
HAL Id: hal-04216243
https://hal.science/hal-04216243

Submitted on 24 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Machine-Checked Proofs of Accountability: How to
sElect who is to Blame

Constantin Catalin Dragan, François Dupressoir, Kristian Gjøsteen, Thomas
Haines, Peter Rønne, Morten Rotvold Solberg

To cite this version:
Constantin Catalin Dragan, François Dupressoir, Kristian Gjøsteen, Thomas Haines, Peter Rønne, et
al.. Machine-Checked Proofs of Accountability: How to sElect who is to Blame. ESORICS 2023, Sep
2023, The Hague, The Netherlands, Netherlands. �10.1007/978-3-031-51479-1_24�. �hal-04216243�

https://hal.science/hal-04216243
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Machine-Checked Proofs of Accountability:
How to sElect who is to Blame

Constantin Cătălin Drăgan1, François Dupressoir2, Kristian Gjøsteen3,
Thomas Haines4, Peter B. Rønne5, and Morten Rotvold Solberg3

1 University of Surrey, Guildford, United Kingdom c.dragan@surrey.ac.uk
2 University of Bristol, Bristol, United Kingdom f.dupressoir@bristol.ac.uk

3 Norwegian University of Science and Technology, Trondheim, Norway
{kristian.gjosteen,mosolb}@ntnu.no

4 Australian National University, Canberra, Australia thomas.haines@anu.edu.au
5 CNRS, LORIA, Université de Lorraine, Nancy, France peter.roenne@loria.fr

Abstract. Accountability is a critical requirement of any deployed vot-
ing system as it allows unequivocal identification of misbehaving parties,
including authorities. In this paper, we propose the first game-based def-
inition of accountability and demonstrate its usefulness by applying it to
the sElect voting system (Küsters et al., 2016) – a voting system that
relies on no other cryptographic primitives than digital signatures and
public key encryption.
We strengthen our contribution by proving accountability for sElect in
the EasyCrypt proof assistant. As part of this, we identify a few errors
in the proof for sElect as presented by Küsters et al. (2016) for their
definition of accountability.
Finally, we reinforce the known relation between accountability and ver-
ifiability, and show that it is still maintained by our new game-based
definition of accountability.

1 Introduction

A system is accountable if, when something goes wrong, it is possible to judge
who is responsible based on evidence provided by the system participants. For
a voting system, this means that if we do not accept the outcome of an election,
the honest parties should be able to produce evidence that pinpoints who is to
blame, in the sense that they have not followed the protocol. This is in principle
trivial for some voting systems, such as the Helios voting system where each party
proves their correct behaviour using zero knowledge arguments. This is, however,
not trivial for every reasonable voting system, in particular voting systems with
complex ballot submission procedures, such as the Swiss Post voting system [21];
in the Swiss Post case the system involves a complicated protocol between half a
dozen participants to decide if a ballot was cast by a valid voter and well-formed
and hence should be counted.

The sElect voting system [17] is an interesting case for accountability. Unlike
Helios, the system does not use any advanced cryptography, relying entirely on

secure public key encryption. The system uses nested public key encryption to
allow a very simple mixnet decryption. The voter creates a nested encryption of
their ballot and a random check value, each layer encrypted with a mix server
public key. Each mix server decrypts one layer of encryption, sorting the result
lexicographically to effect mixing. The last mix server simply outputs decrypted
ballots, together with the voter-specific check value. Voters verify that their
ballot is included in the count by checking that the ballot appears together with
the voter’s check value.

Informally, the sElect system is accountable because voters can reveal the
randomness used in the nested encryption, thereby enabling tracing of the en-
crypted ballot through the mixnet, which will pinpoint which mix server did not
correctly decrypt.

Accountability might seem to be a fairly simple notion, but it is technically
difficult to find a definition that both captures accountability and is easy to
work with. This can be seen from the fact that no definition of accountability
seems to have been broadly accepted in the community. Also, when Küsters et
al. [17] apply the definition from [18] to sElect, there are a number of errors in
the result they claim; we will discuss these in greater length in Sec. 1.2. These
errors suggest that the existing accountability definitions are hard to work with.
In other words, there is a need for a workable general definition of accountability.

The simplicity of sElect comes at a cost, which is that the system is only
private for voters that accept the election outcome. This problem can be mit-
igated using the final cryptosystem trick from [12]; with this trick, “a sender
first encrypts her message under the “final” public key and uses this encrypted
message as an input to the protocol as described so far. This innermost encryp-
tion layer is jointly decrypted only if the protocol does not abort. If the protocol
does abort, only the encrypted values are revealed and privacy is protected by
the final layer of encryption.” However, using this mitigation in sElect would
require the voters’ devices to check the mix before the result is decrypted which
substantially complicates the protocol and delays the tally result, which would
be unacceptable in most cases.

Privacy is of course essential for voting systems, but we note that we are not
studying privacy in this paper, only accountability, since the privacy of sElect is
well-understood.

1.1 Our Contribution

This paper contains two main contributions: The first game-based definition of
accountability, and a proof of accountability for the sElect [17] voting system.
A variant of the latter proof has been formalised in the EasyCrypt [3] proof
assistant.

This game-based definition is significant because this style of definitions are
often easier to understand and work with. For security proofs, ease of under-
standing and use is a significant factor in getting things right and later verifying
that things are indeed correct. Further, it allows us to use existing tools for
game-based proofs, specifically EasyCrypt, to formally verify security.

2

The accountability proof for sElect is significant, first because it demonstrates
that our new definition of accountability works. Second, the sElect voting system
is interesting because it is so simple, requiring no other primitives than digital
signatures and public key encryption. Proving security properties for interesting
voting systems is intrinsically interesting.

As we have seen, informal arguments sometimes contain errors. A proof for-
malised in EasyCrypt is significant, in that it ensures that we have no errors
in arguments, making the overall security proof easier to verify.

In addition to the main contribution, we also make the relation between
verifiability and accountability precise, in the sense that accountability implies
verifiability (when suitably defined). This is a significant result, suggesting that
future system designers should focus on achieving accountability.

1.2 Related Work

To the best of our knowledge, no game-based definition of accountability has
been proposed earlier. However, several definitions of accountability (for general
security protocols, not only electronic voting protocols) have been proposed in
the symbolic model. Bruni et al. [5] propose a general definition amenable to
automated verification. Künnemann et al. [16] give a definition of accountabil-
ity in the decentralised-adversary setting, in which single protocol parties can
choose to deviate from the protocol, while Künnemann et al. [15] give a defini-
tion in the single-adversary setting, where all deviating parties are controlled by
a single, centralised adversary. Morio & Künnemann [19] combine the definition
from [15] with the notion of case tests to extend the definition’s applicability to
protocols with an unbounded number of participants. Furthermore Küsters et
al. [18] put forward quantitative measures of accountability both in the symbolic
and computational model. Similar for all these definitions is that they clearly
distinguish between dishonest parties and misbehaving parties. Even though a
party is dishonest (controlled by an adversary), it does not necessarily deviate
from the protocol and cause a violation of the security goal. In such cases, the
party is not misbehaving and should not be held accountable for anything.

While no game-based definition of accountability has been proposed, game-
based definitions for other voting-related security properties do exist in the lit-
erature. Some of these definitions have also been formalised in the proof as-
sistant EasyCrypt [3], with related machine-checked proofs for a variety of
voting protocols. Cortier et al. [6] formalise a game-based definition of ballot-
privacy called BPRIV [4] in EasyCrypt and give a machine-checked proof that
Labelled-MiniVoting [6] and several hundred variants of Helios [2] satisfy this no-
tion of ballot privacy. Cortier et al. [7] build on work from [6] and also formalise
a game-based definition of verifiability in EasyCrypt, in addition to giving a
machine-checked proof that Belenios [9] is ballot-private and verifiable. Drăgan
et al. [10] formalise the mb-BPRIV ballot privacy definition [8] in EasyCrypt
and give a machine-checked proof that Labelled-MiniVoting and Belenios satisfy
this definition. They also propose a new game-based ballot privacy definition
called du-mb-BPRIV, which is applicable to schemes where voter verification

3

can or must happen after the election result has been computed, and give a
machine-checked proof that Labelled-MiniVoting, Belenios and Selene [20] all
satisfy this definition.

Problems in the Küsters et al. [17] Accountability Proof. In carefully analysing
sElect we became aware of two errors in the Accountability theorem which we
detail below; to our knowledge these errors have not previously been documented
in the literature. There is a significant complexity in the parameters used in
Theorem 3 (Accountability) in the full version of sElect [17], but fortunately
this is largely orthogonal to the points we need to discuss.

Ballot Stuffing The goal for which accountability is proven (see Definition 1
in [17]) somewhat implicitly requires that the multiset containing the election
result contains at most n elements, where n is the number of voters. However,
no argument is made in the proof that the judge will hold anyone accountable
if there are more than n ballots. Both the pen-and-paper description and the
implementation of sElect omit any checks which would catch the addition of
ballots by the mix servers, and it seems that the authentication server could
also stuff ballots though this would be more involved. As significant as this
vulnerability is, it is easy to fix and we have done so in the version of sElect
we prove accountability for.

Honest Nonce Collision A described above, the goal the theorem aims for
uses multisets and hence if multiple honest voters vote for the same choice
we expect to see at least that many copies of the choice in the output; this is
somewhat complicated in sElect by the augmentation of voter choices with
nonces. The mechanism which sElect uses to detect ballots being removed
relies on the plaintext encrypted by the honest voters being unique; however,
this does not happen when the nonces and choices of the honest voters
collide. The chance of such collision should appear in the security bound
of accountability for sElect unless it is explicitly negligible in the security
parameter. Strangely, sElect will drop these votes even with no adversarial
involvement since the protocol specifies that the final mix server (like all
others) should filter its output for duplicates. We note that the probability
of collisions does appear in the verifiability theorem and proof.

2 Game Based Accountability

In this section we present our game based definition of accountability for elec-
tronic voting protocols, and we start by presenting the parties and their roles.

2.1 Parties

We consider the following parties and their role in the election process.

Voting Authority VA that sets up the election process, generates public pa-
rameters, defines voter eligibility, etc. The election secret keys are managed
by separate parties, called decryption and mixnet authorities.

4

Decryption and Mixnet Authorities MSi(mski,mpki) that manage together
the decryption process, and each party has been allocated a part of the de-
cryption key/election secret key. This is typically done by decryption or re-
encryption together with shuffling of ballots/votes to break the link between
recorded ballots and the votes.

Authentication Server AS(ask, apk) issues confirmation tokens that ballots
were recorded as cast, typically under the form of signatures.

Judge J assigns blame to misbehaving parties based on publicly available data
and voter reported evidence. We model this by having an algorithm Judge.

Voters idi that cast their vote vi. The voting process is facilitated by a voting
supporting device VSD that builds ballots for the user and then casts them.

Bulletin board BB stores publicly verifiable information relevant to an elec-
tion, e.g. ballots, mixnet outcomes, and election outcome. The bulletin board
may be divided into subcomponents such as a list of submitted ballots or
the election outcome.

2.2 Voting System

The election process is defined by the following tuple of algorithms.

Setup(): This algorithm produces the public election data pd and the secret
election data sd. This is done by interaction between VA, MS0, . . . ,MSk, and
potentially AS.

Vote(pd, v): This algorithm builds the ballot b based on the vote v and public
data pd. Additionally, it produces the internal state of the voter, state, to
facilitate the verification process later.

ASCreate(ask, b): This algorithm produces a token σ that the ballot b has been
received and accepted by the authentication server AS(ask, apk).

ASVerify(pd, b, σ): This algorithm verifies if the token σ is valid for the ballot b
and public data pd.

Tally(sd,BB): This algorithm models the sequence of calls to the mixnet and
decryption authorities to produce the election outcome.

VSDVerify((state, b, σ), pd,BB): Checks if the system has followed the required
processes for this user’s vote and ballot, and it outputs ⊥ if no misbehaving
party has been identified. Otherwise, it returns the misbehaving party and
the corresponding evidence.

Judge(pd,BB,E): It checks that the publicly available data is valid with respect
to some predefined metrics and against the list of evidence E. It returns the
error symbol ⊥ if no misbehaving party has been identified; otherwise, it
outputs the misbehaving party B. As all checks can be replicated publicly,
it does not need to return evidence.

The following algorithm is unbounded, but is only part of the security ex-
periment and will not be run during an election.

Bad(pd,BB,E,V): This unbounded algorithm serves to provide a ground truth
of which parties misbehaved. By the requirements of our definition, it always

5

ExpGBAA,V(λ)

1 : pd← A();

2 : (BB, tL)← AOvote();

3 : es ← true;

4 : foreach id ∈ V :

5 : (state, b)← V[id];σ ← tL[id];

6 : if ASVerify(pd, b, σ) = ⊥ :

7 : es ← false; break;

8 : E← Verify();

9 : E← E ∪ A(E);
10 : B ← Judge(pd,BB,E);

11 : ef ← (B ̸⊂ Bad(pd,BB,V,E));

12 : ec ← (¬(Nv ≥ |BBvote| ≥ |BBdec| ∧ V ⊆ BBdec) ∧B = ⊥);
13 : return es ∧ (ef ∨ ec);

Ovote(id, v)

1 : (state, b)← Vote(pd, v);

2 : V[id]← (state, b);

3 : return b;

Verify()

1 : E = ∅;
2 : foreach id ∈ V :

3 : (state, b)← V[id];

4 : σ ← tL[id];

5 : blame← VSDVerify((state, b, σ), pd,BB);

6 : if blame ̸= ⊥ then E← E ∪ {blame};
7 : return E;

Fig. 1. The new game-based security notion for accountability. BBvote and BBdec de-
note different subcomponents of the bulletin board, respectively ballots submitted
through Ovote and information produced by tallying.

blames a party when the election result does not reflect the votes of voters -
given the public data pd, the bulletin board BB, the list of evidence E, and
the internal state of honest voters V. Optionally, it may detect whether a
party has deviated from the protocol in a way which does not change the
election result. It should never blame an honest party.

2.3 Accountability

We consider that the adversary has full control over all parties introduced in Sec-
tion 2.1, except the Judge. The adversary can also incorporate their own evidence
to Judge. If a party deviates from the protocol steps, then that party becomes
misbehaving and could be identified and blamed by either Judge or Bad. How-
ever, if the party follows exactly the protocol steps we call that party behaving,
independent of them being honest or dishonest (corrupted by the adversary).

The formal accountability definition is found in Fig. 1. The first step for the
adversary is to start the election process and provide the public data pd. Then,
the adversary runs the voting and tally phase and commits to the current state
of the bulletin board BB, together with a list of all authentication tokens tL.
During the voting phase, the adversary can make use of the oracle Ovote to
replicate the behavior of behaving voters and build their ballot b and internal
state state.

To capture the natural behavior of behaving and honest voters that would
check their tokens and complain before the tally is provided, we incorporate an
automatic lose condition for the adversary if any of the provided tokens for those
voters cannot be verified by ASVerify; this approach is similar to that taken by
Küsters et al. [17] in their (non-game based) accountability proof of sElect.

Verification is done as a two-stage process, first by collecting evidence E from
all honest voters (those that used Ovote and whose internal states are stored in

6

V) and from the adversary A(E); and secondary by calling Judge to check the
public data together with that evidence. The Judge is responsible for providing
either a misbehaving party B if there is enough evidence to do so, or ⊥ if nothing
could be detected. The adversary wins if one of the following happens:

Fairness: Judge wrongly blames a party B when it did not misbehave. This is
checked by running the Bad algorithm to identify all misbehaving parties in
the system and check whether B has been included, or

Completeness: the result is not consistent with the honest votes but no one
is blamed. This is done by Judge producing ⊥ when an honest voter’s ballot
was dropped, or there are more submitted ballots than there are voters, or
more ballots in the election outcome than the number of ballots that were
cast in the first place.

Definition 1 (Game-Based Accountability). Let V be a voting system as
defined in this section. We say that V satisfies GBA if for any efficient adversary
A their advantage is negligible in λ:

AdvgbaA,V(λ) = Pr
[
ExpGBAA,V (λ) = 1

]
.

Our adversary winning conditions aligns our definition with the one from
Küsters et al. [17], such that any voting system that satisfies our accountability
definition will also satisfy the one by Küsters et al. [17] (with the goal used for
sElect), with some possible caveats about the casting of schemes between the
two definitions. We expand on this in Section 3.3

3 sElect

In this section we introduce sElect [17] using the format of Section 2; we focus
on the elements with are important for accountability and omit some orthogonal
details. The formal description is in Figure 2. We denote by BBvote,BBmix and
BBdec the different subcomponents of BB: respectively the submitted ballots,
data produced by the mixnet and the election outcome, which is a list of plaintext
votes.

3.1 Cryptographic primitives

The voting system sElect relies on two basic cryptographic primitives: an IND-
CCA2 encryption scheme E = (KeyGen,Enc,Dec) and an EU-CMA signature
scheme S = (KeyGen,Sign,SigVerif). To make the encryption scheme compatible
with decryption mixnets it needs to allow nested encryptions. Typically, this is
done through a hybrid cryptosystem [1], by combining hybrid ElGamal and AES
in a suitable mode such that each encryption contains an AES encryption of the
message under a random AES key and an ElGamal encryption of the AES key.

As part of the formalisation for the shuffling done by the mixnet servers
MS0, . . . ,MSk, we consider the operators lex for sorting a list in lexicographic
order, and undup for removing duplicates. We additionally have that the authen-
tication authority AS runs S.

7

Notations

pd = (apk,mpk0, . . . ,mpkk)

sd = (ask,msk0, . . . ,mskk)

BB = (ℓ−1, (ℓ0, . . . , ℓk−1), ℓk) = (BBvote,BBmix,BBdec)

for MSi with (mpki,mski) and i ∈ {0, . . . , k} we have

ℓi−1 = list of inputs; ℓi = list of outputs

for Voter i with αk+1 = (n, v) we have

state = (αk+1, rk, αk, . . . , r0, α0)

Let N be the set of all possible nonces

that can be chosen by the voter’s device

Setup()

1 : // Authentication server

2 : (apk, ask)← S.KeyGen();

3 : // Mix servers

4 : foreach i ∈ {0, . . . , k} do
5 : (mpki,mski)← E.KeyGen();

6 : // Public and secret parameters

7 : pd← (apk,mpk0, . . . ,mpkk);

8 : sd← (ask,msk0, . . . ,mskk);

9 : return (pd, sd);

Vote(pc, v)

1 : // Sample VSD nonce

2 : n←$N;

3 : // Build ballot

4 : r0, . . . , rk ←$Zp;

5 : αk+1 ← (n, v);

6 : foreach i ∈ {k, . . . , 0} do
7 : αi ← E.Enc(mpki, αi+1; ri);

8 : state← (αk+1, rk, αk, . . . , r0, α0);

9 : return (state, α0);

ASCreate(ask, α0)

1 : σ ← S.Sign(asd, α0);

2 : return σ;

ASVerify(pd, α0, σ)

1 : e← S.SigVerif(apk, α0, σ);

2 : return e;

Mixnet(i,mski, ℓi−1)

1 : ℓi ← ∅;
2 : if ℓi−1 ̸= lex ◦ undup(ℓi−1) then return ⊥;
3 : foreach b ∈ ℓi−1 do

4 : ℓi ← ℓi ∪ {E.Dec(mski, b); }
5 : ℓi ← lex ◦ undup(li);
6 : return ℓi;

Tally(sd,BB)

1 : ℓ−1 ← BBvote;

2 : ℓ0, . . . , ℓk ← ∅;
3 : foreach i ∈ {0, . . . , k} do
4 : ℓi ← Mixnet(i,mski, ℓi−1);

5 : BBmix ← (ℓ0, . . . , ℓk−1);

6 : BBdec ← ℓk;

7 : return (BBmix,BBdec);

VSDVerify((state, α0, σ), pd,BB)

1 : B← ⊥;
2 : foreach i ∈ {k, . . . , 0} do
3 : // input αi is in ℓi−1, but output αi+1 is not in ℓi

4 : if αi ∈ li−1 ∧ αi+1 /∈ li then B← (MSi, (αi+1, ri));

5 : if α0 /∈ BBvote then B← (AS, (α0, σ));

6 : return B;

Judge(pd,BB,E)

1 : // Check pd

2 : if (apk,mpk0, . . . ,mpkk) /∈ G then B← VA;

3 : // Check ballot box

4 : if Nv < |BBvote| ∨ BBvote ̸= lex ◦ undup(BBvote) then B← AS;

5 : // Check mixnets

6 : foreach i ∈ {0, . . . , k} do
7 : if |ℓi−1| < |ℓi| ∨ ℓi ̸= lex ◦ undup(ℓi) then B← MSi;

8 : // Check evidence

9 : foreach (AS, (α0, σ)) ∈ E

10 : if ASVerify(apk, α0, σ) ∧ α0 /∈ BBvote then B← AS;

11 : foreach (MSi, (αi+1, ri)) ∈ E do

12 : if E.Enc(mpki, αi+1; ri) ∈ ℓi−1 ∧ αi+1 /∈ ℓi then B← MSi;

13 : return B;

Bad(pd,BB,E,V)

1 : // Check pd

2 : if (apk,mpk0, . . . ,mpkk) /∈ G then B← B ∪ {VA};
3 : // Check ballot box

4 : if Nv < |BBvote| ∨ BBvote ̸= lex ◦ undup(BBvote) then B← B ∪ {AS};
5 : // Recompute sd

6 : sd← Extract(pd);

7 : // Re-run the mixnets

8 : ℓ′−1 ← BBvote;

9 : foreach i ∈ {0, . . . , k} do
10 : ℓ′i ← Mixnet(i,mski, ℓi−1);

11 : // Check mixnets

12 : foreach i ∈ {0, . . . , k} do
13 : if ℓi ̸= ℓ′i then B← B ∪ {MSi};
14 : // Check evidence

15 : foreach (AS, (α0, σ)) ∈ E

16 : if ASVerify(apk, α0, σ) ∧ α0 /∈ BBvote then B← B ∪ {AS} :
17 : return B

Fig. 2. Algorithms defining the sElect voting scheme with an IND-CCA2 secure pub-
lic key encryption system E = (KeyGen,Enc,Dec) and an EU-CMA secure signature
scheme S = (KeyGen, Sign, SigVerif).

3.2 sElect Algorithms

Setup(): The authentication server key pair (apk, ask) is generated by S.KeyGen,
and the mixnet servers key pairs (mpki,mski) are computed by E.KeyGen.
The algorithm returns the public data pd = (apk,mpk0, . . . ,mpkk) and secret
data sd = (ask,msk0, . . . ,mskk).

Vote(pd, v): The algorithm samples a supporting device verification code n such
that it can be used later by the voter to ensure their vote was counted. sElect
also considers a short voter verification code nvoter that has no security as-
sumptions (for accountability); we have included that code together with the
voter’s candidate choices c as part of the vote v = (nvoter, c). The algorithm
sets αk+1 = (n, v) and uses a series of encryptions αi ← Enc(mpki, αi+1, ri)
to build the ballot α0 and internal state state = (αk+1, αk, rk, . . . , α0, r0),
given some random coins r0, . . . , rk ∈ Zp.

ASCreate(asd, α0): It returns a signature σ by calling S.Sign over the ballot α0.
ASVerify(pd, α0, σ): This algorithm calls S.SigVerif to check if the signature σ is

valid for the ballot α0.
Tally(sd,BB): Given the ballot box ℓ−1 = BBvote, this algorithm runs each

mixnet MSi over ℓi−1 to produce ℓi, for i ∈ {0, . . . , k}. Each mixnet MSi,
ensures first that the inputs are in lexicographic order and contain no dupli-
cates, before decrypting all ciphertexts received as inputs, and finally out-
putting them in lexicographic order and without duplicates. The last mixnet
server produces the election outcome BBdec = ℓk. The algorithm returns the
mixing info BBmix = (ℓ0, . . . , ℓk−1) and election outcome BBdec.

8

VSDVerify((state, α0, σ), pd,BB): Voters check the output of each mixnet server
by using their internal state (αk+1, αk, rk, . . . , α0, r0). The voter blames a
mixnet server MSi if they see that their ciphertext αi+1 is in the input
list of that server, but the ciphertext αi is not in the output list. Recall
that αi has been created by encrypting αi+1 under that server’s public key
mpki: αi ← Enc(mpki, αi+1, ri); thus, (αi+1, ri) can be used as evidence of
misbehaviour of MSi. The voter also checks that their ballot α0 has been
included in the ballot box BBvote, and blames the authentication server AS
if that has not happened, using the signature σ the user received during
voting as evidence. This step can be done at any point in the election if one
considers an ideal bulletin board, or at the end of an election under weaker
trust assumptions over the bulletin board [11].

Judge(pd,BB,E): This algorithm does an initial round of checks over the public
data before evaluating the collected evidence E. The verification of public
data consists of
– Ensuring that the public data is valid - that is, the public keys are group
elements. If this is not true, then the voting authority VA is blamed as
it allowed the election to run.

– Checking that the size of the ballot box does not exceed the number of
voters and that the ballot box has been ordered lexicographically and
duplicates have been removed. Otherwise, the authentication server AS
is blamed.

– Checking that each mixnet server output is in lexicographic order and
has no duplicates, and that the size of the output list does not exceed
the size of the input list. If these properties do not hold for mixnet server
MSi then the algorithm blames this mixnet server.

Once all the public data has been verified, the algorithm looks at the evidence
collected by voters from their VSDVerify algorithm:
– Evidence (α0, σ) against AS. If the evidence contains a valid signature σ
for a ballot α0 not in the ballot box, then the authentication server AS
is blamed.

– Evidence (αi+1, ri) againstMSi. If the evidence shows that αi ← Enc(mpki,
αi+1, ri) is in the input list of this server, but αi+1 is not in the output,
then this mixnet server is blamed.

Bad(pd,BB,E,V): This algorithm uses a computationally unbounded algorithm
sd ← Extract(pd) to obtain the secret keys of all authorities sd from their
public data pd; similar to the vote extraction algorithm from [13] and [14].
Extract will never fail to return something as it will see any bitstring in the
public data as a group element. However, it may not produce meaningful
data or the real secret keys if these do not exist.
Bad uses the secret data from Extract to re-run the election tally and perform
all verification steps to identify misbehaving parties. It looks at the validity of
the public data pd and ballot box BBvote using the same methods employed
by Judge. Then, it re-creates for each mixnet server MSi its estimated output
ℓ′i and blames that party if their estimated output ℓ′i is different from the
declared output ℓi. This type of check already includes the checks on the

9

evidence submitted by voters against mixnet servers. Finally, it performs
the checks on the evidence against the authentication server AS.

3.3 EasyCrypt Proof

Informally, we prove that the probability that the adversary is able to pro-
duce valid public data, a valid bulletin board and valid signatures, while at the
same time violating either fairness or completeness, is negligible. We assume
throughout the proof that the public key encryption scheme used to encrypt
and decrypt ballots is perfectly correct, i.e. if we let E = (KeyGen,Enc,Dec) be
the (IND-CCA2 secure) PKE used in sElect, then we assume that for all key
pairs (pk, sk) output by KeyGen and for all plaintexts m in the message space,
we have Dec(sk,Enc(pk,m)) = m. As we assume that sElect is implemented with
hybrid encryption of ElGamal and AES (cf. Section 3.1), this assumption holds.
Under this assumption, the probability that the adversary violates the fairness
aspect of accountability is in fact 0. The probability that the adversary violates
the completeness aspect of accountability, is related to whether or not nonce
collisions occur, i.e. whether or not the devices of two or more honest voters
sample the same nonce.

Theorem 1. Let sElect(E,S) be defined as in Figure 2 for an IND-CCA2 en-
cryption scheme E and an EU-CMA signature scheme S. Then, for all PPT
adversaries A against GBA, we have

AdvgbaA,sElect(λ) ≤ Pr[Col] ,

where Col is the event that a collision occurs in the nonces chosen by the voters’
devices.

The proof sketch can be found in App. A.

Differences between our paper proof and EasyCrypt proof. The main difference
in the above proof and the proof formalised in EasyCrypt1 is that in Easy-
Crypt we let the adversary choose both the plaintext vote and the verification
nonce and compress this into a single plaintext. Under the assumption that the
choices made by the adversary are unique, this allows us to use sets rather than
multisets in EasyCrypt which is technically easier. In some sense this is how-
ever also a stronger result than above since it proves accountability even in the
case where the nonces are adversarially chosen, but still unique. What is not
proven in EasyCrypt is the probability of a collision happening, but for uni-
form distributions of nonces this is the well-known birthday paradox which is
not interesting for the present paper to verify in EasyCrypt. Finally, keeping a
general collision probability for the full plaintext consisting of device-generated
nonce, voter-chosen nonce and plaintext vote is more general, and cannot be as-
sumed to be uniformly random in practice, but can be bounded by the birthday
probability on the device-generated nonces.

1 The EasyCrypt code can be accessed from https://github.com/mortensol/

acc-select

10

4 Relation to the Küsters et al. definition

In this section we relate the above presented definition of accountability, GBA,
to the one by Küsters et al. [18], which we denote AccKTV . More precisely, we
sketch a proof that for the class of voting schemes expressible in our definition,
if they satisfy GBA for a certain definition of Bad then they must be accountable
under AccKTV with a standard goal.

Consider a voting scheme as defined in Section 2, consisting of a voting
authority VA, decryption authorities DA, mixnet authorities MS, authentication
server AS, voters idi with voter supporting devices VSDi, and bulletin board
BB. We assume there are authenticated channels from the VSDs to the AS. We
assume that each VSD has one authenticated and one anonymous channel to the
BB. We assume that all communication is authenticated with signatures with
the exception of the anonymous channel and for simplicity omit the description
of this occurring from the exposition below.

4.1 Modeling

A voting scheme of this kind can be modeled in the framework of [18] in a

straightforward way as a protocol P(n,m, q, µ, pverifvoter , p
verif
abst). We refer to [18]

for the notation used. We denote by n the number of voters and supporting
devices, by m the number of mix servers, by q the number of decryption servers.
By µ we denote the probability distribution on the set of candidates/choices,

including abstention. We denote by pverifvoter and pverifabst the probability that the
voting voter will verify and an absenting voter will verify respectively.2

We define Φk as the accountability property consisting of the constraints:

χi → dis(idi) ∨ dis(AS), χ′
i → dis(idi) ∨ dis(AS)

¬γk ∧ ¬χ→ dis(VA)|dis(AS)|dis(DAi)
q
i=1|dis(MSj)

m
j=1

where

γk contains all runs of the protocol where at most n votes are in the result and
where at most k of the honest votes are not included in the result. See [17]
for a formal definition and discussion of this goal.

χi contains all the runs of P where the voter i complains they did not get a
receipt.

χ′
i contains all the runs of P where the voter i complains they did not vote but

a vote was cast on their behalf.

χ contains the union of all runs in χi and χ′
i for all i ∈ [1, ..., n]

2 Absenting voters verify that their identifier is not included on the list published by
the AS.

11

4.2 Result

Let Bad be defined as follows: Bad returns all parties whose output is not in
the co-domain of the honest algorithms. When parties are called multiple times
on different algorithms and pass states, we take the co-domain over all possible
states consistent with their early public output.

Let the JudgeKTV algorithm for AccKTV in [18] be constructed as follows:

(J1) first it runs Judge (from our definition) and if this outputs blame, then
JudgeKTV blames the party returned by Judge.

(J2) If no valid complaints were made by the voters causing blame, the judge
checks the complaints posted by the voters. If there is any such complaint
then JudgeKTV blames (disjunctively) both the party accused and the voter
accusing.

Definition 2 (Voter Verification Correct). For a scheme π we say that it
is voter verification correct if for all runs of the protocol the party blamed by
VSDVerify is in the set output by Bad or it blames the AS after receiving an
invalid confirmation.

Theorem 2 (GBA implies AccKTV). Let the judge JudgeKTV and algorithm
Bad be defined as above. Then for any scheme which has GBA and voter verifi-
cation correctness, JudgeKTV ensures

(
Φk, δ

k(pverifvoter , p
verif
abst)

)
-accountability for

P(n,m, q, µ, pverifvoter , p
verif
abst) where

δk(pverifvoter , p
verif
abst) = (1−min(pverifvoter , p

verif
abst))k+1.

Due to space constraints, we detail this in App. B. The proof relies on
analysing fairness and completeness for the two definitions.

5 Verifiability

In this section we show that our definition of accountability implies verifiability;
a relation already shown in the framework of Küsters et al [18]. To prove this im-
plication here, we introduce a new game-based definition of verifiability, that we
formalize via the experiment ExpVer

A (λ) in Fig. 3.3 Our definition of verifiability
ensures individual verifiability and no ballot stuffing during tally, and is appro-
priate for lightweight voting systems like sElect. Our definition is modular, and
can be enhanced to model stronger notions of verifiability (e.g., universal verifia-
bility or no ballot stuffing at submission time); however, to achieve them voting
systems will require heavier cryptographic primitives, likes zero-knowledge proofs
for correct tallying or shuffling.

We consider I the set of eligible voter IDs, and we introduce algorithm
VoterVerif that enables voters to verify their vote. We keep track of voters that
successfully verified using the set Checked and we raise the flag Complain when

3 In the game, we use the notation “Require” for if · · · else return ⊥.

12

ExpVer
A (λ)

1 : Complain = false;

2 : pd← A();

3 : BB, stateA ← A
Ovote();

4 : A(stateA)OVerifyi ;

5 : Require Complain = false;

6 : Require UniversalVerification(pd,BB);

7 : return ¬ResultConsistency(BB,Checked, . . .);

Ovote(id, v)

1 : (b, state)← Vote(pd, v);

2 : V[id]← (state, b);

3 : return b;

OVerify(id)

1 : Require(∃V[id]);
2 : (state, b)← V[id];

3 : if VoterVerif((state, b), pd,BB);

4 : Checked = Checked ∪ {id};
5 : else Complain = true;

Fig. 3. Verifiability assuming uncorrupted vote-casting.

verification fails. The adversary can choose which voters verify via the oracle
OVerify(id). Additionally, the adversary uses the vote oracle OVote to model
honest voters (re-)casting their votes; we focus on the last vote counts policy,
but this can easily be generalized for any policies.

The adversary also controls the bulletin board BB, however anyone can per-
form UniversalVerification(pd,BB) to universally verify this state. We further use
ResultConsistency(BB,Checked, . . .) to model the consistency relations on the bul-
letin board, and can depend on the different subcomponents of BB: list of sub-
mitted ballots BB|submit, the election result BB|res and extra info BB|extra.

Consider the election result function ρ : Cand∗ 7→ Res as a symmetric function
from the set of plaintext votes, chosen from the space of candidates Cand, to a
given result set Res. Using V[S] the corresponding list of plaintext votes from
the vote oracle, we model

– Individual Verifiability: Intuitively this should ensure that the verified votes
are all included in the tally. Using the verification oracles OVerifyi, i =
1, . . . , k we denote the successful verifiers Checked. The constraint from
ResultConsistency is ∃v1, . . . , vi ∈ Cand, i+ |Checked| ≤ |I|:

ρ(v1, . . . , vi,V[Checked]) = BB|res

where we have slightly abused notation for readability. We have included a
constraint on the number of malicious votes since if the result function allows
cancelling votes the inclusion of the honest votes would make little sense if
the adversary can add malicious votes arbitrarily.

– No Ballot Stuffing at Tally Time: |I| ≥ |BB|submit| and ∃i ≤ |BB|submit|
∃v1, . . . , vi ∈ Cand : ρ(v1, . . . , vi) = BB|res, i.e. there is at most as many
submitted ballots as eligible voters and the result is consistent with a number
of votes that is less than or equal to the submitted ballots.

In the case of schemes where all the decrypted votes are displayed individually
in BB|res, especially this holds for the mixnet-tally schemes, the slightly stronger

13

statement can be made that

|I| ≥ |BB|submit| ≥ |BB|res| ∧ V[Checked] ⊆ms BB|res , (1)

where we use V[Checked] and BB|res as multisets.
We define verifiability given a chosen ResultConsistency if any efficient adver-

sary has negligible advantage in ExpVer
A (λ). In particular, we define verifiability

for voting systems with the result being the plaintext votes as:

Definition 3. We say that a voting system V, with result function being the set
of votes, satisfies individual verifiability and no ballot stuffing at tally time if for
any efficient adversary A their advantage AdvverA,V(λ) = ExpVer

A,V(λ) is negligible
in λ, where ResultConsistency checks Eq. 1.

We note that there are some verifiability properties that sElect does not fulfill
but could be easily captured by the ResultConsistency or separate games, namely

– Tally Uniqueness: The adversary cannot produce two boards both satisfy-
ing UniversalVerification and individual verifications but with different tally
results and having the same submitted ballots BB|submit.

– Universal Verifiability: Here ResultConsistency requires that the result is the
same as the result from votes extracted from the valid ballots in BB|submit

given only that the board satisfies UniversalVerification(pd,BB).

5.1 Accountability implies Verifiability

We will now prove that the GBA accountability definition implies verifiability
for individual verifiability and no ballot stuffing as defined in Def. 3. However,
in order to do so, we need to relate the Judge and the VSDVerify algorithms
used in ExpGBAA,V (λ) with the algorithms UniversalVerification and VoterVerif used

in ExpVer
A,V(λ). Especially, the verifiability definition does not consider the au-

thentication server AS and its signatures, since it is not relevant for defining
verifiability. To this end we make the following definition for a voting system V
fitting both the accountability and the verifiability framework:

Definition 4. We call a voting system V accountability-verifiability-correct if
the signature part for AS is an independent part that can be removed to give
a reduced system valid for the verifiability framework, or correspondingly added.
Further, the Judge will never output blame if all verification checks by the verify-
ing voters using VSDVerify does not output blame and UniversalVerification = ⊤.
Further, VSDVerify((state, b, σ), pd,BBvote,BBmix,BBdec) will not output blame
if ASVerify(pd, b, σ) = ⊤ and VoterVerif((state, b), pd,BB) = ⊤.

Theorem 3. Given an accountability-verifiability-correct voting system, then
accountability as defined in Def. 1 implies individual verifiability and no bal-
lot stuffing at tally time as defined in Def. 3 assuming the AS signature scheme
is perfectly correct and we have a constant number of voters. More precisely for
any efficient adversary A against ExpVer

A,Vr
(λ) with advantage AdvverA,Vr

(λ) in the
reduced system Vr without signatures, we can construct an adversary B against
ExpGBAA,V (λ) with advantage at least 1

2|I|Adv
ver
A,Vr

(λ).

14

Due to space constraints the full proof is in App. C.

It follows from Thm. 1 and Thm. 3 that sElect fulfills individual verifiability
and no ballot stuffing at tally time as defined in Def. 3.

6 Concluding Remarks

We study notions of accountability for electronic voting, and produce the first
game-based notion of accountability for mix-based electronic voting schemes.
We relate our notion to Küsters et al’s quantitative notion, arguing that they
coincide at the extremes of the parameter range.

We demonstrate the value of such a game-based notion by formalising it
in EasyCrypt, and produce a machine-checked proof of accountability—as we
define it—for Küsters et al.’s sElect protocol, discussing issues with previous
accountability results for sElect as we go. Finally, we use our new game-based
definition of accountability to study the relationship between accountability,
verifiability, demonstrating in particular that accountability implies verifiability.

Generalisation beyond sElect We framed our discussions, and our definitions,
with sElect. However, our definitions would also somewhat trivially apply to
other voting schemes. In particular, as mentioned in the introduction, any scheme
making judicious use of sound zero-knowledge proofs for verifiability can be triv-
ially argued to be accountable: an adversary who is able to break accountability
with sound zero-knowledge proofs does so either by breaking soundness of the
zero-knowledge proof systems, or by breaking accountability of a scheme in which
verification for the zero-knowledge proofs is idealised to reject any proof that was
not produced as is by the prover—relying then only on the correctness of the
encryption scheme as in our sElect proof. Although this argument is easy to
make on paper, formalising it in EasyCrypt on existing formal definitions for
Helios (for example) would involve effort incommensurate to its scientific value
as part of this specific paper.

Beyond Accountability Capturing accountability as a game-based notion is
not just useful to allow a more precise analysis of accountability. By doing so, we
hope to open the way to the study of privacy and security properties of voting
schemes with dispute resolution. Formally taking into account dispute resolution
requires a precise understanding of the individual and overall guarantees offered
by verifiability in terms of the accuracy of the election result.

Acknowledgment T. Haines is the recipient of an Australian Research Council
Australian Discovery Early Career Award (project number DE220100595). C.
C. Drăgan is supported by EPSRC grant EP/W032473/1 (AP4L), EU Horizon
grants 101069688(CONNECT) and 101070627 (REWIRE). P. Rønne received
funding from the France 2030 program managed by the French National Research
Agency under grant agreement No. ANR-22-PECY-0006.

15

References

1. Abdalla, M., Bellare, M., Rogaway, P.: DHIES: An encryption scheme based on
the Diffie-Hellman problem. Contributions to IEEE P1363a (Sep 1998)

2. Adida, B.: Helios: Web-based open-audit voting. In: van Oorschot, P.C. (ed.)
USENIX Security 2008. pp. 335–348. USENIX Association (Jul / Aug 2008)

3. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.Y.:
EasyCrypt: A Tutorial, pp. 146–166. Springer International Publishing, Cham
(2014). https://doi.org/10.1007/978-3-319-10082-1˙6, https://doi.org/10.1007/
978-3-319-10082-1_6

4. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: A comprehen-
sive analysis of game-based ballot privacy definitions. Cryptology ePrint Archive,
Report 2015/255 (2015), https://eprint.iacr.org/2015/255

5. Bruni, A., Giustolisi, R., Schürmann, C.: Automated analysis of accountability. In:
Nguyen, P.Q., Zhou, J. (eds.) ISC 2017. LNCS, vol. 10599, pp. 417–434. Springer,
Heidelberg (Nov 2017)

6. Cortier, V., Dragan, C.C., Dupressoir, F., Schmidt, B., Strub, P.Y., Warinschi, B.:
Machine-checked proofs of privacy for electronic voting protocols. In: 2017 IEEE
Symposium on Security and Privacy. pp. 993–1008. IEEE Computer Society Press
(May 2017). https://doi.org/10.1109/SP.2017.28

7. Cortier, V., Dragan, C.C., Dupressoir, F., Warinschi, B.: Machine-checked proofs
for electronic voting: Privacy and verifiability for belenios. In: Chong, S., Delaune,
S. (eds.) CSF 2018 Computer Security Foundations Symposium. pp. 298–312. IEEE
Computer Society Press (2018). https://doi.org/10.1109/CSF.2018.00029

8. Cortier, V., Lallemand, J., Warinschi, B.: Fifty shades of ballot privacy: Privacy
against a malicious board. In: Jia, L., Küsters, R. (eds.) CSF 2020 Computer Se-
curity Foundations Symposium. pp. 17–32. IEEE Computer Society Press (2020).
https://doi.org/10.1109/CSF49147.2020.00010

9. Cortier, V., Gaudry, P., Glondu, S.: Belenios: A Simple Private and Verifiable
Electronic Voting System, pp. 214–238 (04 2019). https://doi.org/10.1007/978-3-
030-19052-1˙14

10. Drăgan, C.C., Dupressoir, F., Estaji, E., Gjøsteen, K., Haines, T., Ryan, P.Y.,
Rønne, P.B., Solberg, M.R.: Machine-checked proofs of privacy against malicious
boards for selene & co. In: 2022 IEEE 35th Computer Security Foundations Sympo-
sium (CSF). pp. 335–347 (2022). https://doi.org/10.1109/CSF54842.2022.9919663

11. Hirschi, L., Schmid, L., Basin, D.A.: Fixing the achilles heel of E-voting: The
bulletin board. In: Küsters, R., Naumann, D. (eds.) CSF 2021 Computer Secu-
rity Foundations Symposium. pp. 1–17. IEEE Computer Society Press (2021).
https://doi.org/10.1109/CSF51468.2021.00016

12. Khazaei, S., Moran, T., Wikström, D.: A mix-net from any CCA2 secure cryp-
tosystem. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 607–625. Springer, Heidelberg (Dec 2012). https://doi.org/10.1007/978-3-642-
34961-4˙37

13. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the
standard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part II. LNCS, vol. 9057, pp. 468–498. Springer, Heidelberg (Apr 2015).
https://doi.org/10.1007/978-3-662-46803-6˙16

14. Kiayias, A., Zacharias, T., Zhang, B.: Ceremonies for end-to-end verifiable elec-
tions. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 305–334. Springer,
Heidelberg (Mar 2017). https://doi.org/10.1007/978-3-662-54388-7˙11

16

15. Künnemann, R., Esiyok, I., Backes, M.: Automated verification of accountability
in security protocols. In: Delaune, S., Jia, L. (eds.) CSF 2019 Computer Secu-
rity Foundations Symposium. pp. 397–413. IEEE Computer Society Press (2019).
https://doi.org/10.1109/CSF.2019.00034

16. Künnemann, R., Garg, D., Backes, M.: Accountability in the decentralised-
adversary setting. In: Küsters, R., Naumann, D. (eds.) CSF 2021 Computer Se-
curity Foundations Symposium. pp. 1–16. IEEE Computer Society Press (2021).
https://doi.org/10.1109/CSF51468.2021.00007

17. Küsters, R., Müller, J., Scapin, E., Truderung, T.: sElect: A lightweight verifiable
remote voting system. In: Hicks, M., Köpf, B. (eds.) CSF 2016 Computer Secu-
rity Foundations Symposium. pp. 341–354. IEEE Computer Society Press (2016).
https://doi.org/10.1109/CSF.2016.31

18. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and re-
lationship to verifiability. In: Al-Shaer, E., Keromytis, A.D., Shmatikov,
V. (eds.) ACM CCS 2010. pp. 526–535. ACM Press (Oct 2010).
https://doi.org/10.1145/1866307.1866366

19. Morio, K., Künnemann, R.: Verifying accountability for unbounded sets of
participants. In: Küsters, R., Naumann, D. (eds.) CSF 2021 Computer Secu-
rity Foundations Symposium. pp. 1–16. IEEE Computer Society Press (2021).
https://doi.org/10.1109/CSF51468.2021.00032

20. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: Voting with transparent verifiability
and coercion-mitigation. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.S.,
Brenner, M., Rohloff, K. (eds.) FC 2016 Workshops. LNCS, vol. 9604, pp. 176–192.
Springer, Heidelberg (Feb 2016). https://doi.org/10.1007/978-3-662-53357-4˙12

21. SwissPost: Swiss post voting system. https://gitlab.com/swisspost-evoting (2022)

Appendix A Sketch of Proof of Theorem 1

We now sketch the proof of Theorem 1. We begin by defining two new games:
a fairness game Gf and a completeness game Gc. These games are almost iden-
tical to the original security game, with the exception that in Gf , we remove
the variable ec from the experiment and only consider the fairness aspect of ac-
countability, while in Gc, we remove the variable ef and only consider the com-
pleteness aspect of accountability. Let Ef resp. Ec be the event that the game

Gf resp. Gc returns 1. It is straightforward to see that Pr
[
ExpGBAA,sElect(λ) = 1

]
≤

Pr[Ef] + Pr[Ec]. Thus, the adversary has two possibilities to win. Either Judge
has blamed an innocent party, or it has blamed no one, but the result is incon-
sistent with the honest votes. We analyze the fairness and completeness aspects
separately, and argue that the adversary has zero probability of winning the
fairness game and negligible probability of winning the completeness game.

We begin with fairness. We will consider each way in which the judge may
blame a party and show that it will never blame a party that did not misbehave.
Recall the various checks performed by the judge: The judge first checks that
the public keys used by the authentication server and the mix servers are valid.
If not, it will blame the voting authority as it allowed the election to run with
invalid keys. Note that Bad will also blame the voting authority if the keys
are invalid (but not otherwise), meaning that the voting authority will only be

17

blamed by the judge if it indeed misbehaved. As invalid keys will result in the
voting authority being blamed by both the judge and by Bad, we assume for the
remainder of the proof that all the public keys are valid.

The judge then checks that the bulletin board BBvote is valid, i.e. that it
contains at most Nv elements and that its contents are in lexicographic order
and duplicate-free. If this check fails, the judge blames the authentication server.
If this is the case, the authentication server will also be blamed by Bad, ensuring
that if AS is blamed for producing an invalid board, it must indeed have mis-
behaved. Next, the judge checks that the output of each mix server contains at
most as many elements as in its received input and that the output of each mix
server is duplicate free and in lexicographic order. Since an honest mixer filters
out duplicates and sorts the output list, it will always pass this check.

The judge then checks, for all ciphertext and signature pairs in the evidence
list whether or not there is a ballot with a valid signature that is not present on
BBvote. Since an honest authentication server only authenticates the first ballot
from each voter, and posts all these on the bulletin board, it will always pass
this check. Note that if a dishonest voter blames the authentication server with
valid evidence, the Bad algorithm will also blame the authentication server, and
thus the judge will not blame the authentication server unless it is also blamed
by Bad. Finally, Judge checks, for any triple (mpki, αi+1, ri), whether or not
Enc(mpki, αi+1; ri) is in the input to the ith mix server, but αi+1 is not in its
output. Since the encryption system is correct, Enc(mpki, αi+1; ri) will decrypt
to αi+1 and since an honest mix server does not remove any ciphertexts other
than duplicates, it will always pass this check. In summary, Judge will never
blame an honestly behaving party, and thus, the adversary has zero probability
of winning the fairness game.

We now move on to completeness and bound the adversarial advantage in
the completeness game, i.e. that if extra ballots are added or honest voters’
ballots are dropped, the judge will, with overwhelming probability, hold someone
accountable. Fairness ensures that the blamed party actually misbehaved.

We begin with the first criterion for completeness, i.e. that the number of
ballots on BBvote is not greater than the number of eligible voters. This follows
from the second check of the Judge algorithm, where it checks if the bulletin
board is valid. The second criterion (that the number of votes on BBdec is not
greater than the number of cast ballots) follows from the judge checking that
the output of each mix server contains at most as many elements as its input.

Now consider the criterion that says that all honest votes are in the multiset
of votes output by the last mix server (i.e. BBdec). Every honest voter checks,
using VSDVerify, that their ballot appears in BBvote. If not there, they output
the token σ given to them by the authentication server. This, in turn, causes the
authentication server to be blamed by the judge. If AS was not blamed, we know
that all honest ballots were present in BBvote. If any honest ballot is dropped
by one of the mix servers, this will be detected by VSDVerify, which will output
some evidence that this mix server misbehaved, which in turn causes this mix
server to be blamed by the judge.

18

Now, the adversary has one possibility of winning the completeness game,
namely if two (or more) voters have cast the same vote, and their sampled nonces
happen to be equal. In this case, the adversary may drop all but one of these
ballots without it being detected. To analyze this situation, we slightly modify
the completeness game. We call the new game G′

c and let E′
c be the probability

that G′
c returns 1. The difference from Gc to G′

c is that in G′
c, we keep track

of the nonces that are sampled when the adversary calls the vote oracle, and
only sample new nonces from the set of nonces that have not been used earlier.
The two games are equivalent unless there is a collision in the first game, hence
|Pr[Ec]− Pr[E′

c] | ≤ Pr[Col] .
In G′

c, as there are no collisions in the nonces, any ballot that is dropped by
the adversary will be detected by VSDVerify, which in turns causes the judge to
blame the misbehaving party. In other words, in G′

c, the adversary will have zero
probability of winning, so Pr[E′

c] = 0. Thus, the probability that the adversary
wins the completeness game is bounded by Pr[Col]. As the adversary has zero
probability of winning the fairness game, and the probability of winning the
accountability game is bounded by the sum of winning the fairness game and the
completeness game, we arrive at the conclusion of Theorem 1 that the advantage
is bounded by the collision probability. By the birthday paradox the collission

probability is bounded by qv(qv−1)
2·|N| , where qv is the number of queries vote oracle

queries and N is the nonce space.

Appendix B Proof for Theorem 2

The proof of the theorem follows from analyzing Fairness and Completeness.

Lemma 1 (Fairness). The judge J is computationally fair in P(n,m,

µ, pverifvoter , p
verif
abst).

Proof. The proof is essentially the same as for sElect in [17] for the voting phase
but relies on GBA in the mixing and decryption phases.

Consider what happens if the voter makes a complaint and the judge blames
both the party accused and the voter (J2). Since the bulletin board is honest
and the channel is authenticated the voter must really have made the complaint.
There are two cases. If the voter is dishonest the verdict is clearly true. If the
voter is honest, the correctness of the verdict follows from the voter verification
correctness of the protocol either because the person it blamed has misbehaved
or because the authentication server did not send a valid confirmation. (J2)
covers both the case where the voter’s ballot is dropped and when it is added.

Case (J1) is covered by GBA. Since the scheme has GBA it follows that the
adversary cannot make either of these conditions trigger when the party ran its
honest program, otherwise GBA would not hold.

Lemma 2 (Completeness). For every instance π of P(n,m, µ, pverifvoter , p
verif
abst),

we have

Pr
[
π(1l)→ ¬(J : Φk)

]
≤ δk(pverifvoter , p

verif
abst) =

(
1−min

(
pverifvoter , p

verif
abst

))k+1

19

with overwhelming probability as a function of l.

Again, the proof is essentially the same as for sElect in the voting phase but
relies on GBA in the mixing and decryption phases. We need to show that the
following probabilities are bounded for every i: a) Pr

[
π(1l) → (χi ∧ ¬dis(vi) ∧

¬dis(AS))
]
, b) Pr

[
π(1l)→ (χ′

i ∧ ¬dis(vi) ∧ ¬dis(AS))
]
, c) Pr

[
π(1l)→ (¬γk ∧

¬χ → dis(VA)|dis(AS)|dis(DAi)
q
i=1|dis(MSj)

m
j=1)

]
. The first two probabilities

are equal to zero as noted in the sElect proof [17]. The last probability is δk

bounded by the completeness component of GBA. This is immediate when pverifvoter

is equal to one since our definition assumes all honest voters vote and verify;
when pverifvoter is lower this is more complicated and requires guessing ahead of
time which voters will verify. This can be achieved using standard techniques
from complexity leveraging.

Appendix C Proof for Theorem 3

Proof. Consider an adversary A against ExpVer
A,Vr

(λ). We start by running A
getting the output pd which we use for B in addition to an honestly generated
signing keypair for AS. We then make a random guess about which voters A is
going to ask to verify. The probability of guessing correctly is at least 1/2|I|.
Now, we keep running A to choose honestly cast votes and creating the bulletin
board BB. Every time the vote oracle is called and we guessed the voter is going
to verify, we let B query the same and forward the output to A. If we guessed
that the voter is not going to verify, we simply honestly generate the ballot and
send it to A without B querying the vote oracle. We use the board BB output
by A in addition to honestly generated signatures for AS. Since the signature
scheme is perfectly correct, the signatures will verify in lines 4-7 of ExpGBAA,V (λ).

We now run OVerify for B which will call verification for all voters used in
the oracle calls in ExpGBAA,V (λ). We can use the outputs to A’s calls to the verifica-
tion oracle. Here we assume that we guessed the verifiers correctly and, further,
in this case the two sets of verifying voters will be the same in the two exper-
iments. For the sake of the proof, we will abort if they do not match, hence
the degradation factor in the advantage. Now with probability 1

2|I|Adv
ver
A,Vr

(λ)

in ExpVer
A,Vr

(λ) we will have no complaints from the individual verification, the
universal verification will be successful and we have ¬(|I| ≥ |BB|submit| ≥
|BB|res| ∧ V[Checked] ⊆ms BB|res). Using that the scheme is accountability-
verifiability-correct in ExpGBAA,V (λ) all individual verification will also produce no
blame since the signatures will verify by perfect correctness, and, finally, again
by accountability-verifiability-correctness and successful universal verification,
no blame will be output by Judge, i.e. |B| = 0. Since the votes from the verifying
voters, V[Checked], in ExpGBAA,V (λ) exactly corresponds to the votes from the oracle

vote calls in ExpGBAA,V (λ) and |BB|submit| = |BBvote| and BB|res = BBdec we ex-
actly get the winning condition (¬(n ≥ |BBvote| ≥ |BBdec|∧V ⊆ BBdec)∧B = ⊥)
in ExpGBAA,V (λ).

20

