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DEGREES OF FREEDOM 

Jerome BASTIEN 
Trone commun 

Universite de Technologie de Belfort-Montbeliard 
90010 Belfort cedex, France 

Email: jerome.bastien@utbm.fr 

ABSTRACT 
We deal with the dynamical behavior of continuous elasto

plastic model of Masing, consisting of infinite number of springs 
and dry-friction elements. Using theory of differential inclusions 
we provide existence and uniqueness result. Moreover, we prove 
that continuous model is the limit of the discrete Masing model 
when the number of degrees of freedom tends to infinity. Starting 
from known results of numerical analysis, we build an implicit 
Euler-like numerical scheme of order one. 

NOMENCLATURE 
A differential inclusion 
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INTRODUCTION 
In this paper, we study an elastoplastic model with infinite 

number of degrees of freedom. The Prandtl model, also called 
model ofMasing, is known as mechanical model (see (Fougeres 
Sidoroff 1989)). In a numerical point of view, there are some 
schemes for elastoplastic model (Crandall Evans 1975; Glowin
ski 1976 a; Glowinski 1976 b) but these scheme can not work for 
Prandtl model in dynamics or do not provide estimates of order 
of convergence. 

The Prandtl model, consisting of one material point con
nected in parallel with one spring and a finite number of asso
ciations in series of one spring and Saint-Venant elements (see 
figure 1) has been presented in (Bastien Schatzman Lamarque 
2000; Bastien 2000). We provided differential inclusions that 
govern this model. We also gave a numerical scheme which per
mitted us to make numerical experiments exhibiting hysteretic 
cycles characterizing elastoplastic models. In (Bastien Schatz
man 1999; Bastien Schatzman 2000; Bastien 2000), we have 
proved that order of the numerical scheme is one. Order one has 
been founded again via numerical experiments: numerical error 
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is clearly independent on the number of degrees of freedom of the Prandtl model. In (Bastien Schatzman 1999; Bastien 2000), we observed that the cycle of hysteresis of our rheological model possesses a limit when the number of freedom tends to infinity. Here, we discuss that all the properties are still valid if the number of degrees of freedom of the Prandtl model becomes infinite. So, we present a continuous Prandtl model (see figure 4). This model is also known as Masing model ((Fougeres Sidoroff 1989)). In section 1, this model is described: we replace discrete equations that govern the discrete Prandtl model by the corresponding continuous equations. Indeed a continuous differential inclusion is obtained. In section 2, we explain how that this differential inclusion possesses a unique solution thanks to the classical Brezis's work (Brezis 1973). We give also smoothness results. This solution is the limit of the discrete solution with P degrees of freedom when P tends to infinity. Analysis of this limit process is made in section 3. In section 4, we build a numerical scheme which discretizes the continuous Prandtl model and we discuss on its order one of convergence. In section 5, we study cycles of hysteresis of the continuous model. A few numerical examples are given in section 6. 
1 DESCRIPTION OF THE CONTINUOUS MODEL 

k,, 

k, a, 
F 

Figure 1. The discrete Prandtl model 

In (Bastien Schatzman Lamarque 2000; Bastien 2000), we presented the Prandtl model with a finite number of degrees of freedom (see figure 1 ): let x be the abscissa of the material point, let u; be the displacement of the i-th spring (with stiffness k;) and let v; be the displacement of the i-th Saint-Venant element (with threshold a;). The material point of mass m is submitted to an 

external force F. Denote t; the force exerted by the i-th spring. The constitutive law of the i-th spring is 
(1) 

We write the constitutive law of the i-th Saint-Venant under the form 

where the graph CJ (see figure 2) is defined on R2 by 

{-
1

CJ(x) = 1 [-1,1] 
ifx< 0,ifx> 0, if x== 0. 

(2) 

The graph CJ is maximal monotone (for details, see (Brezis 
y 

a 

X 

Figure 2. The graph <J 

1973)). We proved that the discrete Prandtl model is governed by the following differential system: almost everywhere on [ 0, T] 
�==�. � 
y(t) == .!_ (F(t)-kox(t)-f k;u;(t)), (3b) 

m l=I Vie {1, ... ,P}, u;( t) + dli'[-T1i,,,,1(u;(t)) 3 y(t), (3c) 
with initial conditions 

x(O) == XO, y(O) == Yo,Vi E {1, ... ,P}, u;(0) = UO,i E [-111, 11,]. (3d)
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Here, we set
Vi E {1, ... ,P}, 'lli = «;/k;. (4) The function 'l'[-l,l] is the indicatrix function of [-1, 1] and it isdefined by 

{o ifxe [-1, 1],'lf[-l,t](X) = +00 if X t [-1, 1].This function is convex, proper and lower semi-continuous on R;so its sub-differential d'lf[-l,l] is a maximal monotone operatoron R. defined by ifx e]-00,-l[U] l,+00[, ifxe]-1, 1 [,ifx= -1,ifx= 1.The graph d'lf[- t ,l] is presented in figure 3 and it is inverse of
y 

X 

Figure 3. The graph d'lf[-1,1]graph a, that is to sayVx, y ER, XE a(y) � YE d'lf[-1,l](x).Using uniqueness and existence results of Brezis (see. (Brezis1973)), we proved in (Bastien Schatzman Lamarque 2000;Bastien 2000) that system (3) possesses a unique solution. We replace formally the parallel association of P associations in series of one spring with stiffness k1 and of one SaintVenant element with threshold a; by the parallel association ofan infinite number of associations in series of one spring with k(O)ds a(O)ds 
! k(s)ds a(s)ds I' � _i(t�)ds 
lu{t.s)v(t.s) : 

�� I x<tl 

F 

Figure 4. The continuous Prandtl modelinfinitesimal stiffness k(s)ds and one Saint-Venant element withinfinitesimal threshold a(s )ds for s E [0, 1 ]  (see figure 4). We use notations similar to the notations of the discretemodel. The material point of abscissa x(t) and of mass m is submitted to an external force F. Let us denote 't(t,s)ds the forceexerted by the spring with stiffness k(s)ds. Like (1 ), the constitutive law of the spring with stiffness k(s)ds is 
't(t,s) = -k(s)u(t,s). (5) Similar to (2), the constitutive law of the Saint-Venant elementwith threshold a(s)ds is 't{t,s) E -a(s)a (!; (t,s)). (6) Formally, the limit case of (3) gives the continuous behavior ofthe continuous Prandtl model: we obtain the following differential system: almost everywhere on [0, T], 

x(t) = y(t),

j(t) = � (F(t) -kox(t)-fo1
k(s)u(t,s)(s)),almost everywhere on [0, T] x [0,1] (7a) 

(7b) 

(7c) 
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with initial conditionsx(O) = x o, y(O) = YO, and a.e. on [O, 1 ]  u{O,s) = uo(s) E [-11(s), 11(s)], (7d)where we set with respect to (4),

a(s) 
Vs E [O, 1], Tt(s) = k(s).

(8) In section 3, we explain how to prove rigorously equations (7)like a limit case of (3). 
2 EXISTENCE, UNIQUENESS AND REGULARITY RE

SULTS The system (7) is a differential inclusion in the Hilbert space
!I{= Rx R x  L2(O, 1); so we can apply the theory of Brezis(Brezis 1973). Let XO, Yo E R, m E R+ and ko E 1R+. Define afunction f from [O, T] x !ll to !Jl by 

f(t,(x,y,z)) = ((F(t)-,:-(k,z))/m), 
y®l With these notations, (7) is equivalent towhere we set X + chv(X) 3 f(.,X), X(O) =Xo,

(XO) ( x(t)
) Xo = Yo andX(t) = y(t) uo u(t,.) 

(9) 

(10) 
(11) (12)Observing that c)v is the sub-differential of the function convex'II of !ll defined by forall x,y e R, for all z E L2(O, 1), for allse [ 0, 1] ,

(z(s)) v(x,y,z(s)) = {O} X {O} X 'l'[-1,1) ri(s) 
, (1 3)we can use the Brezis's theory on the differential inclusions(Brezis 1973): the system (10 )  and (11) possesses a unique solution. So, we obtain the Proposition 2.1. Let F essentially bounded and let uo, 11 and k

square integrable. We assume that, almost everywhere on [0, l ],luo(s)I $ Tt {s), k{s) > 0, 11(s) > 0. (14) 

Then there exists a unique solution (x,y, u) of differential system 
(7). Moreover, the derivatives of x, y and u are square integrable. According to the proposition 2. 1 , the derivative of the function u is square integrable. Moreover, with hypothesis of smoothness of the functions uo and 11, we can give a regularity result onu vs its second variable. Proposition 2.2. Under the hypothesis of proposition 2.1, as
sume moreover that the derivatives of uo and 11 are essentially
bounded and there exists y > 0 such that 11(s) � y, a.e. on [0,1 ]. (15) 

Let (x,y,u) be the unique solution of (7). Then the derivatives of 
u is essentially bounded.The proof is based on the comparison between the two solutions u and ii of the two following differential systems 

au (u(t,s)) a,(t,s)+cl'l'[-1,1) 11(s) 3y(t), a.e.on]O,T [x]O, 1 [, (16)::{t,s) +dll'[-1,l) (���;)) 3y{t), a.e. on]O, T [x]0, 1 [, (1 7)and estimate of u - u is based on a Gronwall's lemma (BastienLamarque schatzman 200 1 ), which gives the following result:there exists C such that, for all t E [O, T], for all h e]O, 1], 
\Is E (0, 1-h], lu(t,s) -u(t,s+h)I $ Mh.

3 CONVERGENCE OF THE DISCRETE MODEL TO 
THE CONTINUOUS MODEL Let P E N* and 6s = 1/P. The discrete system (3) is equivalent to the continuous system (7) where the functions UO,& , k&r and 11& of L2(O, 1) are defined by
\Ii e {1, ... ,P}, \Is e [s1-1,s1[, uo,a.,(s) = uo(s1),k&(s) = k(s1), 11&.r(s) = 11(s;). (18a)(18b)( 18c)
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Denote the function U& from (0, T] x [0, 1 ]  to R defined by 
Vt E [0 , T] ,  V i  E {1, ... ,P}, Vs E]s1-1,s1[ ,  u&( t,s) = u1,&( t), ( 19)

we can remark that ( x& ,Y&,U&) is the solution of the system (7) expressed with the functions uo,&, le& and Tl&•Using an estimate between the solutions of ( 1 6) and (17), we can prove 
Proposition 3.1 . Le t  as = 1 / P, F essentially bounded on (0, T] and le t uo, Tl and k with derivatives essentially bounded which verifies (14) and (15). Then the exists a constant C such that. for all P E N, 

max lx( t) - x69( t) I  � cas, tE [O,T] max jy(t) - Y&(t) I � C&, tE [O,T] max l u( t,s) - u&( t, s) I  � C&.(t,s) e{O,T] x {0,1 ]  

(20) 
(21 )  
(22) 

The proof is based on comparison between solutions of two differential inclusions and a Gronwall's lemma. Thus, the solution ( x&,Y& , uas) of discrete Masing model is a good approximate of solution ( x,y, u) of continuous Masing model when the number of degrees of freedom P of the discrete Masing model tends to infinity. 
4 NUMERICAL SCHEME From the property 3. 1 we have an estimate of the difference between the solution ( x,y, z) of the continuous Prandlt model and the solution (xas,Y&, uas), of the discrete continuous Prandlt model. This system can be rewritten under the form 

u + dcp(u) 3 f( t , u), (23) 
where u is a function from [0, T] to m.P, q, is a convex function from RP to R and its sub-differential aci, is a multivalued maximal monotone graph from RP to RP (see (Brezis 1973)). In (Bastien 2000; Bastien Schatzman 1999; Bastien Schatzman 2000), we have proved that the Euler implicit numerical scheme defined by 

(where h = T / N) converges to the solution of (23), with an error in O(h) , that is to say 
max I IUP - u( ph) II < Ch. 

0$p$N 
- (25) 

We can approximate the solution ( xas,Yas, u&) of the discrete continuous Prandlt model by using numerical scheme (24). We have seen in proposition 3. 1  that ( x&r , Y& , U&) is an approximation of continuous solution ( x,y, u) of differential system (7). Let N, P E N• . We set as = 1 /P, & = T /N and we define the 
values (�) 0< <P' (%r)o< <P' (ifas 1) . by, for all 

_p_ _p_ ' 0$pSP,0$i$N p E  {0, . . .  , N - 1}, 
� 1 = &%r + �, (26a) 
�1 = at (F( tp) - �  - f ask1ifas ,) + %r, (26b) m �1 ' 
Vi E { 1, . .. , P},  u�/ = proj(-Tt1 t'lltl ( at%r + ifar,1) , (26c)

and 
4 = xo , 
yg_, = yo ,  V i  E { 1,  . . .  ,P}, ut,1 = UO,i•

(26d) 
(26e) 
(26t) 

Here, projl-Tt,,Tt,l is the projection on the interval [ -Tt;, T11]. Let xa.,,&, Y&r,& and "&,&, be the functions of cO ( [O, T] , R), c0 ( [ 0,T] , R) and c0 ( [0, T],L2 (0, T)) , based on the linear interpolation of the values ( �)o< <N' �)0< <N'_p_ _p_ 

(ut ,) . We can observe that numerical scheme (26)
' 0$p$P,0$i$N is the numerical scheme (24) applied to differential system (3) (with function Tl&, k& and "<>,&) written under the form (23). According of estimate (25), we can prove that the numerical scheme has order one with respect to & and at: 

Proposition 4. 1 .  Under the hypo thesis of proposition 3. 1, then there exists a constant  C such that, for all &, & E R+,
max lx( t) - X& &( t) I � C (as + at) , tE[O,T] ' 
max ly( t) - ya., a,( t) I � c( as + &) ,  tE(O,T) max l u( t,s)- U& &( t , s) I  � C( as + at) .(t,.r) E [O,T) x [0,1 ) ' .
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5 STUDY OF THE HYSTERESIS CYCLES In (Bastien Schatzman Lamarque 2000; Bastien 2000), westudied the hysteresis cycles of the Prandl model with a finitenumber of degrees of freedom. H we assume x increasing on[O, T] , we have proved that the data of the physical parameters ofthe Prandtl model permit us to find partially the hysteresis cycle,that is to say the curve {x(t) , F(t) - mx(t) },e[o,T] ;  this curve isconvex, polygonal composed of n + 1 segment lines. Reciprocally, the data of one half hysteresis cycle permits us to identifythe physical parameters of Prandtl model.
x(O) x ,  x2 x(T) X 

Figure 5. The half continuous hysteresis cycle. We study again the hysteresis cycle for the continuousPrandtl model. H x is increasing on [O, T] , we can prove thatthe functions 'Tl and k permit us to find the cycle; this curve is theunion of two segment lines and of a strictly concave part (see figure 5) .  Reciprocally, the data of one half hysteresis cycle permitsus to find the physical parameters of Prandtl model. Nevertheless, this identification is not one-to-one: we prove that a familyof functions (Tt, k) possesses the same hysteresis cycle. H thefunction 'Tl is arbitrarily fixed, then the shape of hysteresis cyclepermits us to find the function k thanks to a differential equation between experimental curve 0 and the function k : for alls E [0, 1]2 (Tt (l )  - Tt(O) )0" ( 2 (Tt { l } - Tt(O} ) s + 2Tt(0}) = -k(s) . (27)This parameter identification permits us to identify anelastoplastic model with experimental data: we suppose that acurve (x, f - mx) is known, via an approximation with a finiteset of values. With a small step of interpolation, we can obtain acontinuous curve which interpolates this finite set of values andwe can determine the function k with the differential equation(27) by choosing arbitrarily the function 'Tl• 6 NUMERICAL SIMULATION The functions 'Tl, k and uo are defined by'v's E [0 , 1 ] ,  Tt (s) = s + 0. 1 ,k(s) = 1 ,
uo(s) = O. (28)(29)(30)The values of (Tt,) i , (ki)i and (u;,o } ; are defined by ( 18). We havechosen

T = 500, ko = xo = io = 0 ,  F(t} = 0.4S cos(0.5t) . (3 1 )We have plotted some hysteresis cycles{x(t} ,F (t} - mx(t) }400<,<soo in the figures 6, 7, 8, 9 and10  in appendix A. For tllis simulation, we have chosen N = 106 ;for the figures 6 and 7, we have chosen P = 3 and P = 10;  inthis figures, we can see polygonal cycles similar to those of thediscrete Prandtl model (see figures 20 trough 22 of (BastienSchatzman Lamarque 2000)). For the figures 8, 9 and 10, whereP E  { 100, 700, 1500} ,  the obtained cycles seem to be the cyclesof a continuous model. The polygonal shape disappears: weobtain a continuous smooth curve with two segments and aconcave part.
CONCLUSION By using the maximal monotone frame of (Bastien Schatzman Lamarque 2000; Bastien 2000), we can prove existenceand uniqueness results for the continuous dynamical Masingmodel. Moreover, due to results of numerical analysis presentedin (Bastien Schatzman 1999; Bastien Schatzman 2000; Bastien2000), we provide an implicit Euler numerical scheme with order1 . By using this numerical scheme, we give cycle of hysteresis.Then we explain how to identify (partially) Masing model.
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Appendix A: Curves of numerical simulations 

x(I) -

Figure 6. Curve {x(t),F(t) -mx(t) }4()()$t$SOO for P = 3 .as,,,,_, ----,,---.--,._, -x(I)---=---__,,,..._-, 

Figure 7. Curve {x(t),F(t) -mx(t} }4()()$t$SOO for P = IO
1(11 

Figure 8. Curve {x(t),F(t) -mx(t) }4009$500 for P = 100
Figure 9. Curve {x(t),F(t) -mx(t)}4009$SOO for P = 100 ·

Figure 1 0. Curve {x(t), F(t) -mx(t)}4009$SOO for P = 1500.
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