − π (leftmost curve on top) to − π − π
 

3 12 

 

double-scaling limit u = π + ϵ and ξ = ϵζ, leading to the limiting curve: 

 

(x, y) = 
ζ2 

− 
1 + ζ2

 

, 
(1 + ζ)2 

1 + ζ2
 

equal to the ellipse (2x + 1)2 + (y  1)2 = 1 inscribed in the rectangle [   1, 0]    [0, 2]. We 

see that the gap between the endpoints of the arctic curve on the vertical x = 1 ranges from 
2 (semi-circle case) to 0 (ellipse case). This type of arctic curve was also encountered when 

considering lozenge tilings (an archetypical free fermion model) with free boundary conditions 

in [DFR12]. 

In figure 13 (right) we represent arctic curves for η = π and a sample anisotropic value 

v = − π − π
 with u ranging from 0+ to π −. The u = 0 arctic curve is the quartic: 
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− 

ξ
 

n 

− 
n 

n 

n 

−sin (ξ) 1 + 
cos2

 
  π 

− ξ
  , 

2 cos2
 

6 
π 
6 

1 + 3 sin 
3 

+ 2ξ 

8 8 2 

2 2 12 2 12 

6 

3 3 

i=1 

 

2 cos2(ξ) 1 cos2 
  

π + ξ √ π 
   

 

The limit u → π − is singular, but the double scaling limit u = π − ϵ and ξ = ζ
√

ϵ and ϵ → 0 
  

6 6 

leads to the segment 

(x, y) =

 

−1 +
 1 

,
 2  

  

(ζ ∈ [0, ∞)) 
 

1 + √4   ζ2    1 + √4   ζ2
 

that joins point (−1, 0) to (0, 2). 

4.6.3. 20V case. This case corresponds to η = π , u = η = π and v = −4η = − π , by anal- 

ogy with the 6V model with DWBC whose partition function is identical to that of the uni- 

formly weighted 20V model with DWBC1,2 studied in references [DDFG20, DFG18]. The 

corresponding NE/SE portions of arctic curve are depicted in figure 14. 

4.6.4. Generic case. We present a ‘generic case’ in figure 15 with η = π , u = π and v vary- 
3 12 

ing from − π to − π − π . As before the case v = − π − π is singular, but may be investigated 

via a double scaling limit, leading to the segment joining (−1, 0) to (0, 2). 

5. 20V model with DWBC3 
 

5.1. Partition function and one-point function 

In reference [DF21] the partition function of the 20V-DWBC3 model was related to that of 

the 6V′ model, by use of the integrability of the weights (2.15). More precisely, let us denote 
by Z20V[u, v] the semi-homogeneous partition function of the 20V-DWBC3 model, with all 

horizontal spectral parameters equal to η + u, all diagonal ones to u and arbitrary vertical 

spectral parameters v = v1, v2, . . .  , vn, and by Z6V′ 
[u, v] the partition function of the 6V′ model 

with horizontal spectral parameters all equal to u and arbitrary vertical spectral parameters v. 

We have: 

Theorem 5.1 [ DF21] . The following relation holds for all n ≥ 1: 

Z20V[u, v] = αn(3n−1)/2Z6V
′ 
[u, v] sin (2u + 2η)n(3n−1)/2 

n n 
n 

× 
  

sin (u − vi − η)i−1 sin (η − u − vi)i. (5.1) 

In the homogeneous case where all vi = v for all i, this reduces to: 

Z20V[u, v] = αn(3n−1)/2Z6V
′ 
[u, v] sin (2u + 2η)n(3n−1)/2 

n n 

× sin (u − v − η)n(n−1)/2 sin (η − u − v)n(n+1)/2. (5.2) 

Next we define the one-point function H20V[u, v; ξ] as the ratio: 

Z20V[u, v; ξ] 
H20V[u, v; ξ] :=   n  

n Z20V[u, v] 

  
sin(u − v − ξ − η) 

 n−1  

sin(η − u − v − ξ) 
 n

 

 

H6V
′ 
[u, v; ξ] (5.3) 

sin(u − v − η) 

, 

sin(η − u − v) 

(x, y) = . 

= n 



J. Phys. A: Math. Theor. 54 (2021) 355201 P Di Francesco 

47 

 

 

n · · ·   

∈ − 

n,k 

n 

— \ 

n 

n 

− 

n 0 n,k n,k 

k=1 

 

where in Z20V[u, v; ξ] we have kept v1 = v2 =    = vn−1 = v but relaxed the last value 

vn = v + ξ. Like in the 6V and 6V′ cases, this function will be a crucial ingredient of the 
tangent method. 

 
5.2. Refined one-point functions and asymptotics 

5.2.1. Refined partition function. Let Z20V[u, v] denote the partition function of the 20V model 

on the quadrangle Qn with uniform weights (2.15), in which the rightmost path is conditioned 

to first visit the rightmost column at a point at position k [1, 2n 1] (see figure 16 for an 
illustration). We may split this partition function into Z20V[u, v] = Z20V−[u, v] + Z20V\[u, v] 

n,k n,k n,k 

according to whether the topmost path accesses the point k via a horizontal or diagonal 

step, before terminating with k vertical steps until its endpoint. This quantity is easily related 

to the partially inhomogeneous partition function Z20V[u, v; ξ] (5.3). Recall that for the latter 

the weights are homogeneous with parameters u, v except for the nth column in which v is 

replaced by v + ξ. Let ω̄i := ωi[u, v + ξ]/ωi[u, v] be the relative Boltzmann weights for the 
last column, as compared to the homogeneous values. Specifically, using the weights: 

ω̄0  = 
sin(u − v − ξ + η) sin(η − u − v − ξ) 

, 
sin(u − v + η) sin(η − u − v) 

ω̄1  = 
sin(u − v − ξ − η) sin(−u − v − ξ − η) 

, 
sin(u − v − η) sin(−u − v − η) 

ω̄ 2  = 
sin(u − v − ξ − η) 

sin(u − v − η) 

ω̄4  = 
sin(η − u − v − ξ) 

sin(η − u − v) 

we find the following relation, expressing the decomposition of the contributions to 

Z20V[u, v; ξ] according to the configurations of their topmost path (see figure 16 for an 

illustration): 

2Σn−1     
ω̄4Z20V−[u, v] + ω̄2Z 

 
20V\[u, v] 

 
ω̄2n−k−1ω̄k−1 = Z20V[u, v; ξ]. (5.4) 

 
k=1 

n,k n,k 0 1 n 

Introducing the parameters 

τ := 
ω̄1 

, σ := 
ω̄2

 

 
this reads: 

ω̄0 ω̄4  

 
2n−1 

Z20V[u, v; ξ] = ω̄4ω̄2n−2 
Σ 

τ k−1(Z20V−[u, v] + σ Z20V\[u, v]). 

5.2.2. Refined one-point function. As in the 6V′ case, the corresponding (normalized) refined 

one-point functions H20V−[u, v], H20V\[u, v] are ratios of slightly modified refined partition 
n,k n,k 

functions to the original homogeneous partition function Z20V[u, v]. The corresponding con- 

figurations have a topmost path that stops at the point k after a last step from the n 1th vertical 
to the nth one (see figure 9 top right, pink domain). Compared to Z20V−[u, v], Z20V\[u, v], we 

n,k n,k 

must remove the last k vertical steps of the topmost path, and thus replace the k corresponding 

weights by 1 (instead of ω4, ω2) for the turning vertex, and by ω0 (instead of ω1) for the k − 1 
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n,k 

n,k 

n,k 

n,k 

n 
n 

Z20V[u, v] 0 n,k n,k 

 
 

 
 

Figure 16. A sample contribution to the refined partition function Z20V[u, v]. In this 

particular example, the contribution pertains to Z20V\[u, v]. The medallions detail the 
various weights involved in the last column. 

 

vertices crossed by the path: 

 
H20V−[u, v] =  1  

   
ω0 

  k−1 
Z20V−[u, v] 

 

 

 
n,k 

ω4 ω1 Z20V[u, v] 

H20V\[u, v] =  1  
   

ω0 
  k−1 

Z20V\[u, v] 
 

 

 

. (5.5) 

We deduce the relation 
20V 

ω2 ω1 Z20V[u, v] 
 

2n−1 

H20V[u, v; ξ] = 
Zn      [u, v; ξ]  

= ω4[u, v; ξ] ω̄2n−2 
Σ 

tk−1(H20V−[u, v] + sH20V\[u, v]), (5.6) 
 

where we have used the parameters 

t = τ 
ω1 

= 
sin(u − v − ξ − η) sin(−u − v − ξ − η) 

=: t20V[ξ],
 

ω0 sin(u − v − ξ + η) sin(η − u − v − ξ) 

s = σ
ω2 

= 
sin(u − v − ξ − η) 

. (5.7)
 

ω4 sin(η − u − v − ξ) 

n 

n 

n,k 

k=1 

, 
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0 
   

−

 

n 

   

−

 

n,k 

n,k 

0 

— − − − − 

  
sin(2v)sin2(u − v − ξ − η) sin(u + v + ξ + η) sin(u − v + η) 

 
 

N,2κN N,2κN 2iπt 
0 

 

We note that the function t20V[ξ] is identical to t6V′ [ξ] of the 6V′ model (4.37). 

5.2.3. Relation to 6V′ one-point function. Using equation (5.3), and noting moreover that 

āoāe = ω̄0, we may express: 

H20V[u, v; ξ] 
 

 

 

 

  
sin(u − v − ξ − η) 

 n−1 

     sin(u − v + η)  
 n 

H6V′ 
[u, v; ξ] 

 

ω̄2n−1 
= 

sin(u − v − η) sin(u − v − ξ + η) 

n (āoāe)n−1
 

. (5.8) 

5.2.4. Asymptotics. We now turn to large n = N asymptotics of the one-point functions (5.5) 

with the scaled exit point position κ = k/(2N) kept finite. We first note that the relation (5.8) 
yields the large N asymptotics 

H20V[u, v; ξ] 
 
 20V 

N 

ω̄2N−1 
  e−Nϕ [u,v,ξ] 

ϕ20V[u, v; ξ] = ϕ6V′ 
[u, v, ξ] log 

sin(u − v − ξ − η) sin(u − v + η) 

sin(u − v − ξ + η) sin(u − v − η) 
 

= −log 
 

 

sin(2v + ξ)sin2(u − v − η) sin(u + v + η) sin(u − v − ξ + η) 

log 
sin(αξ) sin(α(ξ + 2v + 2η)) sin(α(u − v − η)) sin(α(u + v + η)) 

. 
α sin(ξ) sin(2α(v + η)) sin(α(u − v − ξ − η)) sin(α(u + v + ξ + η)) 

(5.9) 

As the parameter s is finite and independent of k, using the relation (5.6), the connection 

between H20V[u, v; ξ] to the 6V′ one-point function (5.8) and finally the asymptotics (5.3), we 
get identical leading behaviors for both one-point functions. 

 
Theorem 5.2. The large n = N scaling limit of the refined one-point functions H20V−[u, v] 

and H20V\[u, v] reads: 

H20V− [u, v]     H20V\ [u, v]    

     
   dt 

e−NS20V(κ,t) 

 

S20V(κ, t) := ϕ20V[u, v; ξ] + 2κ log(t), 

where ϕ20V[u, v; ξ] is as in (5.9), and in which the variables t and ξ are related via t = t20V[ξ] 
(5.7). 

As before, the integral is dominated at large N by the solution of the saddle-point equation 
∂tS20V(κ, t) = 0, or equivalently, changing integration variables to ξ: ∂ξS20V(κ, t20V[ξ]) = 0. 

0 0 

Using the identification t20V[ξ] = t6V′ [ξ], this is easily solved as 

κ = κ20V[ξ] := − 
1 t6V′ [ξ] 

∂ ϕ20V[u, v; ξ] 

2 ∂ξt6V′ [ξ] 

= 
κ6V′ [ξ] 

+ 
cot(u − v − ξ + η) − cot(u − v − ξ − η) 

2 2 sin(2η) 

sin2(u v ξ + η)sin2(u v ξ η) 

× 
cos(2u) cos(2ξ + 2v) − cos(2η) 

(5.10)
 

0 

n 

ξ 
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+ 

− 

0 × 

× 

— \ | 

⎝ ⎠ 

⎛    ⎞

1

 

4 − 

 

with κ6V′ [ξ] as in (4.38) and (4.39). 

5.3. Paths 

5.3.1. Partition function. With the setting of figure 9 (top right, light blue domain), we wish 
to compute the partition function Yk,l(β1, β2) of a single (Schröder) path of the 20V model in 

the first quadrant Z2 , with starting point (0, k) and endpoint (l, 0). We include a weight β1, β2 

according to the configuration of the step taken before entering the path domain (last step in 

the pink domain, respectively horizontal or diagonal). 

The paths receive homogeneous 20V weights (2.15), with horizontal, vertical, diagonal uni- 

form spectral parameters u + η, v, u respectively, while all vertices not visited by the path 
receive the weight ω0. As in the previous cases, we may factor out an unimportant overall fac- 

tor ωkl (where kl is the area of the light blue rectangle [0, l]     [0, k] in figure 9 top right), and 
weight the vertices visited by the path by and extra factor 1 . 

ω0 

The partition function Yk,l(β1, β2) is computed by use of a transfer matrix technique (see 
[DDFG20] appendix B for details with slightly different definitions). Each path is traveled 
from N, W to S, E, and the transfer matrix is a 3 3 matrix whose entries correspond to the 

vertex weight for the transition from the entering step at each visited vertex to the outgoing 

step. The three states are ( , , ) for respectively a horizontal, diagonal, vertical step ending 

at the transition vertex. Moreover we include an extra weight z, zw, w per horizontal, diagonal, 

vertical outgoing step respectively. Note that the step prior to entering the quadrant (exit from 

the rectangular domain) may be either horizontal (with an extra weight β1) or diagonal (with 

an extra weight β2), while the last step is vertical. The transfer matrix T20V reads: 

 1  

⎛ 
ω6z ω5z ω4z 

⎞
 

T20V = 
ω0 

ω5zw ω3zw ω2zw . 
ω4w  ω2w  ω1w 

The generating function for the Yk,l reads 
 

k

Σ

,l≥0 

 
Yk,l(β1, β2)z

kwl+1
 = (0, 0, 1)(I − T20V)− 

β1 
⎝β2

⎠ . 

 

This is a rational fraction with denominator det(I − T20V) = 1 − α1w − α2z − α3zw − 

α4zw2 − α5z2 w − α6z2w2, where 

 

α1 = 
ω1 

, α2 = 
ω0 

ω6 
, α3 = 

ω0 

ω0ω3 + ω2 ω1ω6 
2 
0 

ω2 − ω1ω3 ω2 − ω6ω3 
 α4 = 2 

2
 

0 

, α5 = 5 
2 

, 
0 

2ω2ω4ω5 + ω1ω6ω3 − ω3ω2 − ω1ω2 − ω6ω2 
 

α6 = 
3 

4 5 2 . (5.11) 
0 

 

5.3.2. Asymptotics.   We now consider the large n = N, k, l limit, with κ = k/(2N) and λ = 
l/N  fixed.  Like  in  section  4.3.2  above,  the  asymptotics  of  Yk,l   are  determined  by  the 

0 

ω 

ω ω 

ω 
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∫ 

3   
1
4

 5 6 

1 

α
1 

α
2     

→ 

− 

Σ 

 

denominator (5.11), and read (see also reference [DDFG20] appendix B for details): 

Y2κN,λN    

 

1 

dp dp dp dp e−NS20V(κ,p3,p4,p5,p6) 

0 

S20V(κ, p3, p4, p5, p6) = −(2κ + λ − p3 − 2p4 − 2p5 − 3p6)log(2κ+λ− p3 −2p4−2p5 −3p6) 

+ (2κ − p3 − 2p4 − p5 − 2p6)log

 
2κ − p3 − 2p4 − p5 − 2p6 

 

 

+ (λ − p3 − p4 − 2p5 − 2p6)log

  
λ − p3 − p4 − 2p5 − 2p6 

 

 
 
 

 

+ 
i=3 

 
pi log 

 pi 

αi 

 
. (5.12) 

As before this also covers the case of vanishing weights αi by taking the limit pi 0 at 

finite αi in the above. 

 
5.4. Arctic curves 

 

 
Theorem 5.3. The NE branch of the arctic curve for the 20V-DWBC3 model on the 

quadrangle Qn is predicted by the tangent method to be: 

x = X20V[ξ] = 
B′[ξ]

, y = Y20V[ξ] = B[ξ] −
 A[ξ] 

B′[ξ], 
 

NE A′[ξ] NE 
A′[ξ] 

where B[ξ] = 2κ20V[ξ] with κ20V[ξ] as in (5.10), and where A[ξ] is given by 

A[ξ] = 
cos(2η) − cos(u + v + η) cos(u + v − η + 2ξ) 

cos(2η) − cos(2u) cos(2v + 2ξ) 

sin(u − v − η − ξ) sin(u − v + η − ξ) 

sin(ξ) sin(ξ − 2η) 

 

 

 

 
 

(5.13) 

and with the parameter range: 

ξ ∈ [η + u − v − π, 0] . 

 
Proof. We may now bring together the ingredients of the tangent method. We determine the 

family of tangents Fξ(x, y) = y + A[ξ]x B[ξ] defined in section 2.2. We already identified the 

intercept B[ξ] = 2κ20V[ξ] with κ20V[ξ] given by (5.10). To determine the slope A[ξ] = 2κ/λ, 
we must find the leading contribution to the total partition function 

2n−1 

 
k=1 

 
HN,k[u, v]Yk,l   

    
  dt 

∫ 
1

 
 

  

 
1 

dκHN,2κN [u, v]Y2κN,λN 

0 

 

20V 

S6V
′ 
(κ, p2, p4, p5, t) := S20V(κ, t) + S20V(κ, p3, p4, p5, p6), 

0 1 

0 2iπt 

6 

× 

∫ 

dκ dp3 dp4, dp5 dp6 e−NS (κ,p3,p4,p5,p6,t) 

Σ 
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0 

1 

1 

2 

2 sin(2η) sin(2u)
 

sin
 

u − v + π
 

sin
 

u + v + π
 

− sin2(2η)
 

 

 

where the contour of integration of the variable t circles the origin, and with S20V(κ, t) 

as in (4.36) and S20V(κ, p3, p4, p5, p6) as in (5.12). As in the 6V case, the first saddle-point 

equation reads ∂tS20V = 0 or equivalently ∂ξS20V = 0, in terms of the dependent variable ξ 
via t = t20V[ξ]. The latter is solved by (5.10), and amounts to parameterizing κ = κ20V[ξ] 

in terms of the parameter ξ. The other saddle-point equations ∂κS20V = ∂p3 
S20V = ∂p4 

S20V = 

∂p5 
S20V = ∂p6 

S20V = 0 give rise to the system of algebraic equations: 

 

t 
= 

2κ + λ − p3 − 2p4 − 2p5 − 3p6 

α1 2κ − p3 − 2p4 − p5 − 2p6 

α1α2 p3 
= 

(2κ − p3 − 2p4 − p5 − 2p6)(λ − p3 − p4 − 2p5 − 2p6) 

α3 

α2α2 p4 

α4 

α1α2 p5 
 

 

α5 

α2α2 p6 
 

 

2κ + λ − p3 − 2p4 − 2p5 − 3p6 

(2κ − p3 − 2p4 − p5 − 2p6)2(λ − p3 − p4 − 2p5 − 2p6) 

(2κ + λ − p3 − 2p4 − 2p5 − 3p6)2
 

(2κ − p3 − 2p4 − p5 − 2p6)(λ − p3 − p4 − 2p5 − 2p6)2 

(2κ + λ − p3 − 2p4 − 2p5 − 3p6)2
 

(2κ − p3 − 2p4 − p5 − 2p6)2(λ − p3 − p4 − 2p5 − 2p6)2 
 

1    2 = 
α6 

. 
(2κ + λ − p3 − 2p4 − 2p5 − 3p6)3

 
 

Substituting the values of t = t20V[ξ] (5.7) and of the weights αi (5.11) expressed 
using (2.15): 

 

α1 = 
sin(u − v − η) sin(u + v + η) 

, α2 =
    sin(2u) sin(u − v − η)  

sin(u − v + η) sin(u + v − η) sin(2u + 2η) sin(u − v + η) 
 

α3 = 
 

sin(2u + 

 

2η) sin( 
4 

u − v + η 

 
) sin( 

4 

u + v − η) 

α4 =
 sin(2u) sin(u − v − η) sin(u + v + 3η) 

sin(2u + 2η) sin(u − v + η) sin(η − u − v) 

α5 = 
sin(2u − 2η) sin(u − v − η) sin(u + v + η) 

sin(2u + 2η) sin(u − v + η) sin(η − u − v) 

α6 = 
sin(u − v − 3η) sin(u + v + 3η) sin(2u − 2η) 

sin(u − v + η) sin(u + v − η) sin(2u + 2η) 

we find the unique solution such that λ, κ > 0: 

 
p3 

=
 2 sin(ξ − 2η) sin(ξ) sin(u + v + ξ − η) sin(u + v + ξ + η)  

κ sin(2η) sin(u − v − η) (cos(2u) cos(u + v + η) − cos(2η) cos(u − v − 2ξ + η)) 

cos2(2u) − cos(4η) − sin(2u) sin(2v + 2η) 

× 
cos(2η) − cos(u + v + η) cos(u + v + 2ξ − η) 

p4 
=

 sin(2u) sin(u + v + 3η) sin(u − v − ξ + η)  

κ sin2(2η) sin(u − v − ξ − η) (cos(2u) cos(u + v + η) − cos(2η) cos(u − v − 2ξ + η)) 

sin(ξ − 2η) sin(ξ)sin2(u + v + ξ − η) 

× 
cos(2η) − cos(u + v + η) cos(u + v + 2ξ − η) 

= 

= 
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— − − 

SE NE NE 

NE NE 

 

p5 
=

 2 sin(2u − 2η) sin(u + v + η)  

κ sin2(2η) (cos(2u) cos(u + v + η) − cos(2η) cos(u − v − 2ξ + η)) 

sin2(ξ)sin2(u + v + ξ + η) 

× 
cos(2η) − cos(u + v + η) cos(u + v + 2ξ − η) 

p6 2 sin(2u − 2η) sin(u − v − 3η) sin(u + v + 3η)sin2(ξ) 

κ 
= 

sin2(2η) sin(u − v − η) (cos(2u) cos(u + v + η) − cos(2η) cos(u − v − 2ξ + η)) 

   sin(u − v − ξ + η) sin(u + v + ξ − η) sin(u + v + ξ + η)      

sin(u − v − ξ − η) (cos(2η) − cos(u + v + η) cos(u + v + 2ξ − η)) 
κ 

= 
sin(u − v − ξ − η) sin(u − v − ξ + η) (cos(2η) − cos(u + v + η) cos(u + v + 2ξ − η)) 

.
 

  

λ 2 sin(ξ − 2η) sin(ξ) (cos(2η) − cos(2u) cos(2v + 2ξ))  
(5.14) 

 

Using the parametrization κ = κ20V[ξ], we may interpret the last equation as determining 

λ as a function λ20V[ξ] of the parameter ξ, where: 

λ20V[ξ] := κ20V[ξ]
 2 sin(ξ) sin(ξ − 2η)  

sin(u − v − η − ξ) sin(u − v + η − ξ) 

cos(2η) − cos(u + v + η) cos(u + v − η + 2ξ) 
. (5.15) 

cos(2η) − cos(2u) cos(2v + 2ξ) 

To summarize, we have found the most likely exit point κ as an implicit function of the 

arbitrary parameter λ, via the parametric equations (κ, λ) = (κ20V[ξ], λ20V[ξ]), which results 

in the family of tangent lines Fξ(x, y) = 0. The theorem follows from the expressions (2.20), by 

identifying the slope A[ξ] = 2κ20V[ξ]/λ20V[ξ], while the range of the parameter ξ corresponds 

to imposing A[ξ] ∈ [0, ∞). Q 

As explained in section 2.2.2, the SE branch of the arctic curve is easily obtained by 

applying  the  transformation (u, v) →›    (u∗, v∗) = (u, −v − π)  and  the  change  of  coordinates 

(x, y) ›→ (x,2 − x − y). 

 
Theorem 5.4. The SE branch of the arctic curve for the 20V-DWBC3 model is given by the 

parametric equations 

x = X20V[ξ] = X20V[ξ]∗ 
SE NE 

y = Y20V[ξ] = 2 − X20V[ξ]∗ − Y20V[ξ]∗ (ξ ∈ [η + u + v, 0]) 

with X20V, Y20V as in theorem 5.3, and where the superscript ∗ stands for the transformation 

(u, v) ›→ (u∗, v∗) = (u, −v − π), which we have also applied to the range of ξ. 

 
5.5. Examples 

We now illustrate the results of theorems 5.3 and 5.4 in a few examples. 

 

5.5.1. Case u = 0. In this case the arctic curve is entirely made of its NE and SE portions, 

as it touches the W boundary at points ( 1, 1) and ( 1, 2), both with a tangent of slope 1/2 

(corresponding to A = 1/2) for all values of η, v. We have represented in figure 17 (left) the 

× 

× 



J. Phys. A: Math. Theor. 54 (2021) 355201 P Di Francesco 

54 

 

 

2 − 

2 

2 

6 

— − 

2 

π π 2 

2 6 2 

 
 

  
 

Figure 17. Left: arctic curve of the 20V-DWBC3 in the cases u = 0, v = π and η 
varying from 0+ (outermost curve) to π − (innermost curve). Right: arctic curve of the 
20V-DWBC3 in the cases u = 0, η = π and v varying between − π − π (topmost NE 

   

 

6 2 6 
curve) and − π (bottommost). 

 

arctic curves for the self-dual value v = − π and for η ranging from 0+ to π −. The arctic curve 
2 2 

for η = 0 reads: 

(XNE[ξ], YNE[ξ]) = 

  
2ξ − sin(2ξ)

, 1 − 2 
ξ 
   

ξ ∈ 
 
− 

π 
, 0
!  

. 
 

The limit η → π − is singular, however we find a finite result by setting η = π − ϵ and ξ = ϵζ, 
2 2 

and then sending ϵ → 0, with the result: 

 

XNE = 
(2 + ζ)2 (cos(2πζ) − 1 + 2πζ2(π(1 − ζ2) cos(πζ) + 2ζ sin(πζ)) 

4(1 + ζ + ζ2)sin2(πζ) 
1 π(1 − ζ2) 

YNE = 1 + 
ζ 

− 
2 sin(πζ) 

(2 + ζ)(2ζ2 + 2ζ − 1) (cos(2πζ) − 1 + 2πζ2(π(1 − ζ2) cos(πζ) + 2ζ sin(πζ)) 

+ 
8(1 + ζ + ζ2)sin2(πζ) 

.
 

In all these cases, the SE branch is given by (XSE, YSE) = (XNE,2 XNE YNE) as v = v∗. 

We also represent non-selfdual cases in figure 17 (right), for u = 0, η = π and v varying 

between − π − π and − π . We see that the tangency point on the vertical x = 0 moves away 

from the self-dual point (0, 1), and that the curves are no longer nested as in the v = − π case. 
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Q 

  
3  3 

  
2   4 

  

4 

4 

2   5     2 2 2  2 

— − 
— − − − − 

32 

Q T 

n,k − 

8 2 

izontal tangent at 2 ( 3 − 3), 2   (−0.845, 2) and a diagonal tangent of slope −1 at 
arctic  curve  predict ed √by  theorem  s  5.3  and  5.4  have  a  vertical  tangent  at  (0, 1),  a  hor- 

3 − 3 − 3) − . . 

8 2 32 2 32 32 

 

5.5.2. Uniform  case.   As  is  easily  checked √on  the  weights  (2.15),  the  uniform  case  cor- 

responds to η = π = u, v = − π  and ν = 2 (2.17). The NE and SE portions of the 

 
3   

  
2 (

√
3 3), 2 (3 

√ 
( 0 845, 0 845). We have represented in figure 17 (left) the 

NE and SE portions of the arctic curve together with the rescaled quadrangular domain 

limn→∞ n/n. 
As pointed out before, the tangent method does not allow to predict the NW and SW 

portions of the arctic curve. It is interesting however to notice that the NE portion of the 

curve is algebraic. With a suitable shift of the origin to the point (−2, 1), namely substituting 

(x, y) → (x − 2, y + 1), we obtain the following algebraic equation: 

36 x2 + y2 − 
2   

5 

3 
− 5 3 x2 + y2 − 

2   
3 

3 
− 2 3 5 

2   
2 

x2 + y2 
3 

— 2 5 (x + y − 4x y ) = 0. (5.16) 

We have represented this algebraic curve in figure 18 (right) together with the NE portion of 

the uniform 20V-DWBC3 curve, and the scaled quadrangular domain (in black). We see that 

the SE portion of the arctic curve (dashed black curve) is obtained as the shear of the analytic 

continuation of the NE portion (red curve). 

5.5.3. Free fermion case.   In view of the connection to the 6V′ model (with same values of 

η, u, v) it is clear that η = π plays the role of free fermion point. In particular, we expect the 

arctic curve to be analytic. As a highly non-trivial check, we have verified that at η = π and 
for all allowed values of u, v the SE branch is the analytic continuation of the NE branch. Like 

in the 6V′ case, we also get access to the NW and SW branches via analytic continuation. We 
have represented in figure 19 a sequence of cases with η = π , u = π and v varying (1) from 

π π 3π π 3π π 4 16 

2 
to  

2 
+ 

16 
(left) and (2) from  

2       16 
to    

2 
(right). We see that in the case (1) the curve 

is anchored at the point ( 1, 2) while the other end along the vertical x = 1 varies along the 
W boundary. The reverse phenomenon is observed in the case (2), where the curve is anchored 

at the point (−1, 1) and its other end varies along the W boundary. 

5.5.4. Generic case. We finally present in figure 20 a ‘generic’ case with no special symme- 

try: η = π , and v = − π − π  /= v∗ = − π + π , for u varying from 0 to 11π = π + v − η. The 

last value is singular, and must be approached as u = 11π − ϵ, ξ = ϵ1/2ζ with ϵ → 0. The result 

is a line segment joining the points (−1, 1) and (0, 2). 

6. Aztec triangle domino tilings 
 

6.1. Partition function and one-point functions 

In reference [DF21], a correspondence was established between the 20V-DWBC3 model on 

n and the domino tiling problem of the Aztec triangle n. First it was shown that the models 

share the same uniformly weighted partition function (total number of configurations): 

Z20V = ZDT. 
n n 

Next this correspondence was refined by considering the (uniformly weighted) 20V-DWBC3 

refined partition functions Z20V, k = 1, 2, . . .  , 2n 1, equal to the refined partition function of 
section 5.2.1 with the parameters (2.17). Their counterparts are the refined partition functions of 

− 
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− 

n,k 

n,k 

 
 

  
 

Figure 18. Left: arctic curve (NE = red and SE = blue portions) of the uniform 20V- 
DWBC3 model on its rescaled domain (black), corresponding to η = π , u = π and 

8 8 v = − π 
2 . Right: arctic curve of the uniform 20V-DWBC3 model (NE branch in thicker 

blue line, SE branch in dashed black), together with the analytic continuation of its NE 
portion (in red). The arrow indicates the shear transformation from the latter to the SE 
branch. 

 

 
the domino tiling problem ZDT defined in a similar manner, using the non-intersecting Schröder 
path formulation of section 2.1.4, as the number of configurations in which the topmost path 

is conditioned to first enter the last vertical at position k = 0, 1, . . .  , n   1, before ending with 
k vertical steps (see the pink domain in figure 9 (bottom right) for an illustration). In reference 
[DF21], it was shown that 

 

ZDT = Z20V + Z20V . (6.1) 
n,k n,n+k+1 n,n+k 

 

This implies the following relation between the corresponding refined one-point functions 
H20V = Z20V/Z20V and HDT  = ZDT/ZDT: 

n,k n,k n n,k n,k n 

 

HDT = H20V + H20V . (6.2) 
n,k n,n+k+1 n,n+k 

 

 

6.2. Arctic curves 
 

6.2.1. Asymptotics of the one-point function. As usual, we explore the asymptotics of the 

refined one-point function HDT for the domino tiling model in the scaling limit of large n = N 

and κ = k/N finite. The relation (6.2) allows immediately to express: 
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n,k 

= 2H ′ 

0 

4 

2 2 16 (bottommost). Right: same, but with v 

2 16 2 

N,κN 2iπt 
0 

0 0 2 

 
 

  
 

Figure 19. Left: arctic curve of the free fermion 20V-DWBC3 model for η = π , u = π 
 

and v varying from − π (topmost) to − π + 3 π 
 

  

4 16 

varying from − π − 3 π (topmost) to − π (bottommost). 

 
Theorem 6.1. The large n = N asymptotics of the refined one-point function HDT for the 

domino tiling model reads: 

 

 
 

and 

 

DT 
N,κN 

 

20V 

N,2κ  N , κ′ = 
1 + κ 

2 

 
(6.3) 

HDT         
    

      
    dt 

e−NSDT(κ,t) 

SDT(κ, t) = S20V 

  
1 + κ 

, t

    

= ϕ20V[u, v; ξ] + (1 + κ)log(t), 
 

where the contour of integration of the variable t circles the origin, and the variable ξ depends 

implicitly on t via t = t20V[ξ] (5.7). 

Similarly to the 6V′ and 20V cases, the saddle-point equation in the variable ξ reads 

∂ξSDT(κ, t20V[ξ]) = 0, with the solution: 

κ = κDT[ξ] := 2κ20V[ξ] − 1 
 

ξ ∈ 
 

− 
π 

, 0
!  

(6.4) 

with κ20V[ξ] as in (5.10), and where the range of ξ ensures that κ20V ∈ [1, 2] hence κDT ∈ [0, 1]. 

H 
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32 

1 

1 

YκN,λN    dp3 e 1 κ 3  , S1   (κ, p3) = S1     (κ, p3) 

 
 

  
 

Figure 20. Left: arctic curve of the 20V-DWBC3 model for η = π , v = − π − π   and u 
  

varying from 0 (innermost) to 3π . Right: same, but with u 8 
3π    

2 32 

16 

to 11π (segment). 

varying from 16 (bottommost) 

6.2.2. Asymptotics of path partition function.   By definition, and comparing figure 9 top right 
and bottom right (light blue domains), we have in the uniform case: YDT = Y20V. We deduce 

the asymptotics 

DT 

∫ 
1 

−NSDT(  ,p ) DT 
 

 

 

 

 

 
20V 

k,l k,l 

with S20V the uniform weight version of (5.12): 
 

S20V(κ, p3) = −(κ + λ − p3)log(κ + λ − p3) + (κ − p3)log(κ − p3) 

+ (λ − p3)log(λ − p3) + p3 log(p3). 

 
6.2.3. Arctic curves via the tangent method. Strictly speaking, the tangent method only pre- 

dicts the NE portion of the arctic curve. However, the domino tiling problem is of the ‘free 

fermion’ class, as it involves only non-intersecting lattice paths (or alternatively the dual is just 

a dimer model, for which the general results of [KOS06] apply). As such, it has an analytic 

0 
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4 

8 

 
 

 
 

 

Figure 21. Left: arctic curve of the uniformly weighted domino tiling problem of the 
Aztec triangle, tangent to the NW, N and E boundaries. Right: comparison with the 
arctic curve of the 20V-DWBC3 model: the blue portion is the common NE branch of 
the two curves, represented with their respective rescaled domains. 

 
 

arctic curve, hence we may safely use the analytic continuation of the NE portion predicted by 

the tangent method. 

 
Theorem 6.2. The arctic curve for the uniform domino tilings of the Aztec triangle, as 

predicted via the tangent method, reads 

x = XDT[ξ] = 
B′[ξ]

 
 

y = YDT[ξ] = B[ξ] −
 A[ξ] 

B′[ξ] ξ ∈ 

"

− 
3π 

, 0

# 

, 

 

where 

A′[ξ] A′[ξ] 8 

B[ξ] := κDT[ξ]   and    A[ξ] := − cot(2ξ) 

with κDT[ξ] as in (6.4). 

 

Proof. The rescaled tangent lines are now through the points (0, κ) and (λ, 0), governed by 

the equation y + Ax B = 0 with A = κ/λ, B = κ. We have already determined the most 

likely exit point κ = κDT[ξ] (6.4), leading to B[ξ] = κDT[ξ]. To determine A[ξ] we solve 

the saddle-point equations ∂κSDT(κ, t, p3) = ∂p3 
SDT(κ, t, p3) = 0, in terms of the total action 

SDT(κ, t, p3) := SDT(κ, t) + SDT(κ, p3). These read 
0 1 

t =
    κ − p3    

, 
p3(κ + λ − p3) 

= 1
 

κ + λ − p3 (κ − p3)(λ − p3) 

and are easily solved into 

   p3  t[ξ] − 1 sin(ξ) √ , 
κDT[ξ] 

= 
   2t[ξ]    

= − cot(2ξ) = A[ξ]. 
 

= =     
 

The range of parameter ξ for the NE portion of arctic curve is ξ ∈ [− π , 0], ensuring that 

κDT[ξ] ∈ [0, 1], however as noted above we may extend the range to cover the entire domain, 

which corresponds to κDT[ξ] ∈ [0, 2], namely ξ ∈ [− 3π , 0], and the theorem follows. Q 
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2 

— → − 

∗ 

cal tangent at the origin, and a horizontal tangent at the point 2 ( 3 − 3), 1  , while it ends 

We illustrate the result of theorem 6.2 in figure 21 (left). No te √that the cu rve has a verti- 

3 − 2, 2 
2 

3 

 

  
 

Figure 22. Left: the arctic curve of the uniform 6V-DWBC/ASM model (red and dashed 
black curves inside the square) and the analytic continuation of the NE branch (blue 
ellipse inscribed in a hexagon); the arrow indicates the shear mapping the latter to the SE 
branch (dashed black curve). Right: the arctic curve for TSSCPP (blue curve inside the 
pink triangular domain), and that for the lozenge tiling of the regular hexagon obtained 
by multiple reflections (red circle). 

 

 

 

√ 3     √     
 

We note that the curve of theorem 6.2 is a portion of an algebraic curve. In fact, changing 

the origin to (  2, 0) by applying the substitution (x, y)   (x   2, y), we find that this curve 

is given by the same equation (5.16) as in the uniform 20V-DWBC3 case. This is illustrated 

in figure 21 (right) where we have represented both rescaled domains, and their common NE 

branch of the arctic curve (in blue). 

 

7. Conclusion 

 
In this paper, we have presented the tangent method derivation of arctic curves for the disor- 

dered phase of the 6V-DWBC, 6V′, 20V-DWBC3 models, as well as for the domino tilings 
of the Aztec triangle. The main ingredient used is the large size asymptotics of refined one- 

point functions, which we derived from the form of the thermodynamic free energy of the 6V′ 
model in the disordered phase (theorem 4.9), and then deducing all relevant asymptotics from 

there. Our method however only predicts the NE and SE branches of the relevant arctic curves. 

It would be desirable to find the remaining NW and SW branches of the arctic curves when 

applicable. 

Another question regards the other possible phases of the 6V-U model: unfortunately the 

thermodynamic free energy is known only for the disordered phases (see [RK15]), and this 

problem should be addressed first. 

The results for the 6V′ and 20V-DWBC3 models of the present paper complement earlier 
results on the 6V-DWBC [CS16, DFL18] and 20V-DWBC1, 2 models [DFG20], which display 

non-analytic arctic curves as well. The key to the non-analyticity can be traced back to the 

symmetries of the systems, allowing for determining their SE branch in terms of the NE branch 

of another system obtained by applying an involution to its weights together with a geometric 

transformation of the plane involving a reflection and possibly a shear. Note also that our results 

tangencially on the diagonal NW boundary at the point 2 . 
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  (3 j + 1)!
n

 

12 

 
 

 
 

Figure 23. The expected arctic curve of the uniformly weighted domino tiling problem 
of Ciucu’s cruciform region (in red), is obtained as the multiple reflection of the arctic 
curve of the Aztec triangle (in blue). The resulting clover-shaped curve is the analytic 
continuation to the whole plane of the blue portion. 

 

for the 6V′ model also apply to the more general case of U-turn boundary 6V model, which is 
expected to share the same arctic curves. 

Finally, let us compare the situation of the 20V-DWBC3 model to that of ASMs, with the 

known enumeration formula: 

n−1 

ASM = ,
(n + j)! 

j=0 

 

a formula strikingly reminiscent of (4.23). The analogy goes further: we have found that the 

NE/SE portion of arctic curve for large uniform 20V-DWBC3 configurations is piecewise alge- 

braic, the SE portion being equal to a shear transformation of the analytic continuation of the 

NE portion (see figure 18 right). The same holds for ASMs, whose NE/SE portion of arctic 

curve is piecewise elliptic, the SE portion being obtained by a shear transformation of the 

ellipse containing the NE portion (see figure 22 left). The algebraic curve (5.16) clearly plays 

a role similar to this ellipse. 

Finally, recall that ASMs of size n are also in same number as TSSCPP [MRR86], which 

can be viewed as rhombus tilings of a regular hexagon with edges of length 2n, which satisfy 

all the symmetries of the hexagon. The triangular fundamental domain under these symmetries 

occupies 1 th of the hexagon, which is recovered by successive reflections (see figure 22 right 

for an illustration). As such, the arctic curve for TSSCPP was argued in [DFR12] to be identical 

to that of the full hexagon without any symmetry constraint, i.e. the inscribed circle in the 

uniform case. There is a clear analogy between TSSCPP and the domino tilings of the Aztec 

triangle, in which the algebraic curve (5.16) plays the role of this circle. 
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2n−1,2n−1 T 

 

Recently Ciucu [Ciu21] noticed a relation between the number of domino tilings of the 

Aztec triangle n and that of a cruciform domain Cn−1,n,n,n−2, obtained by ‘symmetrization’, 
namely a succession of ‘reflections’ of the original Aztec triangle. We believe that the curve 
(5.16), which is the analytic continuation of the arctic curve for the triangle, is in fact the 
complete arctic curve for the rescaled large n cruciform domain. As visual evidence, we have 

displayed both curves in figure 23, together with the original asymptotic Aztec triangle (shaded 

in pink) and its 7 reflected copies. Figure 23 suggests that, similarly to the TSSCPP case, the 

Aztec triangle could be the fundamental domain for symmetric tilings of a crosslike shaped 

domain probably similar to that considered by Ciucu. 
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