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ABSTRACT

We deal with the dynamical behavior of continuous elasto-
plastic model of Masing, consisting of infinite number of springs
and dry-friction elements. Using theory of differential inclusions
we provide existence and uniqueness result. Moreover, we prove
that continuous model is the limit of the discrete Masing model
when the number of degrees of freedom tends to infinity. Starting
from known results of numerical analysis, we build an implicit
Euler-like numerical scheme of order one.
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INTRODUCTION

In this paper, we study an elastoplastic model with infinite
number of degrees of freedom. The Prandtl model, also called
model of Masing, is known as mechanical model (see (Fougéres
Sidoroff 1989)). In a numerical point of view, there are some
schemes for elastoplastic model (Crandall Evans 1975; Glowin-
ski 1976 a; Glowinski 1976 b) but these scheme can not work for
Prandtl model in dynamics or do not provide estimates of order
of convergence.

The Prandtl model, consisting of one material point con-
nected in parallel with one spring and a finite number of asso-
ciations in series of one spring and Saint-Venant elements (see
figure 1) has been presented in (Bastien Schatzman Lamarque
2000; Bastien 2000). We provided differential inclusions that
govern this model. We also gave a numerical scheme which per-
mitted us to make numerical experiments exhibiting hysteretic
cycles characterizing elastoplastic models. In (Bastien Schatz-
man 1999; Bastien Schatzman 2000; Bastien 2000), we have
proved that order of the numerical scheme is one. Order one has
been founded again via numerical experiments: numerical error
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is clearly independent on the number of degrees of freedom of
the Prandtl model. In (Bastien Schatzman 1999; Bastien 2000),
we observed that the cycle of hysteresis of our rheological model
possesses a limit when the number of freedom tends to infinity.

Here, we discuss that all the properties are still valid if the
number of degrees of freedom of the Prandtl model becomes in-
finite. So, we present a continuous Prandtl model (see figure 4).
This model is also known as Masing model ((Fougeres Sidoroff
1989)). In section 1, this model is described: we replace discrete
equations that govern the discrete Prandtl model by the corre-
sponding continuous equations. Indeed a continuous differen-
tial inclusion is obtained. In section 2, we explain how that this
differential inclusion possesses a unique solution thanks to the
classical Brezis’s work (Brezis 1973). We give also smoothness
results. This solution is the limit of the discrete solution with
P degrees of freedom when P tends to infinity. Analysis of this
limit process is made in section 3. In section 4, we build a nu-
merical scheme which discretizes the continuous Prandtl model
and we discuss on its order one of convergence. In section 5,
we study cycles of hysteresis of the continuous model. A few
numerical examples are given in section 6.

1 DESCRIPTION OF THE CONTINUOUS MODEL
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Figure 1. The discrete Prandtl model

In (Bastien Schatzman Lamarque 2000; Bastien 2000), we
presented the Prandtl model with a finite number of degrees of
freedom (see figure 1): let x be the abscissa of the material point,
let u; be the displacement of the i-th spring (with stiffness k;) and
let v; be the displacement of the i-th Saint-Venant element (with
threshold ¢;). The material point of mass m is submitted to an

external force F. Denote 1; the force exerted by the i-th spring.
The constitutive law of the i-th spring is

T = —Kilu;. (1)

We write the constitutive law of the i-th Saint-Venant under the
form

T € —0uG(v;), )

where the graph o (see figure 2) is defined on IR? by

-1 ifx<O0,
ox)=<1 ifx>0,
[-1,1) ifx=0.

The graph ¢ is maximal monotone (for details, see (Brezis

Figure 2. The graph G

1973)). We proved that the discrete Prandtl model is governed by
the following differential system: almost everywhere on [0, T]

£(t) = y(0), (3a)

50 = (F(r) — kox(t) - ékiui(t)) , (30)

Vi (L), )+ W (40 350, GO
with initial conditions

x(0) =x0, y(0) = yo,
Vie {1,..,P}, ui(0)=uo; € [-nini]. (3d)



Here, we set
ViE{l,...,P}, ni = o /ki. 4)

The function y|_y,y; is the indicatrix function of [-1,1] and it is
defined by

wo {0 ifxel-L1,
VE™ = e ixg[-1,1].

This functionis convex, proper and lower semi-continuous on R;
so its sub-differential a\y[_u] is a maximal monotone operator
on R, defined by

0 if x €] — o0, —1[U]1, +o0],

0} ifxe]l-1,1],
W1y = ]{R} ifiz]—l |
R, ifx=1.

The graph dy|_ ) is presented in figure 3 and it is inverse of

11

Figure 3. The graph dy(_1 )

graph o, that is to say

Vx,y€R, x€oy) << yea\V[—l,l](x)'

Using uniqueness and existence results of Brezis (see. (Brezis
1973)), we proved in (Bastien Schatzman Lamarque 2000;
Bastien 2000) that system (3) possesses a unique solution.

We replace formally the parallel association of P associa-
tions in series of one spring with stiffness &; and of one Saint-
Venant element with threshold o by the parallel association of
an infinite number of associations in series of one spring with
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Figure 4. The continuous Prandtl model

infinitesimal stiffness k(s)ds and one Saint-Venant element with
infinitesimal threshold a(s)ds for s € [0,1] (see figure 4).

We use notations similar to the notations of the discrete
model. The material point of abscissa x(¢) and of mass m is sub-
mitted to an external force F. Let us denote t(¢,s)ds the force
exerted by the spring with stiffness k(s)ds. Like (1), the consti-
tutive law of the spring with stiffness k(s)ds is

T(t,5) = —k(s)u(t,s). 5)

Similar to (2), the constitutive law of the Saint-Venant element
with threshold o(s)ds is

1(t,s) € —a(s)o <%:-’(t,s)) . 6)

Formally, the limit case of (3) gives the continuous behavior of
the continuous Prandtl model: we obtain the following differen-
tial system: almost everywhere on [0, T,

(1) =y(), (7a)

1
0= 5 (FO —toxt) - [ kaute.)0) o

almost everywhere on [0,7] x [0,1]

d
a—': (t,5) + OW|—n(s)m(s) (u(2,8)) D ¥(2), (7c)



with initial conditions

x(0) =xo0, y(0) = yo,
anda.e.on[0,1] u(0,s) =up(s) € [-n(s),n(s)], (7d)

where we set with respect to (4),

Vse[0,1], m(s) = %(%)- ®

In section 3, we explain how to prove rigorously equations (7)
like a limit case of (3).

2 EXISTENCE, UNIQUENESS AND REGULARITY RE-
SULTS
The system (7) is a differential inclusion in the Hilbert space
H =R xR x L?(0,1); so we can apply the theory of Brezis
(Brezis 1973). Let x0, yo € R, m € R, and ko € R . Define a
function f from [0, T] x # to 3 by

y
f(tv(xvyyz)) = ((F(t) -kox—’ (k,Z)) /m) ’ (9)
y®l1

With these notations, (7) is equivalent to

X+oy(X) 3 f(.,.X), (10)
X(0) = Xo, (11)

where we set

X0 x(t)
Xo= yo) andX(t)=()’(t) . (12)
170) u(t,.)

Observing that dy is the sub-differential of the function convex
v of H defined by forall x,y € R, for all z € L2(0,1), for all
s€[0,1],

W (x2,2(5)) = {0} x {0} x W1 (,5‘1((—))) a3

we can use the Brezis’s theory on the differential inclusions
(Brezis 1973): the system (10) and (11) possesses a unique solu-
tion. So, we obtain the

Proposition 2.1. Let F essentially bounded and let uo, N and k
square integrable. We assume that, almost everywhere on 0,1),

luo(s)] <m(s), k(s) >0, n(s)>0. (14)

Then there exists a unique solution (x,y,u) of differential system
(7). Moreover, the derivatives of x, y and u are square integrable.

According to the proposition 2.1, the derivative of the func-
tion u is square integrable. Moreover, with hypothesis of smooth-
ness of the functions up and 1, we can give a regularity result on
u vs its second variable.

Proposition 2.2. Under the hypothesis of proposition 2.1, as-
sume moreover that the derivatives of uo and M are essentially
bounded and there exists Y > 0 such that

n(s) > v a.e on[0,1]. 15)

Let (x,y,u) be the unique solution of (7). Then the derivatives of
u is essentially bounded.

The proof is based on the comparison between the two solu-
tions u and # of the two following differential systems

a z,
a—‘:(t,s) +9¥[-1,1) (%((f)‘l> 3y(t), a.e. on]0,T[x]0,1[, (16)
%(r,s)+8\y[_1,1] (%,%-)) 3 §(t), a.e. on]0,7(x]0,1[, (17)

and estimate of u — it is based on a Gronwall’s lemma (Bastien
Lamarque schatzman 2001), which gives the following result:
there exists C such that, forall ¢ € [0,T], forall 4 €]0,1],

Vs€[0,1—-h), |u(t,s)—u(t,s+h)| < Mh.

3 CONVERGENCE OF THE DISCRETE MODEL TO
THE CONTINUOUS MODEL
Let P € IN* and 8s = 1/P. The discrete system (3) is equiv-
alent to the continuous system (7) where the functions ug g, k3,
and Mg, of L?(0,1) are defined by

Vie{1,..,P}, Vs€[siin,s, uozs(s) =uo(si), (18a)
ks (5) = k(s;), (18b)
Nas(s) =N(s). (18¢c)



Denote the function ug, from [0,T] x [0,1] to R defined by

Vee[0,T], Vie{1,..,P}, Vs€lsi—1,sil,
uﬁs(tas) =ui,&r(t)1 (19)

we can remark that (x5, yss, ¥5,) is the solution of the system (7)
expressed with the functions ug g, k5; and ;.

Using an estimate between the solutions of (16) and (17), we
can prove

Proposition 3.1. Let 8s = 1/P, F essentially bounded on
[0,T] and let uo, M and k with derivatives essentially bounded
which verifies (14) and (15). Then the exists a constant C such
that, for all P € IN*,

max |x(t) — x55(t)| < C3s, (20)

t€{0,T)

max [(2) = yas(t)| < CBs, (21)
lue(2,5) — ugs(2, )| < Cds. (22)

max
(1,)€{0,T]x[0,1]

The proof is based on comparison between solutions of two
differential inclusions and a Gronwall’s lemma. Thus, the solu-
tion (xgs, yss, Uss) Of discrete Masing model is a good approxi-
mate of solution (x,y, ) of continuous Masing model when the
number of degrees of freedom P of the discrete Masing model
tends to infinity.

4 NUMERICAL SCHEME

From the property 3.1 we have an estimate of the difference
between the solution (x,y,z) of the continuous Prandlt model
and the solution (xg;, yss, ¥5;), Of the discrete continuous Pran-
dlt model. This system can be rewritten under the form

i+00(u) 3 f(t,u), (23)

where u is a function from [0,T] to R”, ¢ is a convex func-
tion from IR? to R and its sub-differential d¢ is a multivalued
maximal monotone graph from R? to IR? (see (Brezis 1973)).
In (Bastien 2000; Bastien Schatzman 1999; Bastien Schatzman
2000), we have proved that the Euler implicit numerical scheme
defined by

et _pyr

T +30(U?) 3 £ (ph,UP), @4

(where h = T /N) converges to the solution of (23), with an error
in O(h), that is to say

P_ < Ch.
omax, lUP —u(ph)| < (25)

We can approximate the solution (xg,,yss,uss) of the discrete
continuous Prandlt model by using numerical scheme (24). We
have seen in proposition 3.1 that (xg,yss,4ss) iS an approxima-
tion of continuous solution (x,y,u) of differential system (7).
Let N,P € N*. We set &s = 1/P, & =T /N and we define the

?
values (xg,), <p<p’ (ygs)o <p<p’ (u&”")OSPSP,OSiSN by, for all
p€{0,..,.N—1},
L =8y 4+, (262)

& P
5:“ =~ (F(tp) — koxg — i_zlﬁsk,-ug&i) + Y5 (26b)

Vie {1,.,P}, ulH = proj_gn (8: 2+ ug’i) . (260)

and

X3 = xo, (26d)
Y3 = o, (26¢)
Vie{l,..P}, ul;=uoj (26f)

Here, proj[__m_m‘,] is the projection on the interval [—m;,m;].
Let x5, 5> Y555 and ug g, be the functions of ([0,T],R),
c°([0,7),R) and C°([0,T),L%(0,T)), based on the lin-

ear interpolation of the values (xgs)o <p<h’ (ygs)o <p<N’

(ug s i) . We can observe that numerical scheme (26)
"/ 0<p<POSiSN

is the numerical scheme (24) applied to differential system (3)
(with function ng, k5, and 1y g, ) written under the form (23). Ac-
cording of estimate (25), we can prove that the numerical scheme
has order one with respectto &s and ¢:

Proposition 4.1. Under the hypothesis of proposition 3.1, then
there exists a constant C such that, for all 8,8t € R,

ax, |x(t) — xgs,5(2)| < C(8s+8t),

_ <ol
tg;;;}b(:) Yasg(t)| < C(8s+80),

- < .
(t,s)ef&%x[m] [u(t,s) u&,af(t,s)[ < C(8s+8t)



5 STUDY OF THE HYSTERESIS CYCLES

In (Bastien Schatzman Lamarque 2000; Bastien 2000), we
studied the hysteresis cycles of the Prandl model with a finite
number of degrees of freedom. If we assume x increasing on
[0,T], we have proved that the data of the physical parameters of
the Prandtl model permit us to find partially the hysteresis cycle,
that is to say the curve {x(t),F(t) —mi(t) },co 7}; this curve is
convex, polygonal composed of n+ 1 segment lines. Recipro-
cally, the data of one half hysteresis cycle permits us to identify
the physical parameters of Prandtl model.

oxX)

1 b

;((0) 'x, x, x(T) X

Figure 5. The half continuous hysteresis cycle.

We study again the hysteresis cycle for the continuous
Prandtl model. If x is increasing on [0, T), we can prove that
the functions 1 and & permit us to find the cycle; this curveis the
union of two segment lines and of a strictly concave part (see fig-
ure 5). Reciprocally, the data of one half hysteresis cycle permits
us to find the physical parameters of Prandtl model. Neverthe-
less, this identification is not one-to-one: we prove that a family
of functions (n,k) possesses the same hysteresis cycle. If the
function M is arbitrarily fixed, then the shape of hysteresis cycle
permits us to find the function k thanks to a differential equa-
tion between experimental curve © and the function & : for all
s€(0,1]

2(n(1) -(0)@" (2(n(1) ~n(0))s+2n(0)) = ~k(s). (27)

This parameter identification permits us to identify an
elastoplastic model with experimental data: we suppose that a
curve (x, f —mx) is known, via an approximation with a finite
set of values. With a small step of interpolation, we can obtain a
continuous curve which interpolates this finite set of values and
we can determine the function k with the differential equation
(27) by choosing arbitrarily the function .

6 NUMERICAL SIMULATION
The functions N, k and ugp are defined by

Vse€[0,1], m(s)=s+0.1, (28)
k(s) =1, 9)
uo(s) = 0. (30)

The values of (1;);, (ki); and (u;0); are defined by (18). We have
chosen

T =500, ko=xo=i=0, F(t)=0.45c0s(0.5). (31)

We have plotted some hysteresis cycles
{x(2),F(t) ~ mx(t) }400<s<500 in the figures 6, 7, 8, 9 and
10 in appendix A. For this simulation, we have chosen N = 108;
for the figures 6 and 7, we have chosen P =3 and P = 10; in
this figures, we can see polygonal cycles similar to those of the
discrete Prandtl model (see figures 20 trough 22 of (Bastien
Schatzman Lamarque 2000)). For the figures 8, 9 and 10, where
P € {100,700,1500}, the obtained cycles seem to be the cycles
of a continuous model. The polygonal shape disappears: we
obtain a continuous smooth curve with two segments and a
concave part.

CONCLUSION

By using the maximal monotone frame of (Bastien Schatz-
man Lamarque 2000; Bastien 2000), we can prove existence
and uniqueness results for the continuous dynamical Masing
model. Moreover, due to results of numerical analysis presented
in (Bastien Schatzman 1999; Bastien Schatzman 2000; Bastien
2000), we provide an implicit Euler numerical scheme with order
1. By using this numerical scheme, we give cycle of hysteresis.
Then we explain how to identify (partially) Masing model.
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Appendix A: Curves of numerical simulations

F{t)-mx"(t)

Figure 6. Curve {x(¢),F () —m¥(t) }s00<;<500 for P = 3

Figure 8.

Figure 9.

Figure 10.
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