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TWO-DEGREE-OF-FREEDOM MECHANICAL SYSTEM WITH IMPACTS

We consider the model of a mechanical system with two de grees of freedom, one of them being subjected to an unilateral constraint. The equations of movement are taken to be: (n, 0)-_.Īodic solutions _. easily _.Ëund since when no im pacts occur the system is me_.Ŀly line_.|. In o_.Ļer to obt_.mn ( n, 1 ) periodic responses, the conditions required for pe_.Ņodi_.ty can be written:
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Modal superposition

It can be shown that during the free oscillations of the sys tem (1), the number of impacts is f inite, therefore x1 and x 2 are asymptotically periodic with frequency -./Ai and ../Ai. respec tively: these values are taken to be the natural frequencies of the system.

Let (x,y) be a (n,k)-periodic solution, a nd let us calculate the Fourier coefficients of such a solution. The / h coefficient is thus given by: With the expression of x1 obtained in equation ( 10), the preced ing coefficient can be analytically written, and the same proce dure can be applied to x 2 . Let us set and Hi ( ) 
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APPLICATION TO THE COLLISION OF TWO RIGID BODIES

In this section, the preceding theoretical results are applied to the case of two rigid bodies that may collide during their move ment. This mechanical system is depicted in figure 1.

The movement of the two bodies is governed by: m1i'1 + c1.i1 + K1x1 = g1 cos( mt) m 2i'2 + cz.iz + K2x2 = g2 cos( mt) x:s X,nai,; Figures 2 and3 reveal the absence of a usual resonance sim ilar to the linear case, which was foreseeable because of the con straint on x 1 and x2. Indeed, when the frequency of the external forcing gets close to a natural frequency of the system, the corre sponding modal mass becomes very high and thus compensates the potential maximum of spectral amplitude. Therefore, there is no peak of amplitude at these frequencies.

{ x(t + ) = -rx(t-) x(t) = X,
Moreover, the first harmonic amplitude is not always the leading term in the spectral amplitude of the periodic responses. In particular, the coefficient co is overriding for some ranges of external frequency. Nevertheless, if we restrict to the neighbour hood of the natural frequency of one degree of fre edom, the first harmonic amplitude gives a good approximation of the whole spectral amplitude of this degree of freedom, and therefore the modal superposition formula shows good results.

Another example with a different spectral behaviour is now going to be investigated: we choose m t = 70, m2 = 40, At = 10, A t = 130,a= 0.02$i, r= 0.9,/ t = 20, /2= 18 and x nuu: = 1, and the natural frequencies are then 3 .16 and 11.40.

Figures 6 and7 confirm the properties seen in the first exam ple, but they also show that several peaks of spectral amplitude can occur, one near to the first natural frequency and another one at a frequency which cannot be clearly linked to the natural frequencies of the system. Moreover, these peaks of amplitude appear at the same frequencies for Xt and x2: this is due to the energy transmission between the bodies through the impacts, all the more important as the coefficient of restitution r is close to 1.

Finally, if we examine the contribution of the first Fourier coefficients to the spectral amplitude, we can see in figures 8 and 9 that most of the peaks of amplitude come from the constant co efficient co: the first harmonic amplitude doesn't provide an ac ceptable approximation for the whole spectral amplitude in that case. The use of the modal superposition formula established in the previous section is consequently limited when the responses of the rigid bodies show such behaviours. 

CONCLUSION

A modal superposition formula has been established for two-degree-of-freedom vibro-impact systems, following the usual procedure defining generalized natural frequencies, modes and modal masses. The method has been tested on a mechanical system consisting of two oscillating rigid bodies that can collide during their movement.

The numerical examples considered have pointed out the rel evance of the formula in the case of a primary resonance for which the spectral amplitude mainly contains the contribution of the Fourier term corresponding to the periodicity of the re sponse. Nevertheless, these examples have above all shown the limitations in the practical use of such a formula. First of all, the possible existence of various periodic solutions, with differ ent periodicity or number of impacts per cycle, compels to write several potential superposition formulas, without being able to easily determine a priori which one has to be used. Moreover, peaks of spectral amplitude can occur at frequencies not clearly related to the natural frequencies, and unusual harmonics can be preponderant in these peaks resulting in a fai lure in the applica tion of the modal superposition formula established.
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  -'--_._ ........ __._...__, obt_.ln the _.Ńonse to syst_.© (1) with impa_.s, impact times t,: are de_.ŗed by solving the nonlinear _.uation f(t,:) = e -analyti_.lly sought via the exp_.Ľs sions of equ_.ions (10) _.vd (13). The m_.²hod is simil_.{ to wh_. has been done in (Peter_.ë 1996), _.³c_.¬t that damping is added he_.ľ. Let us denote by (n,k)-periodic a periodic solution of pe riod nT (whe_.ŀ T = 21t/ O> is the period of the _.te_.Ňal forcing) with k i_.ćacts per cycle.
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 5 Figure 5. FOURIER COEFFICIENTS AND SPECTRAL AMPLITUDE OF THE ( 1, 1 )•PERIODIC SOLUTIONS, SECOND DEGREE OF FREE DOM x2. EXAMPLE 1.

  Figure 6. SPECTRAL AMPLITUDE (DOTTED LINE) AND MODAL MASS (SOLID LINE) OF THE (1, 1)-PERIODIC SOLUTIONS, FIRST DEGREE OF FREEDOM Xt . EXAMPLE 2.
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 7 Figure 7. SPECTRAL AMPLITUDE (DOTTED LINE) AND MODAL MASS (SOLID LINE) OF THE ( 1 , 1 )-PERIODIC SOLUTIONS, SECOND DEGREE OF FREEDOM x 2 . EXAMPLE 2.
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 8 Figure 8. FOURIER COEFFICIENTS AND SPECTRAL AMPLITUDE OF THE (1, 1)-PERIODIC SOLUTIONS, FIRST DEGREE OF FREE DOM Xt . EXAMPLE 2.
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 9 Figure 9. FOURIER COEFFICIENTS AND SPECTRAL AMPLITUDE OF THE ( 1, 1 )-PERIODIC SOLUTIONS, SECOND DEGREE OF FREE DOM xz. EXAMPLE 2.