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Abstract

A poset is a containment of paths in a tree (CPT) if it admits a representation
by containment where each element of the poset is represented by a path in a tree
and two elements are comparable in the poset if and only if the corresponding paths
are related by the inclusion relation. Recently Alcón, Gudiño and Gutierrez [1]
introduced proper subclasses of CPT posets, namely dually-CPT, and strongly-CPT.
A poset P is dually-CPT, if and only if P and its dual Pd both admit a CPT
representation. A poset P is strongly-CPT, if and only if P and all the posets that
share the same underlying comparability graph admit a CPT representation. Where
as the inclusion between Dually-CPT and CPT was known to be strict. It was raised
as an open question by Alcón, Gudiño and Gutierrez [1] whether strongly-CPT was a
strict subclass of dually-CPT. We provide a proof that both classes actually coincide.

1 Introduction

A poset is called a containment order of paths in a tree (CPT for short) if it admits a
representation by containment where each element of the poset corresponds to a path in
a tree and for two elements x and y, we have x < y in the poset if and only if the path
corresponding to x is properly contained in the path corresponding to y.

Several classes of posets are known to admit specific containment models, for example,
containment orders of circular arcs on a circle [14, 15], containment orders of axis-parallel
boxes in Rd [12], or containment orders of disks in the plane [3, 5, 6] to cite just a few.
All the aforementioned classes, as well as CPT, generalize the class CI of containment
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orders of intervals on a line [4]. It is well known that this class coincides with the class of
2-dimensional posets and are also equivalent to the transitive orientations of permutation
graphs [9].

In 1984, Corneil and Golumbic observed that a graph G may be the comparability
graph of a CPT poset, yet a different transitive orientation of G may not necessarily have
a CPT representation, (see Golumbic [10]). This stands in contrast to poset dimension,
interval orders, unit interval orders, box containment orders, tolerance orders and others
which are comparability invariant. Golumbic and Scheinerman [12] called such classes
strong containment poset classes.

Recently, interest in CPT posets has been revived and several groups of researchers
have considered various aspects of this class [1, 2, 11, 13]. Since the CPT posets are not
a strong containment class, Alcón, Gudiño and Gutierrez [1] introduced the study of the
subclasses dually-CPT and strongly-CPT posets. A poset P is called dually-CPT if P and
its dual Pd admit a CPT representation. A poset P is called strongly-CPT if P and all the
posets that share the same underlying comparability graph admit CPT representations.
From the definition it is clear that the class of strongly-CPT posets is included in the class
of dually-CPT posets. Many families of separating examples are now known between the
class of dually-CPT and general CPT posets, however, concerning the strongly and dually-
CPT, it was left as an open problem for many years to determine whether the inclusion is
strict or if the two classes coincide.

We present in this paper a solution to this question with the following main theorem.

Theorem 1. A poset P is strongly-CPT if and only if it is dually-CPT.

To prove our main result we rely on the link between modular decomposition of the
underlying comparability graph and its transitive orientations. Our strategy consists of
considering a dually-CPT poset and proving that any poset with the same comparability
graph also admits a CPT representation. At first we consider the representation and
perform some modifications to obtain a representation with particular properties. Once
this is done, we rely on the specific structure of modules in dually-CPT posets, and we
provide a method to obtain the representation of any poset with the same comparability
graph.

The paper is organized as follows: In Section 2, we present the definitions related to
posets, CPT and modular decomposition and recall some fundamental results that we will
use throughout the paper. In Section 3, we prove that for dually-CPT posets it is possible
to obtain a representation where no element of a strong module is represented by a trivial
path. Then, in Section 4, we show how to modify a CPT representation of a dually-CPT
poset so that either the paths of a strong module do not end on a trivial path or the
considered module admits very specific properties. Finally, in Section 5, we show how to
use an operation called substitution to prove our main result.
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2 Definitions and notations

A partially ordered set or poset is a pair P = (X,P ) where X is a finite non-empty set and
P is a reflexive, antisymmetric and transitive binary relation on X. The elements of X are
also called vertices of the poset. As usual, we write x ≤ y in P for (x, y) ∈ P ; and x < y
in P when (x, y) ∈ P and x 6= y. If x < y or y < x, we say that x and y are comparable in
P and write x ⊥ y. When there is no relationship between x and y we say that they are
incomparable and write x ‖ y. An element x is covered by y in P, denoted by x <: y in
P, when x < y and there is no element z ∈ X for which x < z and z < y. The down-set
{x ∈ X : x < z} and the up-set {x ∈ X : z < x} of an element z are denoted by D(z)
and U(z), respectively. We let D[z] = D(z) ∪ {z} and U [z] = U(z) ∪ {z}. The dual of
P = (X,P ) is the poset Pd = (X,P d) where x ≤ y in Pd if and only if y ≤ x in P.

A containment representation RP or model of a poset P = (X,P ) maps each element
x of X into a set Wx in such a way that x < y in P if and only if Wx is a proper subset of
Wy. We identify the containment representation RP with the set family {Wx}x∈X .

A poset P = (X,P ) is a containment order of paths in a tree, or CPT poset for brevity,
if it admits a containment representation RP = {Wx} where every Wx is a path of a tree T ,
which is called the host tree of the model. When T is a path, P is said to be a containment
order of intervals or CI poset for short. (We generally consider a path as the set of vertices
that induces it.)

The comparability graph GP of a poset P = (X,P ) is the simple graph with vertex set
V (GP) = X and edge set E(GP) = {xy : x ⊥ y}. In what follows, a poset P, such that
GP is complete (resp. without edges), is called a total order (resp. an empty order). We
say that two posets are associated if their comparability graphs are isomorphic. A graph
G is a comparability graph if there exists some poset P such that G = GP.

A transitive orientation
−→
E of a graph G is an assignment of one of the two possible

directions, −→xy or −→yx, to each edge xy ∈ E(G) in such a way that if −→xy ∈
−→
E and −→yz ∈

−→
E then −→xz ∈

−→
E . The graphs whose edges can be transitively oriented are exactly the

comparability graphs [7, 8, 9]. Furthermore, given a transitive orientation
−→
E of a graph

G, we let P−→
E

denote the poset (V (G), P−→
E

) where u < v in P−→
E

if and only if −→uv ∈
−→
E .

The comparability graph of P−→
E

is G. Thereby, the transitive orientations of G are put in
one-to-one correspondence with the posets whose comparability graphs are G.

Let P = (X,P ) be a poset. A set M ⊆ X is a module (homogeneous set [7]) if for
every y ∈ X − M , either y ⊥ x for all x ∈ M , or y ‖ x for all x ∈ M . The whole
set X and the singleton sets {x}, for any x ∈ X, are modules of P. These modules are
called trivial modules. A poset P is prime or indecomposable if all its modules are trivial.
Otherwise P is decomposable or degenerate. A module M is strong if for all modules M ′

either M ∩M ′ = ∅ or M ⊆M ′ or M ′ ⊆M .
A module (respectively, strong module) M 6= X is called maximal if there exists no

module (respectively, strong module) Y such that M ⊂ Y ⊂ X.

Theorem 2. (Modular decomposition theorem) [7] Let P = (X,P ) be a poset with at least
two vertices. Then exactly one of the following three conditions is satisfied:
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(i) GP is not connected and the maximal strong modules of P are the connected compo-
nents of GP.

(ii) GP is not connected and the maximal strong modules of P are the connected compo-
nents of GP.

(iii) GP and GP are connected. There is some Y ⊆ X and a unique partition S of X
such that

(a) |Y | ≥ 4,

(b) P [Y ] is the biggest prime subposet of P (in the sense that it is not included in
any other prime subposet),

(c) for every part S of the partition S, S is a module of P and |S ∩ Y | = 1.

The previous theorem defines a partition M(P) = {M1, ...,Mk} of X, which is called
the canonical partition or maximal modular partition of P. In the first case, GP is said to be
parallel or stable and the partition is formed by the vertices of the connected components
of GP. In the second case, GP is series or clique and the partition is formed by the vertices
of each connected component of GP. And, in the last case, GP is neighborhood or prime,
and the partition is S.

The quotient poset of P, denoted by P/M(P), has a vertex vi for each part Mi of
M(P); and two vertices vi and vj of P/M(P) are comparable if and only if for all x ∈Mi

and for all y ∈Mj, x ⊥ y in P.
The quotient poset is empty (iff GP is parallel), a total order (iff GP is series) or

indecomposable (iff GP is neighborhood).
On some occasions, when referring to a module, we will mean the subposet induced by

it. For instance, we will say that a module M of P is CI or that it is prime, meaning that
P(M) is. This will be clear from the context and will cause no confusion.

Theorem 3. [7] Given posets P and P′, if GP = GP′ and P is indecomposable, then
P′ = P or P′ = Pd.

Proposition 4. [7] Given posets P and P′, if GP = GP′, then P and P′ have the same
strong modules and, consequently, M(P) =M(P′).

Given a vertex v of a poset P = (X,P ) and a poset H = (X1, H), substituting or
replacing v by H in P results in the poset PH→v = (X − {v} ∪X1, PH→v) such that
PH→v = P − {(x, y) : x = v ∨ y = v} ∪ H ∪ {(x, y) : x ∈ X1 ∧ y ∈ U(v)} ∪{(x, y) : y ∈
X1 ∧ x ∈ D(v)}.

Theorem 5. Let M(P) = {M1, ...,Mk} be the maximal modular partition of a connected
poset P = (X,P ) whose quotient is prime, and call H the quotient poset P/M(P). A
poset Q is associated to P if and only if there exist posets Qi for 1 ≤ i ≤ k such that Qi

is associated to Pi = P(Mi) for each i, and Q is obtained by replacing each vertex vi of H
by the poset Qi or replacing each vertex vi of Hd by the poset Qi.
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Theorem 6. [7] A poset P is CI if and only if the quotient poset and all the maximal
strong modules of P are CI.

Lemma 7. [1] If z is a vertex of a CPT poset P then the subposet induced by the closed
down-set of z is CI. In particular, if P is dually-CPT , then also the subposet induced by
the closed up-set of z is CI.

Remark 8. [7] Let P and P′ be associated posets. Then, P is a CI poset if and only if
P′ is a CI poset. In particular, P is a CI poset if and only if Pd is a CI poset.

Theorem 9. Let P = (X,P ) be a connected dually-CPT poset. Then the quotient poset
of P is dually-CPT and every maximal strong module of P is CI. In particular, if the
quotient poset is CI, then P is CI.

Proof. Let M(P) = {M1, ...,Mk} be the maximal modular partition of P. The quotient
poset H = P/M(P) is a subposet of P, so H is dually-CPT . We can assume that P is
not empty, and since P is connected we have that H is connected, and so every vertex vi
of H is in the down-set or in the up-set of some other vertex. Which implies that in P the
whole module Mi is in the up-set or in the down-set of some other vertex. It follows from
Lemma 7 that each Pi = P(Mi) is CI. Therefore, by Theorem 6, if H is CI, then P is
CI. 2

The converse of Theorem 9 is not true in general. For instance, if in the quotient poset
H there exists a vertex vi such that in any CPT representation of H the corresponding
path Wvi is reduced to a vertex, then for P to be CPT the module Mi has to be a singleton.

In a representation RP of a CPT poset P, a subset X of paths of RP is called one-sided
if all the paths that represent X arrive at a vertex a of the host tree and all paths of X,
except possibly one trivial path, pass through a vertex b of T neighbor of a. If all the paths
of X arrive at a vertex a and X is not one-sided, then it is called two-sided.

Addressing that issue in the proof of the main theorem will requires the following
lemmas and properties.

Property 10. [4, 10] Every CI poset admits a CI representation where the intersection
of all the intervals used in the representation is a non-trivial interval.

3 Trivial paths into modules

The goal of this section is to prove that for any dually-CPT poset P, there exists a rep-
resentation RP where all the elements contained in strong modules are represented by
non-trivial paths.

At first we prove that if an element of module is represented by a trivial path, it does
mean that the module (all its elements) are not greater than any other element not in the
module.

5



Lemma 11. Let P be a poset and let M be a strong module of P. If there exists a
representation RP where an element x of M is represented by a trivial path, then all the
elements of M are not greater than any element of P not in M .

Proof. Let us proceed by contradiction and let us assume that there exists an element
z /∈ M such that z < x. Then in any representation RP we have Wz ⊂ Wx but since Wx

is already a trivial path it cannot properly contain some other object. 2

Hence from the previous lemma, if in a representation RP an element of a module is
represented by a trivial path, the module is a minimal subset of P.

Lemma 12. Let M be a strong module of a CPT poset P, if in a representation RP one
of its elements is represented as a trivial path, then there exists an element x not in M
such that the path Wx contains all the paths representing the elements of M .

Proof. Since the poset is connected, and by the previous lemma, we know that the module
cannot contain any other element, to ensure the connection outside the module, there
might be at least one element x that is greater than every element of M . 2

Lemma 13. Let M be a strong module of a CPT poset P. If in a representation RP one
of its elements z is represented as a trivial path, then this path is hosted on some vertex a
of T . If for an element x not in M its path Wx passes through a, then Wx has to contain
all the paths corresponding to the elements of M .

Proof. From the definition of a module, every element not in the module is either com-
pletely disconnected from M or completely connected to M . In that case, if for an element
x, in a representation RP its path Wx passes through a, then it is connected to the element
z. Hence it has to be connected to every element of M . In addition, in a transitive orien-
tation of a graph, the containment relation between x and the elements of M is the same
for every element of M . Thus if Wx contains Wz it contains all the paths of the elements
of M . 2

Lemma 14. Let M be a strong module of a CPT poset P. If in a representation RP one
of its elements is represented as a trivial path and M is a clique or prime module, then
there exists at least one element of M represented as a non-trivial path.

In the case of dually-CPT posets, the next three lemmas consider the presence of trivial
paths in a representation of strong modules and show how to obtain an equivalent repre-
sentation where all the elements of the module are non-trivial paths. For these lemmas, we
consider each strong module to be a CI poset and the element of the module represented
by a trivial path is denoted by z.

Lemma 15. Let M be a strong CI clique module of a dually-CPT poset P. If an ele-
ment z of M is represented by a trivial path in a representation RP, then there exists a
representation R

′
P where z is represented as non-trivial path.

6
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(i)

x
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x
ab

c

(ii)

c

z

x
ab

(iii)

ci j

Figure 1: Representation of cliques modules with trivial paths.

Proof. By Lemma 12 we know that there exists an element x such that all the paths of M
are contained in Wx in all CPT representations. Let us consider three cases.

(1) Suppose the trivial path of z is not an extremity of any path that represents the
elements of M . Let a be the vertex of T that hosts the trivial path of z. Since Wz is not
an extremity of any path of M , a admits at least one neighbor b in T such that all the
paths of M (except for z) pass through b (see Figure 1(i)). Let us subdivide the edge a, b
by adding a vertex c. Then it suffices to replace the trivial path of z by a non-trivial path
that goes from c to a in T . The containment relations among M are preserved and no new
containment relation is added nor deleted with respect to the elements not in M .

(2) Suppose now, the trivial path of z is a common extremity for all the elements of M and
M is one-sided (see Figure 1(ii)). We proceed as in the previous case; we consider a vertex
b of T that is a neighbor of a and such that all the paths of M except for z pass through
b. Since M is a clique, it only admits at most one element represented by a trivial path,
such a vertex b exists, then we subdivide the edge by adding a vertex c and the path of z
goes from a to b. Note that the technique still works if some paths of M continue after a.

(3) Suppose now, the trivial path of z is the common extremity for some paths of the
module in a 2-sided manner (see Figure 1(iii)). Let b and c be two vertices of T that are
neighbors of a, such that b and c lie on the path of x, x being an element not in M that
contains all elements of M . We can partition the elements of M into three sets: B the
elements for which paths arrive at a and pass through b, C defined in a similar way but
w.r.t. c instead of b, and A, the paths of M that go through b and c. This time we need
to subdivide the edges a, b and a, c of T . We add a vertex i between a and b and a vertex
j between a and c. Then it suffices to extend the paths of B until j and the paths of C
until i. The path of z now goes from i to j. By subdividing several times the edges a, b
and a, c, we can make sure that all the extremities are distinct. 2

Lemma 16. Let M be a strong CI stable module of a dually-CPT poset P. If an ele-
ment z of M is represented by a trivial path in a representation RP, then there exists a
representation R

′
P where z is represented as non-trivial path.

7
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(ii)
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a1 = aa2a3a4
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t

Figure 2: (i) Representation of a stable module with elements represented by trivial paths;
(ii) transformation to eliminate trivial paths from the representation.

Proof. Let us first remark that in a strong stable module, several elements can be repre-
sented as trivial paths in a representation R

′
P. In addition, if an element of M is represented

by a trivial path, the trivial path is disjoint from all the other paths representing the ele-
ments of M . Let z be such an element. We will transform RP such that all the elements
of M represented by trivial paths in RP will be represented by non-trivial paths. Let a be
the vertex of T that hosts the path of z. Thanks to Lemma 12, we know that there exists
an element x of P such that in RP the paths of the elements of M are contained in the
path of x. Since M is a non-trivial module it contains at least two elements, hence in RP

there exists a vertex b of T that is adjacent to a, and b is contained in all the paths of the
elements not in M that contain M , since such a path has to contain Wz and all the other
elements of M .

Let us denote by U = {u1, u2, . . . , uk} the elements of M that are represented by trivial
paths in RP. To obtain an equivalent representation R

′
P, we subdivide 2k − 1 times the

edge a, b. We then rename a as a1, and we number the newly created vertices a2, a3, . . . , a2k
(the transformation is presented in Figure 2). In this new representation each element ui

of U is replaced by a path that goes from ai to ak+i in T .
It remains to prove that this representation is equivalent. First observe that for any

element x connected to M , its path in RP contains all the elements of M . By the choice of
vertex b to perform the transformation, we can guarantee that any path of such an element
x will pass through a, b in RP. Since we subdivided this edge to obtain R

′
P , this path will

still pass through a and b and all the vertices introduced by the transformation.
Now for any element y not connected to M , we know by Lemma 13 that no path of

such an element will pass through a. 2

Lemma 17. Let M be a strong CI prime module of a dually-CPT poset P. If an ele-
ment z of M is represented by a trivial path in a representation RP, then there exists a
representation R

′
P where z is represented as non-trivial path.

Proof. For this proof, we consider three cases: (1) either Wz the trivial path of z is properly
contained (i.e. Wz is not an extremity of any path of the element of M) in all the paths
of the elements of the module M , or (2) there exists at least two elements q and r of M
such that Wz is the right bound of Wq and the left bound of Wr, or (3) the path Wz is the
right (respectively left) bound for some paths representing elements of M , and is not the
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left (respectively right) bound of any elements of M . These three cases are illustrated in
Figure 3(i)− (iii).

(1) Let a be the vertex of T that hosts Wz, the trivial path representing z. By hypothesis,
all the paths that represent the elements of M properly contain Wz and thus pass through
vertex a. Since it is a proper containment, no path of elements of M (other than z) starts
or finishes at a. Thus a admits at least one neighbor b in T such that all the paths that
represent elements of M , except for z, pass through b. To obtain a new representation
R

′
P we subdivide the edge a, b by a adding a vertex d. Then Wz in R

′
P is replaced by the

path a, d. (See Figure 3(iv)). Since the representation of Wz is the only modification of
the representation, by the previous discussion all the paths that represent the elements of
M pass through a and b and as a consequence pass through a and d since d is in between
a and b. By Lemma 13 we know that all the paths of the elements not in M that pass
through a will also contain all the paths of M . Hence the modification of Wz preserves the
containment relation of RP.

(2) Let us now consider that there exist at least two elements q and r of M such that in
RP, the vertex a is the right bound of the path Wq and the left bound of the path Wr (see
Figure 3(ii)). Let us denote by L the set of elements of M for which a is the right bound in
the representation RP and similarly let us denote by R the set of elements of M for which
a is the left bound in RP. Let us remark that L∩R = ∅ and some elements of M \ (L∪R)
might not be empty. Let b be the neighbor of a in T such that the paths of the elements
of L pass through b. And similarly let c be the neighbor of a in T such that the paths of
the elements of R pass through c. To obtain a new representation R′(P ) we subdivide the
edge a, b |R| + 1 times, and the edge a, c |L| + 1 times. The added vertices are called abi
for the vertices between a and b and acj for the vertices between a and c. Let ab1 and ac1
be the neighbors of a in R

′
P. The path Wz now goes from ab1 to ac1. The left bound of the

paths of the elements of R are moved on the abi vertices. The coordinates are chosen to
preserve the containment relation. We proceed symmetrically for the paths of the elements
in L. It remains to prove that the obtained representation still corresponds to P. Again we
know by Lemma 13 that no path of an element not connected to M passes through a, by
construction it remains valid for a and for all the newly introduced vertices. For any other
path their relation to Wz and the paths of the elements of L and R are unchanged. If the
path Ws of an element s was containing the path Wl of an element l of L in RP, it is still
the case in R

′
P. In that case the left bound of Wl is contained in Ws and the right bound

of Ws will be at the right of c in RP. This property will be preserved in R
′
P. Similarly if

both paths Ws and Wl were overlapping in RP, they are still overlapping in R
′
P.

(3) Since Wz is the right (resp. left) bound of some paths representing some elements of
M , and is not the left (resp. right) bound of any other elements of M , there exists a vertex
b in T adjacent to a and such that all the paths representing elements of M that end at a
pass through b. To obtain the new representation R

′
P it suffices to subdivide this edge one

time. Let c the newly introduced vertex. Then the trivial path Wz in RP is replaced by a

9
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ab c

z
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Figure 3: Representation of prime modules with the element z represented as trivial path.

path going from a to c. By the transformation, we can observe that all the paths that were
containing Wz in RP still contain Wz in R

′
P. Let s be an element of P such that Wz ⊂ Ws

in RP. If Ws was containing Wz it had to pass through a and b, thus by subdividing a, b
we can also conclude that this paths will pass through a and c, the added vertex, in R

′
P.

2

Theorem 18. If P is dually-CPT and in a representation RP some elements of strong
modules are represented by trivial paths, then there exists an equivalent representation R

′
P

where all the paths representing elements of strong modules are non-trivial paths.

Proof. It is a direct consequence of Lemmas 15, 16 and 17 and the fact that each time a
trivial path is replaced by a non-trivial one, no trivial path is created in R

′
P. 2

From the preceding theorem, we know how to obtain a representation a dually-CPT
poset where all the elements contained in non-trivial strong modules are represented by
non-trivial paths. Hence, in this representation some elements that do not belong to strong
modules might be represented by trivial paths.

4 Ending of modules onto trivial paths

In the previous section we proved that for a dually-CPT poset, one can always obtain a
representation where no element of a strong module is represented by a trivial path. It
therefore remains to consider how the paths that represent a strong module M can connect
to an element z, not contained in a strong module, where z is represented by a trivial path
in the representation RP. Since we need to reconfigure the containment relation inside the
module, this operation could be prevented or constrained if the trivial path is misplaced.
In the case where the trivial path is in the middle of the paths of the module, it will be easy
to reconfigure the containment relation. In the opposite case, if all the paths representing
elements of a module arrive at a trivial path, we cannot perform the intended operation as
planned. In this section, we will identify the problematic situations, and we will show how
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to overcome these problems. As in the previous section, we will perform local changes to
the representation to suppress problematic cases.

When the paths that represent elements of a module are connected to a trivial path in
a representation, several configurations could arise. The most favorable one, is when the
trivial path is properly contained in the paths of the module (i.e. the trivial path does
not lie on any extremity of the path of the module). Actually this is a configuration we
aim at obtaining. The other two configurations is when all the path have their extremities
that end at a trivial path, or just some of them end at this trivial path. In most cases we
will be able to reconfigure our representation to obtain a representation that is favorable
to our purpose.

4.1 Complete ending of a module on a trivial path

Let us assume that all paths in RP corresponding to elements of M have all their extremities
end at a vertex a of the host tree T . In that case, there are several possibilities: either all
the paths that represent M will arrive at a by passing by a vertex b of T and such that
a, b is an edge of T , or there is another vertex c that is a neighbor of a in T different from
b and such that some paths of the module pass through c.

In this section, even if it is not explicitly stated, the representation of the module M
will contain the trivial path of z located at the vertex a in T .

Remark 19. If a strong module of a dually-CPT poset P is two-sided in a representation
RP, then the induced graph is not connected. Hence the strong module is a stable module.

Lemma 20. Let M be a strong module of a dually-CPT poset P. If M is one-sided in a
representation RP and the poset induced by M is connected, then M is a clique module.

Proof. If the graph induced by M is connected, M is either a clique module or a prime
module. If M is a clique module, then there is nothing to prove. If M is a prime module,
then the graph induced by M necessarily contains an induced P4. Let us show that it is
not possible to represent a P4 as a CPT representation where all the paths end up at a
same vertex a of the host tree T . Consider the representation of the P4 as presented in
Figure 4(i) with the containment relation represented in Figure 4(ii).

For a contradiction, let us assume that such a representation exists. Since the paths of
2 and 4 have to contain the path of 3 and all these paths have to arrive at vertex a of the
host tree, we have a configuration similar to the one depicted in Figure 4(iii) and a part of
the host tree is depicted in Figure 4(iv). Since 2 and 4 are not connected, their paths have
to diverge in T . Call x the vertex of T where these paths diverge. It remains to represent
the path of 1. Since 1 is connected to 2 but not to 4, call y the vertex of T where the path
of 1 begins. The vertex y has to lie in the proper part of the path of 2 (see Figure 4(iv)),
and this path, by hypothesis, has to go all the way to a. But in that case it has to contain
the path of 3, hence there is a contradiction. 2
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Figure 4: (i) a P4, (ii) a CI representation of P4, (iii) tentative representation with all the
paths arriving at a vertex, (iv) the host tree of the tentative representation.
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Figure 5: Example of modification on a representation of a poset P

We have proven that if in the representation of a strong module all its paths arrive
at a same vertex of the host tree, then the module is either a clique or a stable module.
We now consider in which cases can we obtain an alternative representation where all the
paths do not arrive at a same vertex of the host tree. When the modification is possible,
we will show how by starting from RP one can obtain an equivalent representation R

′
P,

that is, a containment representation that still corresponds to P.

Lemma 21. Let M be a strong module of a dually-CPT poset P and RP a representation
of P where all the paths of M arrive at a same vertex. If there is no element of P that
contains the elements of M , then there exists an alternative representation R

′
P of P where

all the paths of M will have different endpoints.

Proof. Let us assume that all the paths of a strong module M arrive at a vertex a in the
representation RP. If there is no element of P\M that contains all the paths of M , then we
can add a new branch to the host tree starting at a and ending at b (see Figure 5). Let us
denote by k the cardinality of M . In order to guarantee that all paths end on a dedicated
vertex, the new branch needs to have at least k new vertices. It is easy to make sure that
the containment relation inside the module is not altered in this new representation. It is
simple to notice that the previous containments of P are preserved by this modification
and no new containment is added since the branch only contains paths of M . 2
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Figure 6: Modification of the representation of a two-sided stable module.

We now consider the case when there is at least one element x not in M that is greater
than all the elements of M . In that case M is either one-sided or two-sided. Let us start
with this second case.

Lemma 22. Let M be a strong stable module of a dually-CPT poset P and let x be an
element of P \M that contains all the elements of M . Let us assume that in a represen-
tation RP all the paths of M arrive at a vertex a of T . Then there exists an equivalent
representation R

′
P where all the endpoints of the paths of M near a are distinct.

Proof. By hypothesis, since the elements of M are all contained in an element x of P, it
means that in any representation RP of P the union of the paths of M is a path. If in
a representation RP of P all the paths of M arrive at a, let b and c be the immediate
neighbors of a on T along the path that hosts all the paths of M . Since the strong module
considered is stable and in the representation every element lies under the path of x, the
module is two-sided at a. Since M is two-sided in the representation, its elements can be
partitioned into two sets B and C as follows: An element r is in B if its path in RP passes
by the vertex b. Similarly, an element s is in C if its path in RP passes by c (see Figure
6). To obtain R

′
P it suffices to subdivide the edges a, b and a, c of T . All the paths of

the elements of B that previously ended at a will now end between a and c. Hence it is
necessary to add |B| new vertices between a and c. In a symmetric manner, the paths of
the elements of C will be elongated to end on a new vertex between a and b; thus it is
necessary to add |C| new vertices between a and b. It is simple to see that the introduced
modification does not alter the containment relationship. Any path that contained all
the elements of M will still contain all the elements of M . And any path that crossed
the section of tree spanned by the elements of M but did not contain them, will still not
contain them. 2

Lemma 23. Let M be a strong clique module of a dually-CPT poset P and let x be an
element of P \M that contains all the elements of M . If in a representation RP all the
paths of M arrive at a vertex a, then M does not contain any other strong module.

Proof. Because of the element x, the union of all the paths of the elements of M in RP is
included in the path of x and hence itself forms a path. Since all these paths are bounded
at a, then for any pair of elements p and q of M either the path of p is contained in the
path of q or the converse. There is no pair of non-adjacent vertices. As a consequence it
does not contain any other module. 2
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Figure 7: Configuration of a clique path. The set of paths C represents the paths of a
strong clique module M

Let M be a strong clique module with representation RP where all the paths of the
elements of M stop at a vertex a. We say that M is free in RP if there is at least one
vertex b of T such that a, b is an edge of T , no path of M passes through b and all the
paths that contain the paths of M pass through b. (See Figure 7 (i) and (ii).)

Lemma 24. Let M be a strong clique module of a dually-CPT poset P, and let x be an
element of P \M that contains all the elements of M . If M is free in a representation RP

where all the paths of M arrive at a vertex a, then we can find a representation R
′
P where

all the endpoints of M arrive on different vertices of T .

Proof. Since M is free in RP we can re-use the technique used in Lemma 22 by subdividing
the edge a, b of T . 2

Thanks to Lemmas 21, 22, and 24, we know how modify a representation in almost all
the cases. However, one case is not covered, namely, when the module is a clique and it is
blocked. We say that a strong clique module bounded at a vertex a in a representation RP

is blocked if it is not free. There are two reasons why M may be blocked: (1) It might be
because a path that contains the elements of M also stops at a, or (2) because there are
two elements x and y that contain all the elements of M and in RP their corresponding
paths diverge at a. (See Figure 7(iii).)

Remark 25. Let M be a strong clique blocked module of a dually-CPT. From Lemma 23,
we know that it does not contain any other strong module. Hence, a reconfiguration of this
subposet is just a matter of relabelling the elements.

4.2 Partial ending of a module on a trivial path

In the previous section, we proved that whenever a module is connected to an element z
of P represented by a trivial path in a representation RP and all paths that represent the
element of M end at this path, we can either alter the representation to ensure that all
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the paths do not end on that trivial path or, the module is a clique and does not contain
any other modules. Hence it is possible to alter the containment relation.

If, in the completely opposite direction, a module M is connected to an element z
represented by a trivial path, but no path that represents an element of M ends at this
trivial path, it does not create any problem to change the containment relation of the
module.

The last case to consider is when M is connected to a trivial path, but only some paths
of M (not all) end at this trivial path. We will prove that in that case an equivalent
representation, where no path of M ends at this trivial path, can be obtained.

Lemma 26. Let M be a strong module of a dually-CPT poset P connected to an element
z (z /∈M). If in a representation RP the element z is represented by a trivial path Wz and
the paths of some elements of M end at the path of Wz and some other paths of elements
of M properly contain Wz, then there exists an equivalent representation R

′
P where no

element of M ends at a trivial path.

Proof. Let I denote the set of elements not in M such that the paths of the elements of I
are contained in the paths of the elements of M . In the representation RP all the paths
that represent the element of I are all contained in ∩m∈MPm.

Since by hypothesis not all the paths of M end at a trivial path, if there are some
elements of M that end paths represented by trivial paths, there are at most two trivial
paths in that situation. Call these trivial paths y and z.

Let us assume that the part common to all the paths of M in RP is on a horizontal
line, and that w.l.o.g. that Wy is the leftmost and Wz is the rightmost of this common
part. We assume further, in the representation RP, that Wz lies on vertex a of T and Wy

lies on vertex b of T .
We denote by L (resp. R) the set of all elements of M whose paths in RP end at b

(resp. at a.) Note that there is at most one element of M that belongs to both L and R,
since the containment relation is proper.

There are two cases to consider: (1) either there is no element x such that all the paths
of M are contained in the path of x, or (2) such an element x exists.

(1) For the first case, let us assume that such an element does not exists. Hence there is
no path in RP that contains any path of the elements of M . In that case, to obtain an
equivalent representation, in T we can add one path with |M | new vertices connected to
a and another path with |M | new vertices connected to b. Since the poset induced by M
is CI, it suffices to represent this module as a containment of intervals using these new
branches for the endpoints. The transformation process is presented in Figure 8.

The containment relation between elements of R (resp. L) and I remain unchanged.
Moreover, for any element q not connected to M , since the endpoints of the paths of
the elements of M have been relocated in the two new branches, there is no containment
relation between Wq and the paths of the elements of M , since Wq does not contain any
of the new branches in R

′
P.
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(2) Let us now consider the case when there is an element x not in M such that in RP the
path of x contains all the paths of the elements of M . In the host tree T we denote by c
the neighbor of a such that no path of R passes through c but some paths of elements of
M do (by our initial hypothesis). Let d be the neighbor of b in T such that paths of some
elements of M pass through but no element of L does.

To obtain an alternative representation R
′
P we subdivide the edge a, c |R| times and

subdivide the edge b, d |L| times. (This transformation is presented in Figure 9). Then
it is just a matter of extending the paths of the elements in R such that they end on a
vertex located between a and c. For each element of R, its new ending vertex is determined
according to the containment relation in R. For the elements of L, we proceed in a similar
manner.

It remains to prove that the new representation still represents the poset P. The only
paths that are transformed are the paths that correspond to elements of R and L. Without
loss of generality, let l be an element of R and let Wl be its path in R

′
P. Since Wl has been

extended, it is clear that all the paths in RP that were contained in Wl remain contained
in R

′
P. In addition, since the extension occurred between a, c or b, d. Equivalently let k

be an element of P. If Wl ⊂ Wk in RP then Wl ⊂ Wk in R
′
P. If k is an element of R,

by the transformation we ensure that the containment relation is preserved. If k is not an
element of R, then in RP, the path Wk passed by vertex c of T , hence by extending Wl, it
will not reach c, then it is still contained in Wk in R

′
P.

Let us now consider an element q such that Wq intersects Wl but there is no containment
relation in RP. If Wl ∪Wq is not a path in RP then it contains a claw pattern and this
pattern will be preserved in R

′
P. Let us now consider the case when Wl ∪Wq forms a path

in RP. If Wq passes through a in RP it has one endpoint contained between the endpoint
of Wl. Thus the first endpoint of Wq is at the left of a in RP and the endpoint at the right
of c (possibly c). Since Wl does not reach c in R

′
P, the overlap relation is preserved in the

new representation. If both paths were disjoint, they remain disjoint in R
′
P.

2

From Lemmas 21, 22, 24 and Remark 25, we can summarize the results of this section
with the following theorem:

Theorem 27. Let P be a dually-CPT poset. Either for each strong module M of P there
exists a representation RP such that all the paths of M do not end on a trivial path, or M
is a clique blocked module.

We call a representation that fulfills the condition of the previous theorem a normalized
representation.
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Figure 8: Illustration of case (1) of Lemma 26. Elements 1, 2, 3 and 4 are parts of the
modules. The module is connected to the elements represented by the paths in the box B.
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Figure 9: The same example as in Figure 8, but this time there is an element x not in M
that contains all the elements of M and that prevents performing the modification of case
(1).

5 Substitution

The last step to obtain our main result is to prove that for any dually-CPT poset P all
the posets Q = {Q1, . . . ,Ql} that are associated to P admit a CPT representation. Let us
consider one particular poset Q of this set. If Q is associated to P it means by definition
that their underlying comparability graphs are identical. We assume that P is not CI,
otherwise the results already stand from Theorem 6. Thus we deduce that the quotient
poset of P is not CI, by Theorem 9, and thus is prime. Since P and Q are associated, by
Property 4 they admit the same set of strong modules. The quotient H of P is obtained
by keeping one element of each strong maximal module and the quotient K of Q is either
equal to H or to its dual Hd. Let us consider that H is equal to K.

To obtain a representation for Q, we will use the normalized representation RP obtained
for P. From RP it is immediate to obtain a representation RH for H as it suffices to keep
one path for each strong module of P. In addition, since it is obtained by removing paths
from a normalized representation, we can consider that all the paths that correspond to
strong modules which are not clique blocked modules, do not end on trivial paths of other
elements. Then we will show that for such elements, we can replace this path by an
arbitrary CI poset. Finally, to obtain a CPT representation for Q it suffices to replace
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each path that is a representative of a strong module, by the corresponding CI poset in
Q. For the clique blocked modules, as they do not contain other strong modules, they
correspond to total orders, hence the representation can be preserved, but the labelling
has to be changed to suit the total order in Q.

Let v0 be an element of H that is a representative of some maximal strong module of
P that is not a clique blocked module. Let Wv0 = (x1, x2, . . . , xk) be its path in RH . We
will assume that k is at least 4. We will show how to replace Wv0 by a CI poset N. Let
RN = {Ii}1≤i≤n be a CI representation of a poset N whose vertices are u1, u2, . . . , um.

Assume that the intervals Ii (subpaths of a path I) are non-trivial, no two of them
share an end vertex and there is an edge cd of I contained in the total intersection of the
intervals Ii – this assumption is guaranteed by Proposition 10. Name a and b the end
vertices of the interval union of the intervals Ii. Clearly [c, d] ⊂ [a, b]. We also assume that
a, b, c and d are distinct, and that neither c nor d are end vertices of an interval Ii.

Replacement process. The process of replacing in the representation RH the path Wv0

by the intervals {Ii}1≤i≤n of the representation RN consists of:

(i) subdividing the edges x1x2 and xk−1xk of T by adding in each one n− 1 vertices.

(ii) subdividing the edge cd of I by adding as many vertices as there are in T between x2

and xk−1.

(iii) removing from RH the path Wv0 and embedding in its place the intervals of S in such
a way that the vertices a, c, d, b and all others between them match with the vertices
x1, x2, xk−1, xk and all others between them, respectively, as it is shown in Figure
10.

Lemma 28. If in RH the path Wv0 that represents a module of a dually-CPT poset P does
not end on trivial paths, then we can obtain the representation RHN→v0

by replacing Wv0 by

the intervals {Ii}1≤i≤n of the representation RN in RHN→v0
. If any of the paths Ii contains

(resp. is contained in) a path Wv, then all the paths Ii contain (resp. are contained in) Wv.
Moreover, a path Wv of RH contains (is contained in) Wv0 if and only if Wv contains

(is contained in) every one of the intervals Ii in RHN→v0
.

Proof. This result is a direct consequence of two facts: first, that in RN no interval Wv of
RH has an end-vertex between x1 and x2, nor between xk−1 and xk+1, and second, that in
RN, all the intervals Ii contain the interval x2xk−1. See Figure 10. 2

Lemma 29. If in RH the path Wv0, that represents a blocked clique module of a dually-
CPT poset P, ends on a trivial path, then we can obtain the representation RHN→v0

by

replacing Wv0 by the a collection of paths that represent a clique.
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Figure 10: Description of the Replacement process
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Proof. Let us assume that Wz is the trivial path that Wv0 ends on in RH. Let us denote
by a the vertex of the host tree that hosts Wz. Since the containment relation is proper,
we can assume that Wv0 passes through at least two vertices of the host tree. One of the
extremities of Wv0 is a. Let us call the other extremity b. Since the length of Wv0 is at least
two, we know there exists in the host tree a vertex c that is the immediate neighbor of b
on the path going to a. The vertex c is possibly equal to a. By subdividing an appropiate
number of times the edge bc of the host tree, we can add as many paths as we need to place
a clique module. From the transformation, it is easy to see that the containment relation
is preserved with respect to the module.

2

We restate here our main theorem:

Theorem 30. A poset P is strongly-CPT if and only if it is dually-CPT.

Proof. Let H = P/M(P) be the quotient poset, where M(P) = {M1, . . . ,Mk} is the
maximal modular partition of P.

Since P is a dually-CPT poset and H is a subposet of P, then H and Hd admit a
normalized CPT -representation. If H is CI, by Remark 8 and Theorem 9, P is CI and so
strongly-CPT . Thus let us assume that H is a prime dually-CPT poset.

Let Q be an associated poset of P and let K be its quotient poset. Since P and Q
are associated, an immediate consequence is that H and K are associated; in addition by
hypothesis they are both prime, hence by Theorem 3, K is either equal to H or to Hd. Let
us assume, w.l.o.g., that H = K.

We will prove that Q admits a CPT representation. By Theorem 5 and w.l.o.g, we
assume that Q is obtained by replacing in H each vertex vi of H for Qi = Q(Mi). By
Proposition 4, P and Q possess the same strong modules and by Theorem 9 since P
is dually-CPT, all the strong modules of P and Q are CI. For each Qi we have a CI
representation.

Let RH be a CPT representation of H, obtained from a normalized representation of
P. The representation is obtained by only keeping one path for each strong module of P.

For each path Wvi that corresponds to a module Mi of Q, if Wvi does not end on a
trivial path of RH then it corresponds to a module which is not a blocked clique module,
hence by Lemma 28, we can replace Wvi by a CI representation of Qi.

The only remaining case is if Wvi ends on a trivial path in RH. In that case, it means
that it corresponds to a blocked clique module of P in the representation RP. Hence by
Lemma 29, we can replace Wvi by a CI representation of the maximal strong clique module
Qi.

By proceeding in that way for each maximal strong module, we are able to obtain a
CPT representation RQ of Q. 2
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