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Abstract 14 

In maize breeding, the selection of the candidate inbred lines is based on topcross evaluations using a limited 15 

number of testers. Then, a subset of single-crosses between these selected lines is evaluated to identify the best 16 

hybrid combinations. Genomic selection enables the prediction of all possible single-crosses between candidate 17 

lines but raises the question of defining the best training set design. Previous simulation results have shown the 18 

potential of using a sparse factorial design instead of tester designs as the training set. To validate this result, a 363 19 

hybrid factorial design was obtained by crossing 90 dent and flint inbred lines from six segregating families. Two 20 

tester designs were also obtained by crossing the same inbred lines to two testers of the opposite group. These 21 

designs were evaluated for silage in eight environments and used to predict independent performances of a 951 22 

hybrid factorial design. At a same number of hybrids and lines, the factorial design was as efficient as the tester 23 

designs, and, for some traits, outperformed them. All available designs were used as both training and validation 24 

set to evaluate their efficiency. When the objective was to predict single-crosses between untested lines, we showed 25 

an advantage of increasing the number of lines involved in the training set, by (i) allocating each of them to a 26 

different tester for the tester design, or (ii) reducing the number of hybrids per line for the factorial design. Our 27 

results confirm the potential of sparse factorial designs for genomic hybrid breeding. 28 
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Hybrid breeding, Genomic selection, Factorial design, Tester design, General combining ability, Specific 30 

combining ability 31 
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Key Message (30 words) 33 

Calibrating a genomic selection model on a sparse factorial design rather than on tester designs is advantageous 34 

for some traits, and equivalent for others. 35 
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Introduction 46 

Maize genetic diversity has been structured into complementary heterotic groups and varieties are mainly single-47 

crosses between two inbred lines issued from different heterotic groups. In Northern Europe, the two main heterotic 48 

groups are the flint and the dent groups. The straightforward way to identify the best single-cross hybrids would 49 

be to cross all inbred lines from each heterotic group following a complete factorial design. In breeding programs, 50 

the number of candidate lines is large and increases every year. This makes it impossible to generate and evaluate 51 

all possible single-cross hybrids. The development of Doubled-Haploid (DH) technology reinforces this difficulty 52 

due to the fact that it allows the fast production of a large number of fully homozygous inbred lines, compared to 53 

the use of selfing generations in a single-seeds descent process. 54 

An approach to manage this situation is to preselect lines within each heterotic group in early stages of 55 

selection and to evaluate single-crosses between selected lines of each group in advanced stages of the process. In 56 

1942, Sprague and Tatum introduced the partition of the hybrid value into general and specific combining abilities 57 

(GCA and SCA). The GCA of a line is defined as the average performance of its progeny in hybrid combinations 58 

and the SCA of a hybrid is the deviation from the expected performance based on the GCA of the parental lines.  59 

They illustrated the interest of topcross tests in the early breeding stages, (i.e. the evaluation of hybrid progeny 60 

obtained by crossing candidates from one group with few individuals from the other) for the preliminary evaluation 61 

of inbred lines and of single-cross tests in later stages to identify the best hybrid combinations. Today, in most 62 

hybrid breeding programs, variations of this two-step approach are used to improve simultaneously two parental 63 

populations in a recurrent reciprocal way. The process is divided into two stages. First, the candidate lines of one 64 

heterotic group are crossed to a limited number of individuals, usually inbred lines (one or few lines) from the 65 

opposite group which are called “testers”. The topcross hybrid progeny are then evaluated in the field and the best 66 

lines of each heterotic group are selected based on their GCA. In the second stage, the selected lines of each group 67 

are crossed following an incomplete factorial design and the best hybrid combinations are identified. However, a 68 

selection based on a few testers in the early breeding stages does not fully exploit the complementarity between 69 

groups, specifically SCA, and can bias the GCA estimation. The GCA of the inbred line is then confounded with 70 

the SCA of the topcross hybrids, especially when using only one tester. This two-stage breeding process increases 71 

the time required for marketable hybrid development and requires the phenotyping of a large number of lines (at 72 

least as many hybrids as lines in each group in the first step). 73 

Since the resources available for phenotyping are limited, a major goal in hybrid selection is the prediction 74 

of untested hybrid performance. Until the 1990s, selection was conducted without knowing genes or loci implied 75 

in GCA and SCA components. The development of markers enabled the identification of genes or loci implied in 76 

quantitative traits variations (QTL detection) and opened the way to performance prediction based on marker 77 

information (Lande and Thompson 1990). Several approaches using markers in selection were developed, one of 78 

which is genomic selection (GS or genomic prediction) (Meuwissen et al. 2001). Implementation of GS requires 79 

the development of a training set (TRS) consisting of individuals both phenotyped and genotyped. The TRS is 80 

used to calibrate a prediction model of the value of individuals that have only been genotyped. Among the proposed 81 

GS models, one consists in using markers to estimate additive genomic relationships (kinship matrix) between 82 
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individuals. Then this matrix is used in a mixed model to predict the performance of unphenotyped individuals 83 

using the performance of phenotyped ones. An adaptation of this model for the prediction of hybrid values was 84 

first proposed by Bernardo (1994). For predicting the GCAs and SCAs of unphenotyped hybrids, he used marker-85 

based distances between parental lines of hybrids and the performance of a related set of single-crosses. Several 86 

models adapted to the hybrid framework have been proposed more recently, modeling either the GCA and SCA 87 

components or the additive, dominance and epistasis effects (Vitezica et al. 2013, 2017; Varona et al. 2018; 88 

González-Diéguez et al. 2021). It has been shown that the prediction accuracy of genomic selection can be affected 89 

by various factors such as the trait heritability, the number of markers (Heslot et al. 2012), the statistical model, 90 

the calibration population size (Jannink et al. 2010; Technow et al. 2014; Seye et al. 2020), the relationship between 91 

the training set (TRS) and the prediction set (Saatchi et al. 2010; Albrecht et al. 2011; Pszczola et al. 2012; 92 

Technow et al. 2014; Kadam et al. 2016; Seye et al. 2020). In the particular framework of hybrid prediction, other 93 

factors affect prediction accuracies, such as including SCA in prediction models and the optimization of the TRS 94 

regarding the number of hybrids phenotyped and the number of parental lines contributing to these hybrids 95 

(Technow et al. 2014; Seye et al. 2020). 96 

Studies confirmed the usefulness of genomic selection models to predict single-cross hybrid values in 97 

maize (see Kadam and Lorenz 2018 review), but most studies on the prediction of single-cross hybrids addressed 98 

only the last step of the selection process, i.e. the identification of the best hybrid combinations produced from 99 

crossings among the selected lines. The use of markers and especially the use of GS offers new prospects for 100 

improving the hybrid breeding scheme. A promising lead, first proposed by Giraud (2016) and Kadam et al. (2016), 101 

would be to replace topcross evaluations at an early stage by genomic predictions calibrated on a sparse factorial 102 

design between candidate lines. This would allow the identification of superior single crosses early in the hybrid 103 

breeding pipeline by (i) predicting all potential hybrid combinations using GS, (ii) exploiting the complementarity 104 

between the two heterotic groups in early stages and (iii) getting rid of the tester bias. This approach requires 105 

genotyping candidate lines and producing hybrids by hand-made pollination which is challenging and costly. 106 

Therefore, even if this approach is appealing (Kadam et al. 2016; Giraud et al. 2017a, b; Fristche-Neto et al. 2018; 107 

Kadam et al. 2021) and its efficiency compared to the tester approach was assessed by simulations (Seye et al. 108 

2020), further investigations and experimental validation are needed. The first experimental study (Fristche-Neto 109 

et al. 2018) that investigated the influence of the mating design to build the TRS in maize breeding showed a clear 110 

advantage of a factorial or a diallel over a tester design. But the designs used as TRS had different sizes which 111 

might affect conclusions. Recently an experimental study compared the use of a topcross progeny to the use of 112 

randomly paired single-cross progeny as TRS for genomic predictions by cross-validations (Burdo et al. 2021). 113 

This study relied on two synthetic populations from Iodent and Stiff Stalk heterotic groups evaluated for grain 114 

yield performances. 115 

In the present study, our objective is to further evaluate the interest of using a factorial design instead of 116 

a tester design as TRS in early stages of the breeding pipeline. Original factorial and tester experimental designs 117 

were produced to correspond to the population structure of the candidate lines generated by breeders in the early 118 

stages of the process (unselected lines): in each heterotic group (the flint and the dent), segregating lines were 119 

derived from biparental families, themselves issued from intercrossing four founder lines. Two factorial designs 120 
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differing in their composition (number of lines and number of hybrids per line) were generated as well as two 121 

tester designs derived from the same inbred line populations. All these designs were used as TRS or VS to evaluate 122 

their potential for calibrating prediction models for different prediction objectives. The aim of this study was to 123 

(1) assess the efficiency of using a sparse factorial design as calibration set to predict new hybrid combinations 124 

obtained with a tester versus a more complete factorial design, and compare its ability to predict hybrids derived 125 

from selected lines, (2) compare the efficiency of using a factorial or tester designs of equal size to calibrate GS 126 

models and evaluate different tester designs’ compositions, and (3) assess the impact of the composition of the 127 

factorial design in terms of the number of hybrids per line on the prediction accuracy. 128 

Materials and Methods 129 

Genetic material 130 

This study relies on four different experimental designs. 131 

The first one, referred to as F-1H was already analyzed in previous studies (Giraud et al. 2017a, b; Seye 132 

et al. 2019). It is a factorial design derived from two multiparental populations, each corresponding to one of the 133 

major heterotic groups used for silage maize breeding in Northern Europe: the flint and the dent. In each heterotic 134 

group, three founder lines were chosen for their agronomical performances for silage production (F373, F03802, 135 

F02803 for the flint group and F98902, F1808, F04401 for the dent group) and one for its silage quality (F7088 136 

for the flint group and F7082 for the dent group). Six biparental families were derived from the six F1 hybrids 137 

produced by intercrossing the four founder lines of each heterotic group. The dent biparental families were 138 

obtained by doubled haploidization and the flint ones were obtained by five to six generations of selfing using a 139 

single-seed descend process. A total of 822 flint lines and 801 dent lines were derived and crossed following a 140 

sparse factorial design to produce 951 flint-dent single-cross hybrids. Each parental line contributed to one or two 141 

hybrids (20% of the lines contributed to two hybrids), therefore this design will be referred to as F-1H. The F-1H 142 

is balanced between families: 22 to 35 hybrids were produced from each biparental family combination. For more 143 

details see Giraud et al. (2017a). 144 

The F-4H and the tester designs were produced from crossing a subset of the parental lines of the F-1H. 145 

In each heterotic group, 60 lines were chosen randomly in a balanced manner (10 lines per family) and 30 lines 146 

were selected based on genomic predictions obtained in the F-1H for an index combining silage yield, moisture 147 

content at harvest and silage quality. This index corresponds to the one used for silage hybrids registration in 148 

France (Seye 2019). Note that in each heterotic group only three families (out of six) were represented in the 149 

selected lines. An incomplete factorial design composed of 363 hybrids was produced by crossing randomly (i) 150 

the 30 flint selected lines to the 30 dent selected lines to produce 131 hybrids (further called “selected hybrids”) 151 

and (ii) the 60 random dent lines to the 60 random flint lines leading to 232 hybrids (further called “random 152 

hybrids”). In this design each parental line contributed to produce generally four hybrids, therefore it will be 153 

referred to as F-4H. Note that the F-1H and the F-4H were issued from the same inbred line populations with the 154 

difference being their composition in terms of the number of lines and number of hybrids per line: the number of 155 
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hybrids per line was higher in the F-4H than in the F-1H. The same 90 dent lines were crossed to two flint testers 156 

to produce the 180 hybrids referred to as the T-D design and the 90 flint lines were crossed to two dent testers to 157 

produce the 180 hybrids of the T-F design. The testers used were two of the four founder lines from the opposite 158 

group (F1808 and F98902 for the dent testers and F373 and F02803 for the flint testers) that were chosen to be 159 

genetically distant and with good yield potential. 160 

Field trials 161 

The hybrids were evaluated in eight trials in the North of France and Germany. Hybrids from the F-1H were 162 

evaluated in four trials in 2013 and four in 2014, and hybrids from the F-4H and the tester designs were evaluated 163 

in three trials in 2016 and five in 2017. Trials were conducted by INRAE and seven private breeding companies 164 

(Lidea, Corteva, Maisadour, KWS, RAGT, Limagrain, Syngenta). The field experiments were laid out as 165 

augmented partially replicated designs (Williams et al. 2011). In each trial, two types of hybrids were used as 166 

controls: two commercial hybrids (LG30.275 and RONALDINIO) and 16 founder hybrids that were produced by 167 

crossing the founder lines of each heterotic group. In each trial, the controls were evaluated twice, as well as 20% 168 

of the experimental hybrids. The F-1H was evaluated in trials composed of 1,088 elementary plots distributed in 169 

68 incomplete blocks. One block was composed of 16 plots, four to five of these were used for replicated 170 

genotypes. Among the 2013 and 2014 trials, on average each experimental hybrid was seen in seven trials and was 171 

replicated within at least one trial. See Giraud et al. (2017a) for more details on the F-1H. The F-4H and the tester 172 

designs were evaluated jointly in the same trials. Each trial was composed of 800 elementary plots laid out in 50 173 

incomplete blocks. Among the 50 blocks, 26 were allocated to factorial hybrids and 24 to tester hybrids (six 174 

consecutive blocks per tester). Factorial blocks and tester blocks were grouped to limit potential competition 175 

between hybrids due to a design effect. One block was composed of 16 plots, four to five of these were used to 176 

replicate genotypes. Among the 2016 and 2017 trials, on average each experimental hybrid was seen in seven trials 177 

and was replicated within at least one trial. 178 

Hybrids were evaluated for 11 traits, four agronomical traits: silage yield (DMY in tons of dry matter per 179 

ha), dry matter content at harvest (DMC in % of fresh weight), female flowering date (DtSilk in days after January 180 

the first) and plant height (PH in cm) and seven silage traits for digestibility: milk fodder unit per kilogram of dry 181 

matter (MFU) (Andrieu 1995; Peyrat et al. 2016), cell wall content of the harvested dry matter measured by the 182 

neutral detergent fiber content (NDF in % of dry matter), lignin, cellulose and hemicellulose contents in the cell 183 

wall NDF evaluated with the Goering and Soest (1970) method (LIGN, CELL and HCELL in % of NDF), cell 184 

wall in vitro digestibility of the non-starch and non-soluble carbohydrates part of silage (DINAG in %) and cell 185 

wall in vitro digestibility of the non-starch, non-soluble carbohydrates and non-crude protein part of silage 186 

(DINAGZ in %). The DINAG and DINAGZ are two digestibility criteria, first proposed by Argillier et al. (1995). 187 

The silage quality traits were predicted using Near-Infrared Reflectance Spectrometry (NIRS) equations on silage 188 

powders, or directly in the field at harvest, depending on the practices of each breeding company. 189 

By inspection of raw data and field observations (from field trial visits), outliers were identified and 190 

considered as missing data. Then filters were applied, plots with abnormal standing counts (below 80% of the 191 

median), with DMC below 25% and above 45% were considered as missing data (NIRS predictions being 192 
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considered as unreliable for extreme moisture (Baker et al. 1994)). In total over the different traits, after inspection 193 

and filters, the percentage of missing data was equal to 11%. 194 

Variance decomposition on single-plot performances (without marker information) 195 

The individual single plot performance was corrected by the BLUPs of spatial effects predicted using models 196 

described in detail in File S1. Variance components were estimated on the single plot performance corrected by 197 

spatial effects independently for each design using Model (1.1) for the factorial designs and Model (1.2) for the 198 

tester designs. 199 

The model implemented on the factorial designs (F-1H and F-4H) was: 200 

𝑌ℎ𝑘𝑘′𝑙𝑥𝑦𝑧 = 𝜇 + 𝜆𝑙 + (𝜏ℎ + 𝜌𝑙ℎ) × 𝑡ℎ + (𝐻ℎ(𝑘𝑘′) + 𝐻𝜆𝑙ℎ(𝑘𝑘′)) × (1 − 𝑡ℎ) + 𝐸ℎ𝑘𝑘′𝑙𝑥𝑦𝑧 ,    (1.1) 201 

where 𝑌ℎ𝑘𝑘′𝑙𝑥𝑦𝑧 is the phenotypic value of hybrid ℎ produced by crossing the parental lines 𝑘 and 𝑘’, evaluated in 202 

environment 𝑙, located at row 𝑥, column 𝑦 and in block 𝑧. 𝜇 is the intercept, 𝜆𝑙 is the fixed effect of environment 203 𝑙, 𝑡ℎ distinguishes the type of hybrid, it is set to 0 for the experimental hybrids and set to 1 for the control hybrids 204 

(commercial or founder hybrids), 𝜏ℎ is the fixed factor with 18 levels corresponding to the control hybrids, 𝜌𝑙ℎ is 205 

the effect of the interaction between environment 𝑙 and control hybrid ℎ. 𝐻ℎ(𝑘𝑘′) is the random genetic effect of 206 

experimental hybrid ℎ produced by crossing the flint line 𝑘 and the dent line 𝑘′. 𝐻ℎ(𝑘𝑘′) is decomposed into its 207 

GCA and SCA components as follows: 208 

𝐻ℎ(𝑘𝑘′) =  𝑈𝑘 + 𝑈′𝑘′ + 𝑆𝑘𝑘′, 209 

where 𝑈𝑘 (respectively 𝑈′𝑘′) is the random GCA effect of the flint line 𝑘 (respectively dent line 𝑘′). We assume 210 

that 𝑈𝑘 and 𝑈𝑘′′  are independent and identically distributed (iid) and follow a normal distribution: 𝑈𝑘~𝒩(0, 𝜎𝐺𝐶𝐴𝑓2 ) 211 

and respectively 𝑈𝑘′′ ~𝒩(0, 𝜎𝐺𝐶𝐴𝑑2 ). 𝜎𝐺𝐶𝐴𝑓2  and 𝜎𝐺𝐶𝐴𝑑2  are the flint and dent GCA variances. 𝑆𝑘𝑘′ is the random SCA 212 

effect of the interaction between the parental lines 𝑘 and 𝑘’, with 𝑆𝑘𝑘′~𝒩(0, 𝜎𝑆𝐶𝐴2 ) idd with 𝜎𝑆𝐶𝐴2  being the SCA 213 

variance. 𝐻𝜆𝑙ℎ(𝑘𝑘′) is the genotype by trial interaction and is decomposed as follows: 214 

𝐻𝜆𝑙ℎ(𝑘𝑘′) = (𝑈𝜆)𝑘𝑙 + (𝑈′𝜆)𝑘′𝑙 + (𝑆𝜆)𝑘𝑘′𝑙 , 215 

where (𝑈𝜆)𝑘𝑙 and (𝑈′𝜆)𝑘′𝑙 are the random effects of the flint GCA effect by trial interaction, respectively dent 216 

GCA by trial interaction and (𝑆𝜆)𝑘𝑘′𝑙 is the random effect of the SCA by trial interaction. With (𝑈𝜆)𝑘𝑙 ∽217 𝒩(0, 𝜎𝐺𝐶𝐴𝑓×𝐸2 )iid, (𝑈′𝜆)𝑘′𝑙 ∽ 𝒩(0, 𝜎𝐺𝐶𝐴𝑑×𝐸2 )iid and (𝑆𝜆)𝑘𝑘′𝑙 ∽ 𝒩(0, 𝜎𝑆𝐶𝐴×𝐸2 )iid. 𝜎𝐺𝐶𝐴𝑓×𝐸2 , 𝜎𝐺𝐶𝐴𝑑×𝐸2  and 𝜎𝑆𝐶𝐴×𝐸2  218 

are the flint GCA by trial interaction variance, the dent GCA by trial variance and the SCA by trial interaction 219 

variance, respectively. 𝐸ℎ𝑘𝑘′𝑙𝑥𝑦𝑧  is the error term; we assume that the errors follow: 𝐸ℎ𝑘𝑘′𝑙𝑥𝑦𝑧~𝒩(0, 𝜎𝐸𝑙2 ) and are 220 

independent and identically distributed within trial and independent between trials, 𝜎𝐸𝑙2  is the error variance of 221 

environment 𝑙. The different random effects of the model are assumed to be independent. 222 
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The model implemented on the T-F was: 223 

𝑌ℎ𝑘𝑚𝑙𝑥𝑦𝑧 = 𝜇 + 𝜆𝑙 + (𝜏ℎ + 𝜌𝑙ℎ) × 𝑡ℎ + (𝛾𝑚 + 𝐻ℎ(𝑘𝑚) + 𝐻𝜆𝑙ℎ(𝑘𝑚))  × (1 − 𝑡ℎ) + 𝐸ℎ𝑘𝑚𝑙𝑥𝑦𝑧,  (1.2) 224 

where 𝜆𝑙, 𝑡ℎ, 𝜏ℎ and 𝜌𝑙ℎ are defined as in Model (1.1). 𝑌ℎ𝑙𝑚𝑥𝑦𝑧  is the phenotypic value of hybrid ℎ produced by 225 

crossing the dent founder line 𝑚 used as tester and the flint parental line 𝑘, evaluated in environment 𝑙 located at 226 

row 𝑥, colomn 𝑦 and in block 𝑧. 𝛾𝑚 is the fixed effect of line 𝑚 used as tester. 𝐻ℎ(𝑘𝑚) is the random genetic effect 227 

of hybrid ℎ produced by crossing the dent founder line 𝑚 used as tester and the flint parental line 𝑘 evaluated for 228 

its GCA. The genetic value of hybrid ℎ, 𝐻ℎ(𝑘𝑚), is decomposed as follows: 𝐻ℎ(𝑘𝑚) =  𝑈𝑘 + 𝑆𝑘𝑚, where 𝑈𝑘 is the 229 

random GCA effect of the flint line 𝑘, with 𝑈𝑘~𝒩(0, 𝜎𝐺𝐶𝐴𝑓2 ) iid and 𝑆𝑘𝑚 is the random effect of the interaction 230 

(SCA) between the flint line 𝑘 and the founder dent line 𝑚 used as tester, with 𝑆𝑘𝑚~𝒩(0, 𝜎𝑆𝐶𝐴𝑡2 ) iid. 𝐻𝜆𝑙ℎ(𝑘𝑘′) is 231 

the genotype by trial interaction, decomposed as follows: 𝐻𝜆𝑙ℎ(𝑘𝑘′) = (𝑈𝜆)𝑘𝑙 + (𝑆𝜆)𝑘𝑚𝑙  where (𝑈𝜆)𝑘𝑙 ∽232 𝒩(0, 𝜎𝐺𝐶𝐴𝑓×𝐸2 ) iid and (𝑆𝜆)𝑘𝑚𝑙 ∽ 𝒩(0, 𝜎𝑆𝐶𝐴𝑡×𝐸2 ) iid. 𝐸ℎ𝑘𝑚𝑙𝑥𝑦𝑧  is the error term. We assume that the errors follow 233 𝐸ℎ𝑘𝑚𝑙𝑥𝑦𝑧~𝒩(0, 𝜎𝐸𝑙2 ) iid within trial and independent between trials. The different random effects of the model are 234 

assumed to be independent. The same model was adapted and implemented on T-D. 235 

Variance components were estimated with each model and a likelihood ratio test was performed to test their 236 

significance with adjusted p-values corresponding to mixed chi-square distributions (Self and Liang 1987; 237 

Molenberghs and Verbeke 2007) using the “lrt.asreml” function of the ASReml-R package (setting the parameter 238 

“boundary” to TRUE for the mixed chi-square distributions). 239 

The percentage of genetic variance due to SCA was estimated (%) and broad-sense heritability was computed as 240 

follows: 241 

𝐻2 = 𝜎𝐻2𝜎𝐻2 +𝜎𝐻×𝐸2𝑛𝑠𝑖𝑡𝑒 + 𝜎𝐸𝑚𝑜𝑦2𝑛𝑟𝑒𝑝×𝑛𝑠𝑖𝑡𝑒
 , 242 

where 𝜎𝐻2 is the hybrid genetic variance. For the factorial designs it is computed as: 𝜎𝐻2 = 𝜎𝐺𝐶𝐴𝑓2 + 𝜎𝐺𝐶𝐴𝑑2 + 𝜎𝑆𝐶𝐴2  243 

and for the T-F (respectively T-D) it corresponds to the 𝜎𝐺𝐶𝐴𝑓2  (respectively 𝜎𝐺𝐶𝐴𝑑2 ). 𝜎𝐻×𝐸2  is the total genotype by 244 

trial variance decomposed as: 𝜎𝐻×𝐸2 = 𝜎𝐺𝐶𝐴𝑓×𝐸2 + 𝜎𝐺𝐶𝐴𝑑×𝐸2 + 𝜎𝑆𝐶𝐴×𝐸2  for the factorial designs and as: 𝜎𝐻×𝐸2 =245 𝜎𝐺𝐶𝐴𝑓×𝐸2  for the T-F (respectively 𝜎𝐻×𝐸2 = 𝜎𝐺𝐶𝐴𝑑×𝐸2  for the T-D). 𝜎𝐸𝑚𝑜𝑦2  is the mean residual variance across all 246 

trials, 𝑛𝑠𝑖𝑡𝑒 is the number of trials and 𝑛𝑟𝑒𝑝 is the mean number of within trial replicates across trials. 247 

Adjusted means 248 

For each trait and each design, least square-means (ls-means or adjusted means) of the hybrids were computed 249 

over trials, using a model considering the hybrid genetic effect as fixed: 250 

𝑌ℎ𝑟𝑙∗ = 𝜇 + 𝜆𝑙 + 𝛾ℎ + 𝐸ℎ𝑟𝑙 .    (2) 251 
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In this model, experimental hybrids and founder hybrids were considered jointly. 𝑌ℎ𝑟𝑙∗  is the performance corrected 252 

by the spatial field effects of repetition 𝑟 of hybrid ℎ in environment 𝑙. 𝜇 is the intercept, 𝜆𝑙 is the fixed effect of 253 

environment 𝑙, 𝛾ℎ is the fixed genetic effect of hybrid ℎ. 𝐸ℎ𝑟𝑙  is the error term of environment 𝑙, with 254 𝐸ℎ𝑟𝑙  ~𝒩(0, 𝜎𝐸𝑙2 ) iid within trial and independent between trials. All genomic predictions were performed on the 255 

ls-means thus obtained. 256 

Genotyping and kinship estimation 257 

The founder lines as well as the parental lines were genotyped for 18,480 SNPs using an Affymetrix array 258 

provided by Limagrain. After quality control, 9,548 SNP markers were conserved and mapped on a consensus 259 

map (Giraud et al. 2017a). 260 

Kinship matrices for the flint and dent GCA (𝑲𝑮𝑪𝑨𝒇  and 𝑲𝑮𝑪𝑨𝒅) were computed for all parental lines 261 

following method 1 from VanRaden (2008). The coefficient of the flint GCA kinship between individuals 𝑖 and 𝑖′ 262 

was estimated as follows: 263 

𝐾𝐺𝐶𝐴𝑓(𝑖,𝑖′) = ∑ (𝐺𝑖𝑚−𝑓𝑚)(𝐺𝑖′𝑚−𝑓𝑚)𝑀𝑚=1∑ 𝑓𝑚(1−𝑓𝑚)𝑀𝑚=1  ,    (3) 264 

where 𝐺𝑖𝑚 is the genotype of the flint line 𝑖 at locus 𝑚 (coded 0, 0.5 and 1) and 𝑓𝑚 is the allele frequency of allele 265 

“1” at locus 𝑚 estimated on the whole dataset. The kinship matrix 𝑲𝑮𝑪𝑨𝒅  was computed similarly. The coefficient 266 

of the SCA kinship matrix (𝑲𝑺𝑪𝑨) between two flint-dent hybrids, produced from the crossings of parental lines 267 𝑖 to 𝑗 and parental lines 𝑖’ to 𝑗’, was computed as follows (Stuber and Cockerham 1966): 268 

𝐾𝑆𝐶𝐴(𝑖𝑗,𝑖′𝑗′) = 𝐾𝐺𝐶𝐴𝑓(𝑖,𝑖′) ∗  𝐾𝐺𝐶𝐴𝑑(𝑗,𝑗′).   (4) 269 

Genomic Best Linear Unbiased Prediction (GBLUP) models 270 

Two GBLUP models were implemented for genomic predictions depending on the design used as TRS (factorial 271 

or tester). 272 

The model implemented on the factorial designs (F-1H and F-4H) including SCA effects was: 273 

 𝒚 = 𝟏𝒏. 𝜇 + 𝒁𝒅 𝒈𝑮𝑪𝑨𝒅 + 𝒁𝒇𝒈𝑮𝑪𝑨𝒇 + 𝒁𝒅𝒇𝒈𝑺𝑪𝑨𝒅𝒇 + 𝑬,   (5.1) 274 

where 𝒚 is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is the intercept. 275 𝒈𝑮𝑪𝑨𝒇  (respectively 𝒈𝑮𝑪𝑨𝒅) is the vector of random GCA effects of the 𝑛𝑓 flint parental lines (respectively 𝑛𝑑 dent 276 

lines), with 𝒈𝑮𝑪𝑨𝒇  ~ 𝒩 (0, 𝑲𝑮𝑪𝑨𝒇𝜎𝐺𝐶𝐴𝑓2 ) (respectively 𝒈𝑮𝑪𝑨𝒅  ~ 𝒩(0, 𝑲𝑮𝑪𝑨𝒅𝜎𝐺𝐶𝐴𝑑2 )) where 𝑲𝑮𝑪𝑨𝒇  (respectively 277 𝑲𝑮𝑪𝑨𝒅) is the genomic relatedness matrix between the flint lines (respectively dent lines). 𝜎𝐺𝐶𝐴𝑓2  and 𝜎𝐺𝐶𝐴𝑑2  are the 278 

flint and dent GCA variances. 𝒈𝑺𝑪𝑨𝒅𝒇  is the vector of SCA random effects of the 𝑛 hybrids, accounting for the 279 
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interactions between the flint and dent parental lines, with 𝒈𝑺𝑪𝑨𝒅𝒇  ~ 𝒩 (0, 𝑲𝑺𝑪𝑨𝒅𝒇𝜎𝑆𝐶𝐴𝑑𝑓2 ) where 𝑲𝑺𝑪𝑨𝒅𝒇  is the 280 

SCA kinship matrix of the hybrids (phenotyped or not) and 𝜎𝑆𝐶𝐴𝑑𝑓2  the SCA variance. 𝒁𝒅, 𝒁𝒇 and 𝒁𝒅𝒇 are the 281 

corresponding incidence matrices of dimensions [𝑛 × 𝑛𝑑], [𝑛 × 𝑛𝑓], and [𝑛 × 𝑛] respectively, that relate the 282 

observations to the GCA and SCA effects of lines and single-cross hybrids considered in the model. 𝑬 is the vector 283 

of error terms, with 𝑬~ 𝒩(0, 𝑰𝜎𝐸2). The different random effects are assumed to be independent. A model without 284 

SCA effects was also considered. 285 

The model implemented on the T-F (the same model was adapted and implemented on the T-D) was: 286 

𝒚 = 𝟏𝒏. 𝜇 + 𝑿𝝊 + 𝒁𝒇𝒈𝑮𝑪𝑨𝒇 + 𝒁𝒈𝑺𝑪𝑨𝒕 + 𝑬,    (5.2) 287 

where 𝒚 is the vector of ls-means of the 𝑛 phenotyped hybrids, 𝟏𝒏 is a vector of 𝑛 ones and 𝜇 is the intercept. 𝝊 is 288 

the vector of fixed effects of the 𝑛𝑡 testers. 𝒈𝑮𝑪𝑨𝒇  is the vector of random GCA effects of the 𝑛𝑓 flint parental lines, 289 

with 𝒈𝑮𝑪𝑨𝒇  ~ 𝒩(0, 𝑲𝑮𝑪𝑨𝒇𝜎𝐺𝐶𝐴𝑓2 ) where 𝑲𝑮𝑪𝑨𝒇 is the genomic relatedness matrix between the flint lines and 𝜎𝐺𝐶𝐴𝑓2  290 

is the flint GCA variance. 𝒈𝑺𝑪𝑨𝒕 is the vector of random effects of the interaction between the flint line and the 291 

dent tester, with 𝒈𝑺𝑪𝑨𝒕~𝒩(0, 𝑰𝟐 ⊗ 𝑲𝑮𝑪𝑨𝒇 𝜎𝑆𝐶𝐴𝑡2 ) where 𝜎𝑆𝐶𝐴𝑡2  is the SCA variance. 𝑿, 𝒁𝒇 and 𝒁 are the 292 

corresponding incidence matrices of dimensions [𝑛 × 𝑛𝑡], [𝑛 × 𝑛𝑓], and [𝑛 × 𝑛𝑡𝑛𝑓] respectively. 𝑬 is the vector 293 

of error terms, with 𝑬 ~ 𝒩(0, 𝑰𝜎𝐸2). The different random effects are assumed to be independent. 294 

Predictive ability with different scenarios 295 

Three objectives were investigated using three different scenarios. 296 

In Scenario 1, the aim was to evaluate the efficiency of using a sparse factorial design mostly composed 297 

of one hybrid per line to predict new hybrid combinations evaluated in new environments. The F-1H, was used as 298 

TRS to predict the F-4H, T-F and T-D. The predictive ability was computed as the correlation between the 299 

observed phenotypes (ls-means) and the predicted hybrid values (sum of the predicted GCA and SCA BLUPs 300 

when included in the model). In the tester designs, for a given line, two ls-means values were available (one ls-301 

mean per tester). Therefore, the predictive ability was computed as the correlation between the mean of the two 302 

ls-means and the predicted GCA BLUP of the same line. Predictive abilities were also computed separately for 303 

the selected and the random hybrids to evaluate the quality of prediction among hybrids derived from selected 304 

lines. In this scenario, we evaluated the impact of the level of relationship between the TRS and the validation set 305 

(VS) on predictions. To vary the level of relationship between the TRS and the VS, we used four different TRS 306 

constituted of hybrids sampled within the F-1H to predict the same VS (F-4H) (Fig. 2). Hybrids included in the 307 

TRS were sampled to select those issued or not from parental lines contributing to the VS plus others to reach 742 308 

hybrids and to preserve the balance between families in each TRS. The four TRS led us to consider the prediction 309 

of: T0 hybrids where none of the VS parental lines contributed to the TRS, T1 hybrids where only one of the VS 310 

parental lines contributed to the TRS and T2 hybrids where both VS parental lines contributed to the TRS. Each 311 

TRS was sampled 10 times and the mean of the quality of prediction over the 10 repetitions was computed. 312 
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In Scenario 2, we compared the efficiency of calibrating a GBLUP model with a factorial or a tester 313 

design. The F-4H (composed of 363 hybrids) or the tester designs (360 hybrids) were used to calibrate respectively 314 

models (5.1) or (5.2) to predict the F-1H design. The predictive ability was computed as the correlation between 315 

the observed phenotypes (ls-means) and the predicted hybrid value (sum of the predicted GCA and SCA BLUPs 316 

when included in the model). The GCA BLUPs predicted when calibrating on the factorial design were correlated 317 

to the ones predicted with each of the tester designs. To compare the similarity of selection between the different 318 

approaches (based on phenotypic evaluations (ls-means) or genomic predictions (BLUPs) calibrated on the 319 

factorial or the tester designs) the coincidence of selection was computed for yield (DMY). For each pair of 320 

approaches, it corresponds to the percentage of common hybrids that would be selected by the two approaches for 321 

a given selection rate (%). The coincidences of selection were computed for different selection rates. We also 322 

investigated the impact of the composition of the tester designs by considering designs composed of one or two 323 

testers. Different TRS were considered, each composed of 180 hybrids: (i) 180 hybrids produced by crossing 90 324 

lines to one tester in each group (180 lines in total), since there were two testers in each group, there were four 325 

possible tester combinations to predict an hybrid, referred to as 1T-180H-180L-A, 1T-180H-180L-B, 1T-180H-326 

180L-C and 1T-180H-180L-D, (ii) 180 hybrids produced by crossing 45 lines to one tester and the 45 other lines 327 

to the other tester in each group, referred to as 2T-180H-180L, (iii) 180 hybrids produced by crossing 45 lines to 328 

the first tester and the same 45 lines to the second tester in each group referred to as 2T-180H-90L. To make it 329 

comparable 180 hybrids were sampled within the F-4H in a random and balanced manner between families, with 330 

the objective of maximizing the number of lines. This led to sample 152 lines (76 dent and 76 flint), and on average 331 

one line contributed to 2.4 hybrids. This scenario was called the F-180H-152L. 332 

In Scenario 3, the difference of composition of the two factorials was exploited to investigate its impact 333 

on predictions. At the same number of hybrids, there are more lines and fewer hybrids per line in the F-1H (1.2 334 

hybrids per line on average) compared to the F-4H (3.5 hybrids per line on average). The F-1H and the F-4H were 335 

used in turn as TRS and VS. The two factorial designs were sampled to the same number of hybrids (216 hybrids) 336 

but represented a different number of lines (207 dent lines and 209 flint lines for the F-1H and 60 dent lines and 337 

60 flint lines for the F-4H). Sampling was done such that hybrids of the two sets had no common parental lines 338 

(only hybrids produced by crossing lines that did not contribute to TRS were predicted), and were balanced 339 

between families. For the F-4H, sampling was done only among the random hybrids. 100 samples of 216 hybrids 340 

in each factorial design were considered and the mean of the 100 predictive abilities was computed. 341 

To test the significance of the differences between predictive abilities, William’s tests (Williams 1959) 342 

were performed using the “r.test” function of the psych R-package (Revelle 2021) for dependent correlations with 343 

a common variable. All models were implemented using the ASReml-R package (version 4) (Butler 2019; R Core 344 

Team 2020). 345 

  346 
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Results 347 

For clarity purpose, results on only four traits (DMY, DMC, DtSilk and MFU) are presented in the following. The 348 

results on the 11 studied traits are presented in supplementary materials. 349 

Variance components and broad-sense heritability (H²) at the phenotypic level without marker 350 

information 351 

Broad-sense heritabilities (H²) at the design level were high for all traits and all designs (Table 1 and Table S1). 352 

For the four main traits, they ranged from 0.79 (MFU) to 0.91 (DMC and DtSilk) for the F-1H, from 0.86 (MFU) 353 

to 0.93 (DMC and DtSilk) for the F-4H, from 0.85 (MFU) to 0.89 (DMC) for the T-D and from 0.78 (MFU) to 354 

0.94 (DMC) for the T-F. For a given trait, heritabilities were similar in both factorial designs. Variance 355 

decomposition at the phenotypic level without marker information showed large and significant genetic variances 356 

for all designs and all traits (Table 1, Table S1). For all traits and all designs, the SCA variance was lower than 357 

the sum of the GCA variances. The percentage of genetic variance due to SCA ranged from 10% (MFU) to 20% 358 

(DMY) for the F-1H, from 3% (MFU) to 9% (DMY) for the F-4H design, from 11% (DtSilk and MFU) to 21% 359 

(DMY) for the T-D and from 13% (DMC) to 20% (DMY) for the T-F. 360 

Variance components obtained using marker information 361 

Variance decomposition on adjusted means using GBLUP models showed large and significant genetic variances 362 

for all traits and all designs (Table 2, Table S2). The decomposition of the genetic variance into GCA and SCA 363 

components showed that most of the hybrid variation was due to GCA variance. For the four main traits of interest, 364 

the percentage of genetic variance due to SCA ranged from 0% (DMC and MFU) to 11% (DMY) for the F-1H, 365 

from 0% (DMC) to 7% (UFL) for the F-4H, from 4% (DMC, DtSilk) to 15% (DMY) for the T-D and from 5% 366 

(MFU) to 10% (DMY) for the T-F. These values were lower (except for MFU in F_4H) than the ones estimated 367 

based on phenotypic data only. Adding SCA effects in the model induced no or minor changes in the genetic 368 

variance components, but reduced slightly the residual variance. 369 

Scenario 1- Using a sparse factorial design (F-1H) to predict new hybrid combinations in new 370 

environments 371 

The predictive abilities obtained for new hybrid combinations in new environments (F-4H, T-D and T-F) when 372 

calibrating on the F-1H were high for all traits (Table 3, Table S3). Considering a prediction model without SCA, 373 

they ranged from 0.78 (DMY) to 0.82 (MFU) when predicting all hybrids (Selected + Random) of the F-4H, from 374 

0.74 (DMC) to 0.80 (DMY) for T-D and from 0.69 (DMY) to 0.84 (DMC and DtSilk) for T-F. When predicting 375 

the tester designs, the ability to predict the 𝐺𝐶𝐴𝑑 was higher than the ability to predict the 𝐺𝐶𝐴𝑓 for eight traits 376 

out of 11, differences ranged from 0.01 (MFU) to 0.11 (DMY). Considering the SCA in the model did not improve 377 

the quality of predictions. Predictive abilities were computed for each hybrid type of the VS (random or selected). 378 

They were generally higher for the random hybrids compared to the selected hybrids (hybrids produced from 379 
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crossing two selected parental lines) for all VS and all traits but DMC and DMY (Table 3). Differences between 380 

the predictions of random and selected hybrids were greater for DMY, DtSilk, NDF, CELL and HCELL. 381 

The ability of the F-1H to predict T0, T1 or T2 hybrids was estimated by considering different TRS (Fig. 382 

3). The lowest predictive abilities were obtained when predicting T0 hybrids for the four traits presented (and for 383 

seven traits out of 11) and ranged from 0.70 (DMC and DtSilk) to 0.79 (MFU). The highest predictive abilities 384 

were obtained when predicting T2 hybrids for all presented traits (and for eight traits out of 11), they ranged 385 

between 0.77 (DMY and DMC) and 0.82 (MFU). Predictive abilities obtained for T1 hybrids were on average 386 

intermediate compared to the ones obtained for T0 and T2 hybrids. For a given trait, differences in predictive 387 

abilities between T0, T1 and T2 hybrids were small especially for DMY (ranging from 0.74 to 0.77) and MFU 388 

(ranging from 0.79 to 0.82). On average over the 11 traits, the quality of prediction was higher for the T1F hybrids 389 

than for the T1D hybrids for all traits (except for DINAG), differences ranged from 0.02 (DINAG) to 0.22 390 

(HCELL) between the highest and the lowest quality of prediction.  391 

Scenario 2- Compare the efficiency of factorial versus tester designs as TRS 392 

We compared the predictive abilities that can be achieved using either the F-4H (363 hybrids) or the tester designs 393 

(360 hybrids) as TRS to predict all hybrids of the F-1H (Fig. 4). They ranged from 0.55 (DtSilk) to 0.67 (MFU) 394 

for the calibration on the factorial design and from 0.54 (DMY) to 0.65 (DMC and MFU) for the calibration on 395 

the tester designs. Calibrating on the F-4H gave better predictive abilities than calibrating on the tester designs for 396 

eight traits out of 11 and on average over the 11 traits (Table S4), but differences were small. Including SCA 397 

effects in the GBLUP model did not improve the quality of prediction. The GCA BLUPs predicted using the F-398 

4H as TRS were well correlated to the GCA BLUPs predicted using the tester designs as TRS, correlations ranged 399 

from 0.85 (𝐺𝐶𝐴𝑓 for DMY) to 0.95 (𝐺𝐶𝐴𝑓 for DMC) (Table 4, Table S5). The coincidence of selection computed 400 

for hybrid predictions obtained with the factorial or the tester approaches was 53% for a selection rate of 5% 401 

(Fig.S1). This illustrated that at this selection rate, the two approaches did not select the same single-cross hybrids. 402 

For selection rates below 5%, predictions based on the factorial identified a higher proportion of hybrids that were 403 

the top-ranked ones based on their observed performances (ls-means) (Fig S1). The predictive abilities were also 404 

computed for the different types of hybrids constituting the VS: T0 or T1 hybrids. Overall, predictive abilities of 405 

T1 hybrids were higher than the ones of T0 hybrids for all traits and all designs (Table 5, Table S6). The differences 406 

in predictions between the factorial and tester designs were similar when predicting all, only T1 or T0 hybrids. 407 

At the same number of hybrids (180 hybrids), the impact of the composition of the tester designs used as 408 

TRS was investigated. We compared the predictive abilities obtained using either one or two testers or using a 409 

factorial design as TRS to predict all 951 hybrids of the F-1H. Across all presented traits and all TRS, the predictive 410 

abilities ranged from 0.48 (DtSilk, 2T-180H-90L) to 0.66 (MFU, 2T-180H-180L) (Fig. 5). When the TRS was 411 

composed of one tester per group, the average predictive ability over the four tester combinations (1T-180H-180L-412 

A, 1T-180H-180L-B, 1T-180H-180L-C, 1T-180H-180L-D) ranged from 0.51 (DMY) to 0.64 (DMC). Predictive 413 

abilities varied between the four different combinations of testers (A, B, C and D) and the best combination was 414 

different depending on the trait. Differences between the lowest and the highest ranged from 0.005 (DMC) to 0.048 415 
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(DMY). Qualities of prediction obtained with the 2T-180H-180L were higher than those obtained with the 2T-416 

180H-90L for all presented traits (and for nine traits out of 11 studied traits). On average, the quality of prediction 417 

obtained with 2T-180H-180L as TRS was higher than the ones obtained with the best TRS combination composed 418 

of one tester per group (1T-180H-180L-A, B, C, D). At the same number of hybrids, there was always an advantage 419 

at using the F-180H-152L instead of the 2T-180H-90L or the best 1T-180H-180L. On average over the 11 traits, 420 

predictive abilities were similar between the F-180H-152L and the 2T-180H-180L. It should be noted that 421 

predictive abilities obtained when calibrating on 180 hybrids (F-180H-152L) were similar or only slightly lower 422 

than the ones obtained when using the whole set of 363 hybrids of the F-4H as TRS. Differences ranged from 0 423 

(DMY) to 0.05 (DtSilk) (Fig. 4 and Fig. 5). 424 

Scenario 3- Assess the impact of the number of hybrids per line in factorial designs when predicting 425 

T0 hybrids 426 

To investigate the impact of the number of lines involved in the calibration set at the same number of hybrids, the 427 

F-4H and the F-1H were used in turn as calibration sets to predict T0 hybrids (no common parental lines between 428 

the TRS and the VS) (Fig. 6, Table S7). The predictive abilities when calibrating on 216 hybrids of the F-1H 429 

varied between 0.55 (DMY) and 0.71 (MFU). The predictive abilities when calibrating on 216 hybrids of the F-430 

4H varied between 0.44 (DtSilk) and 0.65 (MFU). For all presented traits (and for nine traits out of 11 and on 431 

average), the quality of prediction was higher when calibrating on 216 hybrids of the F-1H (207 dent lines and 209 432 

flint lines) than when calibrating on 216 hybrids of the F-4H (60 dent lines and 60 flint lines) to predict T0 hybrids 433 

of the other design. Thus, at a given TRS size of 216, there was an advantage at using more lines and fewer hybrids 434 

per line to predict T0 hybrids. 435 

Discussion 436 

Importance of SCA and its prediction 437 

The proportion of SCA variance estimated in the designs using the model without marker information (Model 1.1 438 

and 1.2) was small for all traits, from 0 to 20% for the F-1H and from 0 to 9% for the F-4H. This result is expected 439 

in hybrids produced by crossing lines from divergent populations (heterotic groups) (Reif et al. 2007). This 440 

relatively small importance of SCA effects compared to GCA effects is consistent with the fact that no SCA QTL 441 

could be detected in the F-1H design (Giraud et al. 2017b; Seye et al. 2019). Higher SCA proportions were obtained 442 

for the F-1H than for the F-4H, which might be due to differences in environmental conditions or to a different 443 

sampling of hybrids from the inbred lines. It should be noted that the estimation of the SCA variance in the F-1H 444 

was less accurate (Table 1) than in the F-4H design due to the fact that most of the inbred lines contributed to 445 

producing only one hybrid. This made it more difficult to separate the GCA from the SCA effects. Therefore, we 446 

can assume that the proportion of SCA variance was over-estimated in the F-1H. The proportion of SCA variance 447 

in the designs was also estimated through GBLUP models, by including marker information to compute GCA and 448 

SCA kinships. The estimated proportion of SCA was lower using the GBLUP model compared to the model 449 

without marker information. One possible explanation could be that the GBLUP model was not able to efficiently 450 

capture the SCA variance component. 451 
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Including SCA effects in the GBLUP models did not improve the predictions. This is consistent with the 452 

variance decomposition that showed little SCA variance and was also observed in other studies using data from 453 

inter-heterotic single-cross hybrids (Schrag et al. 2006, 2018; Technow et al. 2014; Kadam et al. 2016; Westhues 454 

et al. 2017; González-Diéguez et al. 2021). In fact, few studies have shown an increase in single cross prediction 455 

accuracy by modeling SCA effects (Technow et al. 2012; Dias et al. 2018). Kadam et al. (2016) reported that 456 

including SCA effects in GS models led to higher quality of predictions when predicting hybrids with untested 457 

parents (T0) compared to hybrids with one or two tested parents (T1 or T2) but this result was not confirmed in 458 

our study. We computed the SCA kinship matrix coefficient as the product, term to term, of the GCA kinship 459 

coefficients between the dent and the flint parental lines, similarly to what has been done in previous studies 460 

(Bernardo 1994; Technow et al. 2014; Seye et al. 2020; Kadam et al. 2021). González-Diéguez et al., (2021) 461 

showed that this computation of the SCA kinship matrix does not capture the whole SCA but only part of it, i.e. 462 

the additive-by-additive intergroup epistasis component (𝐺𝐴𝐴(1,2)). González-Diéguez et al., (2021) proposed a 463 

new SCA kinship formula, but their results as well as ours (results not shown) showed that it did not improve the 464 

predictive ability for inter-heterotic group single-cross hybrids. 465 

Efficiency of using a factorial design to predict new hybrids in new environments 466 

We showed in our study that by using a factorial design composed of only one hybrid per line to calibrate GS 467 

models achieves good predictive abilities of new hybrids in new environments. We observed good predictive 468 

abilities when predicting both factorial and tester designs. The high predictive abilities found when predicting the 469 

tester designs clearly illustrate that the genomic prediction model is able to decouple and predict GCAs, even when 470 

using a highly sparse factorial design where the inbred lines are parents of only one hybrid. This is in accordance 471 

with other studies showing high predictive abilities for yield even with very sparse factorials (for simulations Seye 472 

et al. 2020, for experimental data Burdo et al. 2021). When predicting the F-4H, predictive ability was highest for 473 

T2 single crosses, followed by T1 and T0 single crosses. This result was also reported in simulations (Technow et 474 

al. 2012; Seye et al. 2020) and in maize studies (Technow et al. 2014; Kadam et al. 2016). In the F-4H and the 475 

tester designs, two types of hybrids could be predicted: the random hybrids that were produced by crossing parental 476 

lines drawn at random from the segregating families, and the hybrids between selected lines that were produced 477 

by crossing two lines selected based on their GCA performance. The ability to predict random hybrids was higher 478 

than for hybrids between selected lines, which was expected as selection decreased the variance between selected 479 

hybrids. Nevertheless, the quality of prediction of the hybrids between selected lines was still high. This shows 480 

that GS models calibrated on a sparse factorial can efficiently predict the best hybrid combinations obtained by 481 

crossing lines already selected based on their GCA, which is of practical interest in breeding programs. 482 

Efficiency of the factorial approach compared to the tester approach 483 

The main objective of this study was to compare, at the same resource allocation (same number of hybrids), the 484 

efficiency of the factorial and tester approaches. To our knowledge our study is the first to compare the use of 485 

factorial and tester designs evaluated in the same environment in order to predict a distinct VS composed of new 486 

hybrids evaluated in new environments. For the same number of hybrids and lines, our results showed a slight 487 

advantage of the factorial design over the tester designs. The simulation study by Seye et al. (2020) showed that 488 
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the advantage of the factorial design increases with the proportion of SCA variance. In our study, the proportion 489 

of SCA variance was small, which could explain why we observed only a slight advantage of the factorial design. 490 

Moreover, the slight advantage of the factorial design over the tester design could also be explained by the fact 491 

that we used as testers two of the founder lines of the opposite group. As shown by simulations by Seye et al. 492 

(2020), using a founder line as tester reduces the advantage of factorial designs compared to tester designs. A 493 

recent study, also compared the potential of using a factorial instead of a tester approach as TRS (Burdo et al. 494 

2021). They considered two multiparental synthetic populations of maize instead of segregating families and used 495 

only one tester. As in our study, non-additive effects were small and they used as tester one of the founder lines of 496 

the opposite group. They found an advantage of the factorial design over the tester design for some traits (flowering 497 

traits), but not for others (grain yield, plant height…). This is globally consistent with our results even if differences 498 

in their designs, traits, calibration set sizes and number of lines considered prevent a direct comparison with our 499 

results. 500 

At the same number of hybrids, the impact of the composition of the tester designs was investigated and 501 

compared to a factorial design (Scenario 2). The use of only one tester revealed that the quality of prediction varied 502 

according to the tester used and that the best tester differed from one trait to another. Depending on the alleles 503 

carried by the tester, each tester is expected to mask part of the genetic variation for traits showing dominance. At 504 

the same number of hybrids, using more testers while maximizing the number of lines evaluated was always 505 

beneficial (the 2T-180H-180L TRS outperformed the 2T-180H-90L for nine traits out of 11 and all the 1T-180H-506 

180L combinations). This strategy which maximizes the number of lines evaluated by crossing a given line to only 507 

one tester and using several testers in the tester designs is close to the one applied when considering a very sparse 508 

factorial design. Our experimental designs did not allow the direct comparison of a factorial design composed of 509 

only one hybrid per line to tester designs at the same number of hybrids. Nevertheless, results in Scenario 3 510 

suggested that increasing the number of lines instead of increasing the number of hybrids per line was more 511 

efficient at the same number of hybrids when predicting T0 hybrids; this was also reported by Seye et al. (2020). 512 

Therefore, we hypothesize that a factorial composed of 180 hybrids and 360 lines would outperform all the tester 513 

designs in Scenario 2. 514 

A major issue in breeding programs is resource allocation. It is therefore important to optimize the 515 

factorial design at a given number of hybrids. Our results showed the advantage of using more lines instead of 516 

more hybrids per line when predicting T0 hybrids, as also observed by Seye et al. (2020) with simulations. Yet, 517 

within that same study they also showed that when predicting T2 hybrids it was more efficient to use a factorial 518 

with four hybrids per line instead of one hybrid per line. In light of these preliminary results, we can argue that 519 

different objectives of selection could lead to considering different compositions for the factorial TRS to maximize 520 

the quality of prediction. Given our results, we hypothesize that using a factorial design composed of only one 521 

hybrid per line for preliminary screening and using a factorial design composed of four hybrids per line in a second 522 

screening would be optimal. This could be integrated into the two-part strategy proposed in the hybrid context by 523 

Powell et al. (2020). We propose using a factorial design composed of one hybrid per line in the population 524 

improvement part of the program and a factorial design composed of more than one hybrid per line in the product 525 

development part when the objective is to identify commercial hybrids. 526 
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What does it imply for breeding programs? 527 

Our study revealed a significant advantage (Williams tests) of the factorial approach compared to the tester 528 

approach for some traits (DINAG, DINAGZ, PH) and at least an equivalence for the rest of the traits studied. 529 

According to our prediction results, topcross evaluations could be replaced by evaluations on a sparse factorial 530 

design and lead to similar or higher predictive abilities. At the same number of lines, a factorial design composed 531 

of one hybrid per line requires half as much phenotyping effort as the tester design. However, creating single-cross 532 

hybrids is more challenging than test-cross hybrids since hand-made pollination is necessary. Therefore, the 533 

factorial design could decrease the number of plots needed for phenotypic evaluation but its production could be 534 

more costly. A preliminary study conducted by Seye et al. (2020) showed that the increase in production costs 535 

would be compensated by the diminution in field plots needed.  536 

This study relies on original experimental designs derived from segregating families, which allow the 537 

testing of several hypotheses. It has given some insights into the potential of replacing topcross evaluations by 538 

genomic predictions calibrated on a factorial design in breeding programs. Since our conclusions are closely 539 

related to the experimental designs and populations we considered (genetic variability available in the founder 540 

lines, number of founder lines…), future studies could take into consideration other populations. Another line of 541 

investigation would be the optimization of the TRS and the portability along breeding cycles. 542 
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Figure legends  680 

Fig. 1 Experimental designs. 681 

Fig. 2 Definition of the four different TRS and a unique VS used in Scenario 1 to assess the impact of the level of 682 

relationship between the TRS and the VS.The F-4H composed of 363 hybrids was used as the unique VS and four 683 

TRS were sampled form the F-1H, each composed of 742 hybrids. The four TRS led to consider four types of 684 

prediction: T0 hybrids where none of their parental lines contributed to the TRS, T1C (and T1D) hybrids where 685 

only their flint (dent) parental lines contributed to the TRS, and T2 hybrids where both of their parental lines 686 

contributed to the TRS. 687 

Fig. 3 Predictive abilities obtained for the F-4H by calibration on four different TRS sampled from the F-1H. 688 

Depending on the TRS, VS hybrids had none of their parental lines in the TRS (T0), only their flint parental line 689 

in the TRS (T1F), only their dent parental line in the TRS (T1D) or their two parental lines in the TRS (T2). The 690 

red diamond shaped point represents the mean of the predictive ability of the 10 samplings. 691 

Fig. 4 Predictive abilities obtained for all hybrids of the F-1H by calibration on the F-4H (including or not the 692 

SCA effect in the model) or on the tester designs. Williams tests were performed (α=0.05), no significant difference 693 

was obeserved for the presented traits. 694 

Fig. 5 Predictive abilities obtained when calibrating on different tester designs composed of 180 hybrids: 180 695 

hybrids produced by crossing 90 lines to one tester in each group (1T-180H-180L-A, 1T-180H-180L-B, 1T-180H-696 

180L-C, 1T-180H-180L-D), 180 hybrids produced by crossing 90 lines to two testers in each group (2T-180H-697 

180L), 180 hybrids produced by crossing 45 lines to two testers in each group (2T-180H-90L) or when calibrating 698 

on a factorial design composed of 180 hybrids produced by crossing 76 flint lines to 76 dent lines (F-180H-152L) 699 

to predict all 951 hybrids of the F-1H. The significance of the difference in predictive abilities was assessed by 700 

William tests (α=0.05) and was indicated with letters: two different letters indicate a significant difference and at 701 

least one common letters indicate no significant difference. 702 

Fig. 6 Predictive abilitiies obtained when calibrating on 216 hyrbids of the F-1H design to predict 216 hybrids of 703 

the F-4H design in light orange and when calibrating on 216 hyrbids of the F-4H design to predict the F-1H in red. 704 

For each approach, 100 samplings were performed. The black diamond-shaped point represents the mean of the 705 

predictive abilities over the 100 repetitions.706 
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Table 1 Broad-sense heritability (H²), percentage of genetic variance asigned to SCA variance (%SCA) and variance components estimated on phenotypic data corrected for the 707 
spatial effects for all the designs (F-1H, F-4H, T-F and T-D) without using marker information. 708 

Trait Design 𝛔𝐆𝐂𝐀𝐝𝟐 a 𝛔𝐆𝐂𝐀𝐟𝟐 a 𝛔𝐒𝐂𝐀𝟐 a 𝛔𝐆𝐂𝐀𝐝×𝐄𝟐 a 𝛔𝐆𝐂𝐀𝐟×𝐄𝟐 a 𝛔𝐒𝐂𝐀×𝐄𝟐 a %SCAb 
𝛔𝐄𝟐a  

(min-max)c 
H² d 

DMY F-1H 0.72 (0.10)e 0.25 (0.10) 0.25 (0.11) 0.03 (0.06) 0.19 (0.06) 0.12 (0.09) ns 20 0.70(0.06)-3.09(0.17) 0.84 

F-4H 0.74 (0.14) 0.54 (0.11) 0.13 (0.03) 0.18 (0.03) 0.17 (0.03) 0.11 (0.05) 9 0.44(0.06)-3.15(0.26) 0.89 

T-D 0.70 (0.13) - 0.17 (0.04) 0.03 (0.04) nsf - 0.21 (0.06) 21 0.26(0.06)-2.22(0.27) 0.88 

T-F - 0.52 (0.10) 0.14 (0.03) - 0.09 (0.03) 0.09 (0.05) 20 0.34(0.07)-1.42(0.18) 0.87 

DMC F-1H 0.84 (0.27) 2.25 (0.26) 0.55 (0.27) 0.33 (0.10) 0.30 (0.10) 0.20 (0.15) ns 15 0.71(0.07)-4.96(0.28) 0.91 

F-4H 1.32 (0.24) 2.78 (0.46) 0.28 (0.05) 0.40 (0.06) 0.45 (0.06) 0.25 (0.09) 6 0.68(0.10)-4.15(0.37) 0.93 

T-D 1.89 (0.34) - 0.32 (0.08) 0.56 (0.10) - 0.35 (0.12) 14 0.59(013)-2.63(0.37) 0.89 

T-F - 3.00 (0.51) 0.44 (0.09) - 0.30 (0.07) 0.12 (0.10) 13 0.50(0.10)-2.35(0.31) 0.94 

DtSilk F-1H 1.26 (0.18) 0.73 (0.19) 0.41 (0.18) 0.12 (0.05) 0.16 (0.06) 0 (0.08) ns 17 0.66(0.06)-5.57(0.28) 0.91 

F-4H 0.76 (0.14) 1.55 (0.26) 0.14 (0.03) 0.15 (0.03) 0.20 (0.03) 0.09 (0.06) ns 6 0.69(0.08)-1.42(0.14) 0.93 

T-D 0.63 (0.11) - 0.08 (0.03) 0.06 (0.03) - 0.09 (0.06) 11 0.37(0.07)-2.06(0.25) 0.86 

T-F - 1.07 (0.19) 0.22 (0.05) - 0.14 (0.04) 0.01 (0.08) 17 0.51(0.09)-3.34(0.39) 0.90 

MFU 

(x10²) 

F-1H 2.06 (0.30) 1.03 (0.33) 0.33 (0.34) ns 0.13 (0.23) 0.01 (0.24) 0.86 (0.39) 10 3.39(0.28)-12.36(0.68) 0.79 

F-4H 1.74 (0.31) 1.67 (0.30) 0.10 (0.06) ns 0.37 (0.08) 0.29 (0.07) 0.00 ns 3 1.29(0.12)-7.61(0.60) 0.86 

T-D 2.23 (0.40) - 0.28 (0.10) 0.46 (0.12) - 0.00 11 1.04(0.16)-6.31(0.74) 0.85 

T-F - 1.46 (0.27) 0.23 (0.09) - 0.21 (0.11) 0.23 (0.16) 14 0.46(0.12)-6.53(0.77) 0.78 

a Variance component defined as in Model (1.1) and (1.2). For the tester designs, σSCA2  corresponds to σSCAt2  709 

b Percentage of SCA variance computed as 
𝜎𝑆𝐶𝐴2𝜎𝐺𝐶𝐴𝑑2 +𝜎𝐺𝐶𝐴𝑓2 +𝜎𝑆𝐶𝐴2 × 100 710 

c Minimum residual variance and maximum residual variance across all environments 711 
d Broad-sense heritability 712 
e Standard error in brackets 713 
f Significance of the variance components assessed by likelihood ratio test with 𝜒2 mixed distributions (α=0.05). Non-significant variance component is indicated by ns714 
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Table 2 Variance components and percentage of genetic variance asigned to SCA variance (%SCA) estimated with 715 
marker information (GBLUP model) for all the designs (F-1H, F-4H, T-D and T-F). 716 

Trait Design 𝛔𝐆𝐂𝐀𝐝𝟐  𝛔𝐆𝐂𝐀𝐟𝟐  𝛔𝐒𝐂𝐀𝟐 a %𝐒𝐂𝐀b 𝛔𝐄𝟐 

DMY F-1H 0.62 (0.12)c 0.48 (0.09) 0.13 (0.06) 11 0.52 (0.06) 

F-4H 0.68 (0.15) 1.04 (0.21) 0.03 (0.05) 2 0.31 (0.05) 

T-D 0.47 (0.13) - 0.08 (0.06) 15 0.25 (0.05) 

T-F - 0.86 (0.17) 0.10 (0.05) 10 0.11 (0.03) 

DMC F-1H 1.41 (0.25) 1.79 (0.28) 0.00 0 1.07 (0.08) 

F-4H 2.79 (0.53) 4.45 (0.78) 0.01 (0.08) 0 0.62 (0.10) 

T-D 4.27 (0.79) - 0.19 (0.12) 4 0.41 (0.09) 

T-F - 3.95 (0.76) 0.28 (0.18) 7 0.51 (0.12) 

DtSilk F-1H 1.21 (0.21) 2.03 (0.29) 0.09 (0.06) 3 0.73 (0.08) 

F-4H 1.67 (0.32) 2.65 (0.46) 0.11 (0.06) 2 0.24 (0.05) 

T-D 0.99 (0.23) - 0.04 (0.04) 4 0.21 (0.05) 

T-F - 2.29 (0.42) 0.17 (0.10) 7 0.24 (0.06) 

MFU 

(x10²) 

F-1H 1.14 (0.22) 1.31 (0.24) 0.00 0 1.50 (0.1) 

F-4H 1.19 (0.27) 2.17 (0.42) 0.26 (0.14) 7 0.48 (0.11) 
T-D 1.38 (0.38) - 0.07 (0.10) 5 0.81 (0.14) 

T-F - 2.11 (0.44) 0.12 (0.13) 5 0.55 (0.11) 
a For the tester designs, σSCA2  corresponds to σSCAt2   717 

b Percentage of SCA variance computed for the factorial designs as 
𝜎𝑆𝐶𝐴2𝜎𝐺𝐶𝐴𝑑2 +𝜎𝐺𝐶𝐴𝑓2 +𝜎𝑆𝐶𝐴2 × 100 718 

c Standard error in brackets 719 

 720 

Table 3 Predictive abilities obtained for the F-4H and for each of the tester designs by calibrating the GBLUP 721 
model on the F-1H. 722 

Validation 

Set 
Predicted hybrid 

value component(s) 
Hybrid type in the VSa DMY DMC DtSilk MFU 

F-4H GCAf + GCAd  Selected+Random (363)b 0.78 0.78 0.79 0.82 

Selected (127) 0.48 0.80 0.69 0.73 

Random (236) 0.67 0.78 0.76 0.80 GCAf + GCAd + SCA  Selected+Random (363) 0.77 0.78 0.79 0.82 

Selected (127) 0.46 0.80 0.71 0.73 

Random (236) 0.67 0.78 0.77 0.80 

T-D GCAd  Selected+Random (363) 0.80 0.74 0.76 0.79 

Selected (60) 0.66 0.76 0.69 0.73 

Random (120) 0.71 0.73 0.71 0.76 

T-F GCAf  Selected+Random (363) 0.69 0.84 0.84 0.79 

Selected (60) 0.68 0.84 0.78 0.71 

Random (120) 0.63 0.84 0.86 0.79 
a Predictive ability was computed for all hybrids (Selected+Random) and also for each hybrid type (Selected and 723 
Random) of the VS 724 
b Number of hybrids in brackets 725 

  726 
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Table 4 Correlations between the GCA BLUPs predicted for the F-1H using etiher the F-4H or the tester designs 727 
as TRS. 728 

BLUPs correlated  DMY DMC DtSilk MFU 𝐆𝐂𝐀𝐟  0.85 0.95 0.94 0.93 𝐆𝐂𝐀𝐝  0.90 0.88 0.86 0.92 

Table 5 Predictive abilities obtained by calibrating a GS model on the F-4H or on the tester designs to predict 729 
different hybrid types of the F-1H (VS). 730 

TRS  
Validation Set 

DMY DMC DtSilk MFU 
Hybrid typea Number of hybrids 

F-4Hb (363)c T1D 106 0.61 0.72 0.61 0.70 
T1F 95 0.74 0.81 0.72 0.78 
T0 742 0.49 0.61 0.50 0.64 
All 951 0.56 0.64 0.55 0.67 

Tester designs (360) T1D 107 0.60 0.73 0.63 0.68 
T1F 95 0.75 0.78 0.73 0.75 
T0 741 0.49 0.62 0.52 0.63 
All 951 0.54 0.64 0.56 0.65 

a VS hybrids had none of their parental lines in the TRS (T0), only their flint parental line in the TRS (T1F), only 731 
their dent parental line in the TRS (T1D) 732 
b Model (5.1) including SCA effects 733 
c Number of hybrids in the TRS 734 



Figures

Figure 1

Experimental designs.



Figure 2

De�nition of the four different TRS and a unique VS used in Scenario 1 to assess the impact of the level
of relationship between the TRS and the VS.The F-4H composed of 363 hybrids was used as the unique
VS and four TRS were sampled form the F-1H, each composed of 742 hybrids. The four TRS led to
consider four types of prediction: T0 hybrids where none of their parental lines contributed to the TRS,
T1C (and T1D) hybrids where only their �int (dent) parental lines contributed to the TRS, and T2 hybrids
where both of their parental lines contributed to the TRS.



Figure 3

Predictive abilities obtained for the F-4H by calibration on four different TRS sampled from the F-1H.
Depending on the TRS, VS hybrids had none of their parental lines in the TRS (T0), only their �int parental
line in the TRS (T1F), only their dent parental line in the TRS (T1D) or their two parental lines in the TRS
(T2). The red diamond shaped point represents the mean of the predictive ability of the 10 samplings.



Figure 4

Predictive abilities obtained for all hybrids of the F-1H by calibration on the F-4H (including or not the SCA
effect in the model) or on the tester designs. Williams tests were performed (α=0.05), no signi�cant
difference was obeserved for the presented traits.

Figure 5

Predictive abilities obtained when calibrating on different tester designs composed of 180 hybrids: 180
hybrids produced by crossing 90 lines to one tester in each group (1T-180H-180L-A, 1T-180H-180L-B, 1T-
180H-180L-C, 1T-180H-180L-D), 180 hybrids produced by crossing 90 lines to two testers in each group
(2T-180H-180L), 180 hybrids produced by crossing 45 lines to two testers in each group (2T-180H-90L) or
when calibrating on a factorial design composed of 180 hybrids produced by crossing 76 �int lines to 76
dent lines (F-180H-152L) to predict all 951 hybrids of the F-1H. The signi�cance of the difference in
predictive abilities was assessed by William tests (α=0.05) and was indicated with letters: two different
letters indicate a signi�cant difference and at least one common letters indicate no signi�cant difference.



Figure 6

Predictive abilitiies obtained when calibrating on 216 hyrbids of the F-1H design to predict 216 hybrids of
the F-4H design in light orange and when calibrating on 216 hyrbids of the F-4H design to predict the F-1H
in red. For each approach, 100 samplings were performed. The black diamond-shaped point represents
the mean of the predictive abilities over the 100 repetitions.
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