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Abstract

Enumeration problems are often encountered as key subroutines in the ex-
act computation of graph parameters such as chromatic number, treewidth, or
treedepth. In the case of treedepth computation, the enumeration of inclusion-
wise minimal separators plays a crucial role. However and quite surprisingly,
the complexity status of this problem has not been settled since it has been
posed as an open direction by Kloks and Kratsch in 1998. Recently at the
PACE 2020 competition dedicated to treedepth computation, solvers have been
circumventing that by listing all minimal a-b separators and filtering out those
that are not inclusion-wise minimal, at the cost of efficiency. Naturally, hav-
ing an efficient algorithm for listing inclusion-wise minimal separators would
drastically improve such practical algorithms. In this note, however, we show
that no efficient algorithm is to be expected from an output-sensitive perspec-
tive, namely, we prove that there is no output-polynomial time algorithm for
inclusion-wise minimal separators enumeration unless P = NP.
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1 Introduction

In subsets enumeration problems, the goal is to output all subsets that satisfy a
specified property. Problems of that kind are often used to develop theoretical and
practical algorithms for solving optimization problems. Famous examples include
maximal independent sets enumeration for the computation of the chromatic number
in graphs [Law76, Epp02|, or the enumeration of minimal separators and potential
maximal cliques for the computation of treewidth [BBC00, BT02, FKTV08|. Given
the importance of treewidth, its exact computation has been the subject of several
competitions including the 2016 and 2017 editions of the PACE challenge [Pac13|. In
that context as well, the enumeration approach has proved to be successful. Specifi-
cally, the PACE 2017 winner’s program was implemented with an algorithm based on
potential maximal cliques enumeration and dynamic programming [Tam19]|, based
on the algorithm by Bouchitté and Todinca [BT02].

Another example of the use of subsets enumeration toward exact computation is
the computation of the related graph parameter of treedepth, which, in turn, was
the subject of the PACE 2020 challenge [Pac13|. To compute treedepth, a recursive
formula based on inclusion-wise minimal separators is known [DIKKM99, KB.J19]. As
in the case of PACE 2016 and 2017, several participants at PACE 2020 implemented
programs with a combination of dynamic programming and enumeration, using this
recursive formula. More specifically, the second and third-prize algorithms are based
on dynamic programming with respect to small and inclusion-wise minimal separa-
tors [KBJ19, BvVdVW20, Kor20]. An inclusion-wise minimal separator in a graph
(G is an inclusion-wise minimal subset of vertices disconnecting at least two vertices
a and b. It is not to be confused with the slightly different notion of minimal separa-
tors which are defined as inclusion-wise minimal subsets of vertices disconnecting a
specific pair of vertices a,b. Indeed, minimal separators may contain other minimal
separators as a subset. We refer to Section 2 for the definitions and a discussion on the
differences between the two notions. In both implementations [BvVdV W20, Kor20]
the minimal separators are first computed by the algorithm of Berry et al. [BBC00],
and those that are not inclusion-wise minimal (or considered too large in [KBJ19)])
are then filtered out. However, since the gap between minimal and inclusion-wise
minimal separators may be exponential in the number of vertices, this approach has
a huge impact on efficiency. Hence, the problem of listing not all minimal sepa-
rators but inclusion-wise minimal separators finds motivations in the quest of fast



implementations for exact treedepth computation.

However and quite surprisingly, the complexity status of this problem has not
been settled since it has been posed as an open direction by Kloks and Kratsch in
1998 [KK98]. In this note, we show that unfortunately, no efficient algorithm is to
be expected from an output-sensitive perspective. Namely, we prove that there is no
output-polynomial time algorithm for inclusion-wise minimal separators enumeration

unless P = NP.

2 Preliminaries

Enumeration. When dealing with enumeration problems, the number of solutions
can be large (typically exponential) with respect to the input size. Therefore, we do
not aim at algorithms running in polynomial time in the size of the input. Instead,
we need to take into account the potentially large number of solutions of the problem,
and look for algorithms running in time polynomial in the input size plus the number
of solutions. Such kinds of algorithms are referred to as output-polynomial time algo-
rithms [JYP88]. (We note that the output-polynomial time condition is sometimes
stated as being polynomial in the sizes of the input plus the output, however that the
two notions coincide here as the solutions we will consider are subsets of the ground
set, hence that they are of polynomial size in the size of the input.) Then, a question
of interest in enumeration is that of knowing if there exists an output-polynomial
time algorithm for the considered problem.

Graphs and separators. Let G = (V| E) be a graph on vertex set V and edge
set E. In this paper, we only consider graphs with no loops nor parallel edges. Let
v € V. We say that a vertex u is adjacent to v if {u,v} € F, and that an edge e € E
is incident to v if v € e. The neighborhood of v, denoted by N (v), is the set of vertices
that are adjacent to v in G. The degree of v is |[N(v)|. Let S be a subset of vertices
of G. The graph induced by S, denoted by G[S], is the graph (S, {e € E : e C S}).
By G — S we mean the graph G[V \ S]. A path in G is a sequence P = (vy,...,v,)
of distinct vertices such that {v;,v;41} € E for any 1 <i < p. It is called an s-t path
if vy = s and v, = t. A graph G is connected if for any pair of vertices u,v € V it
contains an u-v path. In this paper, we suppose that G is connected.

For two vertices a and b, an a-b separator is a subset S of vertices such that a and
b are not contained in the same connected component in G—.S. It is called minimal if
no proper subset of S is an a-b separator. More generally, we say that a subset S C V'
is a separator if there exist a,b € V such that S is an a-b separator, and that it is a



Figure 1: The banner graph. In this example, {b, d} is a minimal a-c separator but
not an inclusion-wise minimal separator.

minimal separator if there exist a,b € V such that S is a minimal a-b separator. Note
however that two minimal separators may be inclusion-wise comparable, a behavior
that was observed in [Gol04]. To see this, consider the banner graph obtained from
a cycle on four consecutive vertices a, b, ¢, d by adding a pendant vertex e adjacent
to d, as shown in Figure 1. Then {b,d} is a minimal a-c separator, hence a minimal
separator. However, it contains {d} as another minimal separator. We say that a
subset S C V' is an inclusion-wise minimal separator if S is a separator of G that is
minimal with that property. Clearly, every inclusion-wise minimal separator of G is
a minimal separator, but the converse does not hold in general as the above example
shows. Testing whether a set S is a minimal separator can be done in polynomial
time [KIK98, Gol04]. As of testing whether a separator S is inclusion-wise minimal,
we argue’ that it amounts to test whether S\ {u} is not a separator for any u € S,
which can also be done in polynomial time. The first implication follows by inclusion.
For the other direction, let us assume that S\ {u} is not a separator for any u € S.
If S is inclusion-wise minimal we are done, so suppose that there exists another
separator S’ C S with |S’| < |S|—2. Consider one such S’ maximal by inclusion and
let ve S\ S As §"U{v} is not a separator and S’ is, S’ separates v from another
vertex w and we deduce N(v) C S’. Thus N[v] C S and since S is a separator, so is
S\ {v} which contradicts the maximality of S’.
In this paper, we are interested in the following problem.

INCLUSION-WISE MINIMAL SEPARATORS ENUMERATION
Input: A graph G.
Output: The set of inclusion-wise minimal separators of G.

As proven by Gaspers and Mackenzie [GM18], the number of inclusion-wise min-
imal separators of a graph may be exponential in its number of vertices. To see this,

!Such an assertion is not direct as there exist graph G and sets S ¢ S’ € 8" C V(G) with S, 5"
being separators and S’ not; consider e.g. a path on five vertices labeled 1,2,3,4,5 in order, and
subsets of vertices S = {2}, S’ = {1,2} and S = {1, 2,4}.
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Figure 2: A melon graph on 3n + 2 vertices. Picking one vertex per set {u;, v;, w;}
for every 1 < ¢ < n yields an inclusion-wise minimal separator, and there are 3" such
sets.

consider the melon graph on 3n + 2 vertices obtained from n disjoint paths on three
vertices {u;, v;, w;}, 1 < i < n by adding an additional vertex a adjacent to the wu;’s
and an additional vertex b adjacent to the w;’s; see Figure 2 for an illustration. In
such a graph, every set in the family {{x1,...,z,} : 2; € {us, v, w;}, 1 <i < n} de-
fines an a-b minimal separator, which is in fact an inclusion-wise minimal separator.
As the number of such sets is 3" the observation follows.

On the other hand, the number of minimal separators may be exponential in the
number of inclusion-wise minimal separators. To see this, consider a graph with ex-
ponentially many minimal separators in the number of vertices (e.g., a melon graph)
to which we add a pendant neighbor to every vertex. The resulting graph has O(n)
inclusion-wise minimal separators (namely, each vertex defines such a separator)
while the number of minimal separators has not decreased while adding the pen-
dant vertices. Consequently, listing inclusion-wise minimal separators from minimal
separators using the algorithm in [BBC00| cannot yield a tractable algorithm.



Figure 3: A representation of the graph G associated to ¢ = (1 Vo VEs)(T3VZ4VTs).
Black squares represent vertices in V5: they connect conflicting pairs of vertices
arising from distinct clauses, here the vertices associated to the variable z;. White
circles represent pendant vertices in V3.

3 Hardness of INCLUSION-WISE MINIMAL SEPARA-
TORS ENUMERATION

In this section, we show that there is no output-polynomial time algorithm enumer-
ating the inclusion-wise minimal separators of a graph unless P = NP.

Let p = Ct ANCo AN -~ ANCp,, m > 2 be a 3-CNF formula on n variables and
m clauses. We describe the construction of a graph G = (V, E) on O(n + m?)
vertices having an inclusion-wise minimal separator of size at least 4 if and only if
¢ is satisfiable. More specifically, we will show every such inclusion-wise minimal
separator to be a minimal a-b separator for two distinguished vertices a and b. The
set V' is partitioned into four sets of vertices V1, V4, V3 and {a, b}. Intuitively, vertices
in V; will represent the clauses in ¢, those in V5 will guarantee consistency in variable
assignments, and V3 will consist of pendant vertices that will be used to reduce the
number of inclusion-wise minimal separators that do not separate a and b. The
construction is detailed below and illustrated in Figure 3.

Let us first define V} and parts of its incident edges. For each clause

Cy=(VvEvE), 1<j<m



in ¢, we create three induced paths w/vJw!, wjviw) and ugvéwg on three vertices
cach and add an extra vertex ¢;. We connect a to each of u{, ug, ug, and b to each of
w{, wg, wg. For every i € {1, 2,3}, we make ¢; adjacent to uf if E{ is a negative literal,
ie., if e{ = x for some variable x of ¢, and to wf otherwise. In the assignments we
will construct, selecting / will in fact count for x +— 1 while selecting w] will count
for z + 0. Since N(c;) defines an inclusion-wise minimal separator of size three,
these vertices c; will ensure that no inclusion-wise minimal separator of size greater
than three contains N(c;) as a subset. Hence there will be at least one literal in
C; that is assigned 1, and C; will be satisfied. By construction, the obtained set of
vertices V) consists of 10m vertices. In the following, we shall call middle vertices
of the clause C; the vertices v], v}, v} we created for C;. Pairs of vertices ul, wJ,
corresponding to the literals of a same variable, i.e., such that ¢ = EJ or (] = Ej for
non-necessarily distinct i,7" € {1,2,3} and j,j’ € {1 .,m}, will be referred to as
conﬂzctmg vertices. We stress the fact that Conﬂlctlng Vertlces are pairs of the form
u],wl,, and that pairs of vertices ] uj or w], w}, will not be considered conflicting
even though they correspond to the hterals of a same variable.

Now, we deﬁne V5 and parts of its incident edges. For every palr of conflicting
vertices u], w), " with J # 7' we add a new vertex y adjacent to u] and w},. Since N(y)
defines an 1nclu510n—W1se minimal separator of size two, these vertices y will ensure
that no two conflicting literals are selected in an inclusion-wise minimal separator of
size greater than two. The set V5 consists of these y and hence has size O(m?).

Finally, let us define V3 and the remaining edges of G. The set V5 consists of one
pendant neighbor z that is added to every vertex in G —V; as well as to every middle
vertex in V}. Since N (y) has size one, the role of V3 will be to prevent inclusion-wise
minimal separators of size greater than one from picking these vertices. Then the
size of V3 is bounded by that of V; UV, U {a,b}, hence by O(m?). This completes
the description of G.

The proof that ¢ is satisfiable if and only if G contains an inclusion-wise minimal
separator of size at least 4 is split into two lemmas. First, let us prove that any
inclusion-wise minimal separator of G of size at least four implies a satisfying truth
assignment for ¢.

Lemma 3.1. If S is an inclusion-wise minimal separator of G of size at least 4,
then S C {c;,ul,w] :1<i<3, 1<j<m} and ¢ is satisfiable.

Proof. As |S| > 4, S may not contain N(z) as a subset for any vertex z of degree less
than 4 in G. In particular, S does not contain the neighbor of any pendant vertex
in G and clearly, as S is minimal, it does not contain any pendant vertex neither.
Since all elements in V5 have pendant neighbors, we derive that S NV, = (). For the



same reason, neither a, b nor any middle vertex may belong to S and we conclude
to the desired inclusion S C {cj,ug,wg 1<i<3, 1<7<m}.

We show that S is in fact an a-b separator. Let us consider two distinct connected
components A and B of G — S and suppose, toward a contradiction, that a and b
belong to one such component. Say without loss of generality that a,b € A. Let u
be a vertex of B that is adjacent to S. Clearly, u is not a neighbor of a nor . Thus
u either is a middle vertex, a vertex from V, or some ¢;, 1 < j < m.

Now, note that every vertex v that is a neighbor of v and of one of a,b must
belong to S, since u and a,b belong to different connected components of G — S.
We show that S may not contain two conflicting vertices uf and wf,/, i,i' € {1,2,3},
J.j' € {1 .,m}. Indeed, we have two situations; (1) if j = j' then i = ' and u’
and w;, separate the middle vertex v] from the rest of the graph, or (2) if j # ;' then
w] and w, separate a vertex from V5 from the rest of the graph. In both situations,
S would contain as a subset another separator of size less than 4. Therefore, u is not
a middle vertex, and neither does it belong to V5. The only remaining possibility
is that © = ¢; for some 1 < j < m. But as every neighbor of ¢; is a neighbor of a
or b, we deduce N(c;) C S, which is also excluded as S would contain as a subset
of another separator of size less than 4. We obtained the desired contradiction and
conclude that S is an a-b separator.

We are now ready to show that ¢ is satisfiable. Let I be the assignment mapping
variable xy, k € {1,...,n} tollfandonlylfw € Sforsome1<i<3 1<j<m.
Since S is an a-b separator every path wlv wj of G is intersected by S, and as
previously shown, it is intersected on premsely one vertex that is not conflicting with
other vertices in S. As we may assume that each variable appears in at least one
clause in ¢, [ is a well-defined truth assignment. We note that S may or may not
contain vertices ¢;, 1 < j < m, a point that is not relevant in what follows. However,
since N(c¢;) € S for any 1 < j < m, for every clause C; there exists ¢ € {1,2,3} and
an endpoint p of ufvfwf such that p € N(c;), p € S, and hence such that the other
endpoint ¢ of w/v/w! belongs to S. Thus the literal ¢ is evaluated to 1 by I. We
conclude that [ is a satisfying truth assignment of ¢ as desired. O

Conversely, we will show that each satisfying truth assignment of ¢ yields an
inclusion-wise minimal separator of GG of size at least 4. To do this, for any satisfying
truth assignment I of ¢, we define two sets T'(1) and F(I) as follows:

T(I):={ul :1<i<3, 1<j<mandI(var(f])) =1},
F(I):={w}:1<i<3, 1<j <mand I(var(£])) = 0},



where var(¢) denotes the variable corresponding to the literal and I(z) denotes the
valuation of variable z.

Lemma 3.2. If I is a satisfying truth assignment of ¢ then there exists a set of
integers J C {1,...,m} such that S = T(I) U F(I)U{c; : j € J} is an inclusion-
wise minimal separator of G of size at least 4.

Proof. In the following, we say that a clause C' is traversable with respect to [
if C' contains at least one negative literal ¢ such that I(var({)) = 0, and at least
one positive literal ¢ such that I(var(¢')) = 1, i.e., C is satisfied by I via both a
positive and a negative literal. For example in Figure 3, the clause (Z; V xo V Z5)
is traversable with respect to the assignment mapping every variable to 1 except
(which is mapped to 0), but (Z3 V &4 V x5) is not. Let J be the set of indices of
clauses of ¢ that are traversable with respect to /. We shall show that the lemma
holds for such J.

We first show that the described set S is an a-b separator of G. Let us assume
toward a contradiction that this is not the case and let P be an a-b path in G — S.
Since [ is a satisfying truth assignment, every path u{ f wf is intersected by S and
hence P cannot follow a path ui vf wf forany 1 <7 <3 and 1 < j < m. Moreover,
each vertex y € V5 has a neighbor in S so P does not reach any such y as otherwise
it would stop either at y or at its pendant neighbor. The remaining case where P
contains u/, then ¢;, and then wg, for some 1 < j < m and distinct ¢,7" € {1,2,3}
corresponds to the situation of a traversable clause Cj, j € J, and is excluded as
c; € S in that case. We conclude that S is an a-b separator of G as desired.

We note that S is a minimal a-b separator, as removing from S any vertex be-
longing to T'(I) U F((I) or to {¢; : j € J} yields an a-b path in G — S. Thus, for any
proper subset S’ of S, the graph G — S’ contains a path connecting the endpoints
of paths uf vf w{ through a, b, and the a-b path in G — S’. Thus an inclusion-wise
minimal separator S’ of G that is a proper subset of S, if it exists, must separate
middle vertices, vertices ¢;, 1 < j < m or vertices from V5 and V3 from the compo-
nent containing a and b. Since the only way to separate these vertices using elements
in T(I)UF(I)U{c;: j € J} is to contain conflicting pairs of vertices or to contain
N(c;) for some j, we conclude that no such S’ exists. O

According to the previous two lemmas, the graph G has an inclusion-wise minimal
separator of size at least 4 if and only if the formula ¢ is satisfiable. Therefore, looking
for an inclusion-wise minimal separator of size 4 or more is as hard as finding a truth
assignment for ¢, as stated next.

Corollary 3.3. Deciding if a graph G has an inclusion-wise minimal separator of
size at least 4 is NP-complete.



As we will see now, this result has even stronger implications from the enumera-
tion point of view. It is the point of the next theorem.

Theorem 3.4. There is no output-polynomial time algorithm for INCLUSION-WISE
MINIMAL SEPARATORS ENUMERATION unless P = NP.

Proof. Suppose for contradiction that there is an algorithm A enumerating the d
inclusion-wise minimal separators of an n-vertex and m-edge graph in total time
that is polynomial in n,m and d. Let ¢ € N be a constant such that the running
time of A is bounded by (n+m+d)°¢. We will prove that such an algorithm could be
used to find a satisfying truth assignment for a 3-SAT formula in polynomial time.
Let ¢ be an instance of 3-SAT on N variables and M clauses, and let G be
the n-vertex m-edge graph obtained from ¢ as described above. Then n and m are
bounded by O(N + M?). We run A for (n+m +d+ 1)¢ steps on G where d = n?. If
the algorithm has stopped within this time we check whether the obtained inclusion-
wise minimal separators include one of size greater than 4. If it is the case, then
by Lemma 3.1 we conclude that ¢ is satisfiable. If not, we conclude that ¢ is not
satisfiable by Lemma 3.2. On the other hand, if the algorithm has not stopped then
we conclude that the number of inclusion-wise minimal separators in G is greater
than n?, hence that there are solutions of size at least 4 in G. By Lemma 3.1 we may
conclude that ¢ is satisfiable. The theorem follows observing that the procedure is
polynomial in N and M. ]

4 Conclusion

We have shown that the enumeration of inclusion-wise minimal separators cannot
be achieved in output-polynomial time unless P = NP, addressing an open ques-
tion of Kloks and Kratsch in [KIK98| and asserting that the algorithms in [KBJ19,
BvVdVW20, Kor20] may not be improved by efficient output-sensitive enumeration
algorithms for inclusion-wise minimal separators. However, we note that our result
does not give any insight on the existence of (input-sensitive) algorithms running
in total time better than 2", and that the existence of such algorithms would still
benefit the algorithms in [KBJ19, BvVdVW20, Kor20].
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