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STUDY OF AN ELASTOPLASTIC MODEL WITH AN INFINITE NUMBER OF DEGREES OF FREEDOM

We deal with the dynamical behavior of continuous elasto plastic model of Masing, consisting of infinite number of springs and dry-friction elements. Using theory of differential inclusions we provide existence and uniqueness result. Moreover, we prove that continuous model is the limit of the discrete Masing model when the number of degrees of freedom tends to infinity. Starting from known results of numerical analysis, we build an implicit Euler-like numerical scheme of order one.

INTRODUCTION

In this paper, we study an elastoplastic model with infinite number of degrees of freedom. The Prandtl model, also called model ofMasing, is known as mechanical model (see [START_REF] Fougeres | The evolutive masing model and its applicaryon to cyclic plasticity and ageing[END_REF])). In a numerical point of view, there are some schemes for elastoplastic model (Crandall Evans 1975; Glowin ski 1976 a; Glowinski 1976 b) but these scheme can not work for Prandtl model in dynamics or do not provide estimates of order of convergence.

The Prandtl model, consisting of one material point con nected in parallel with one spring and a finite number of asso ciations in series of one spring and Saint-Venant elements (see figure 1) has been presented in (Bastien Schatzman Lamarque 2000;[START_REF] Bastien | Etude th eorique et numerique d'inclusions differentielles maximales monotones[END_REF]. We provided differential inclusions that govern this model. We also gave a numerical scheme which per mitted us to make numerical experiments exhibiting hysteretic cycles characterizing elastoplastic models. In (Bastien Schatz man 1999; Bastien Schatzman 2000; Bastien 2000), we have proved that order of the numerical scheme is one. Order one has been founded again via numerical experiments: numerical error
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Universite Claude Bernard Lyon I 69622 Villeurbanne Cedex, France Email:schatzman@lan.univ-lyon1.fr is clearly independent on the number of degrees of freedom of the Prandtl model. In (Bastien Schar¤an 1999;[START_REF] Bastien | Etude th eorique et numerique d'inclusions differentielles maximales monotones[END_REF], we observed that the cycle of hysteresis of our rheological model possesses a limit when re number of freedom tends to infinity. Here, we discuss that all the properres are still valid if the number of degrees of freedom of the Prandtl model becomes in finite. So, we present a continuous Prandtl model (see figure 4). This model is also known as Masing model ((Fougeres Sidoroff 1989)). In section 1, this model is described: we replace discrete equations that govern the discrete Prandtl model by the corv sponding continuous equations. Indeed a continuous differen ral inclusion is obtained. In secron 2, we explain how that this differential inclusion possesses a unique solution thanks to the classical Brezis ' s work [START_REF] Brezis | Op erateurs maximaux monotones et semi groupes de contractions dans les espaces de Hilbert[END_REF]. We give also smoothness results. This soluron is the limit of the discrete solution with P degrees of freedom when P tends to infinity. Analysis of this limit process is made in section 3. In section 4, we build a nu merical scheme which discretizes the continuous Prandtl model and we discuss on its order one of convergence. In section 5, we study cycles of hysteresis of the continuous model. A few numerical examples are given in section 6. (2)

DESCRIPTION OF THE CONTINUOUS MODEL

The graph CJ is maximal monotone (for details, see (Brezis Here, we set Vi E {1, ... ,P } , 'lli = «;/k; .

(4)

The function 'l'[-l,l] is the indicatrix function of [-1, 1] and it is defined by (6) Formally, the limit case of (3) gives the continuous behavior of the continuous Prandtl model: we obtain the following differen tial system: almost everywhere on [0, T], where we set with respect to (4),

{o ifxe [-1, 1], 'lf [-l,t](X) = +00 if X t [-
x(t) = y(t), j(t) =

� (F(t) -kox(t)-fo 1 k(s)u(t,s)(s)),

a(s) Vs E [ O, 1], Tt(s) = k(s). (8)
In section 3, we explain how to prove rigorously equations ( 7) like a limit case of (3).

EXISTENCE, UNIQUENESS AND REGULARITY RE SULTS

The system ( 7) is a differential inclusion in the Hilbert space !I{= Rx Rx L 2 (O, 1); so we can apply the theory of Brezis [START_REF] Brezis | Op erateurs maximaux monotones et semi groupes de contractions dans les espaces de Hilbert[END_REF]. Let XO, Yo E R, m E R+ and ko E 1R+. Define a function f from [ O , T] x !ll to !Jl by f(t,(x,y,z)) = ((F(t)-,:-(k,z))/m), y®l With these notations, ( 7) is equivalent to where we set X + chv(X) 3 f(.,X), X(O) =Xo,

(XO) ( x(t) ) Xo = Yo andX(t) = y(t) uo u(t,.) (9) 
(10) (11)

Observing that c)v is the sub-differential of the function convex 'II of !ll defined by forall x,y e R, for all z E L 2 (O, 1) , for all se [0, 1] ,

(z(s)) v (x,y ,z (s)) = { O } X { O } X 'l'[-1,1) ri(s) , ( 1 3) 
we can use the Brezis's theory on the differential inclusions [START_REF] Brezis | Op erateurs maximaux monotones et semi groupes de contractions dans les espaces de Hilbert[END_REF]: the system (10) and (11) possesses a unique solu tion. So, we obtain the Proposition 2.1. Let F essentially bounded and let uo, 11 and k square integrable. We assume that, almost everywhere on [ 0, l], l uo (s ) I $ Tt {s), k{s) > 0, 11(s) > 0.

(

) 14 
Then there exists a unique solution (x,y, u) of differential system (7). Moreover, the derivatives of x, y and u are square integrable.

According to the proposition 2.1, the derivative of the func tion u is square integrable. Moreover, with hypothesis of smooth ness of the functions uo and 11, we can give a regularity result on u vs its second variable.

Proposition 2.2. Under the hypothesis of proposition 2.1, as sume moreover that the derivatives of uo and 11 are essentially bounded and there exists y > 0 such that 11 (s) � y, a.e. on [0,1 ].

(15)

Let (x,y,u) be the unique solution of (7). Then the derivatives of u is essentially bounded.

The proof is based on the comparison between the two solu tions u and ii of the two following differential systems \Is E ( 0, 1-h] , lu(t,s)u(t,s+h)I $ Mh.

au (u(t,s))

CONVERGENCE OF THE DISCRETE MODEL TO THE CONTINUOUS MODEL

Let P EN * and 6s = 1/P. The discrete system (3) is equiv alent to the continuous system ( 7 Using an estimate between the solutions of ( 16) and ( 17), we can prove Proposition 3.1 . Let as = 1 / P, F essentia lly bounded on (0, T] and le t uo, Tl and k with deriva tives essentially bounded which verifies ( 14) and ( 15 (where h = T / N) converges to the solution of ( 23), with an error in O(h), that is to say max IIU P -u( ph) I I < Ch.

NUMERICAL SCHEME

0$p$N -(25)

We can approximate the solution (x as,Yas, u&) of the discrete continuous Prandlt model by using numerical scheme (24). We have seen in proposition 3.1 that (x& r ,Y&,U&) is an approxima tion of continuous solution (x ,y, u) of differential system (7). 
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 1 Figure 1. The discrete Prandtl model

  Figure 2. The graph <J
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 34 Figure 3. The graph d'lf[-1,1]

  Similar to (2), the constitutive law of the Saint-Venant element with threshold a(s)ds is 't{t,s) E -a(s)a (!; (t,s)).

  ) = x o, y (O) = YO, and a.e. on [ O , 1] u{O,s) = uo(s) E [ -11 (s), 11 ( s)], (7d)

  ) where the functions U O ,& , k &r and 11 & of L 2 (O, 1) are defined by \Ii e {1, . . . ,P } , \Is e [ s1-1,s1[, uo, a.,(s) = uo(s1), k&(s) = k(s1), 11&.r(s) = 11(s;).

  based on comparison between solutions of two differential inclusions and a Gronwall's lemma. Thus, the solu tion (x&,Y& , uas) of discrete Masing model is a good approxi mate of solution (x,y, u) of continuous Masing model when the number of degrees of freedom P of the discrete Masing model tends to infinity.

From

  the property 3.1 we have an estimate of the difference between the solution (x,y, z) of the continuous Prandlt model and the solution (xas,Y& ,uas), of the discrete continuous Pran dlt model. This system can be rewritten under the form u

Let

  ... , P}, u �/ = pro j(-Tt1 t 'lltl ( at %r + ifar,

HereFigure 5 .

 5 Figure 5. The half continuous hysteresis cycle.