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ABSTRACT A wavelet-based formula similar to the logarithmic decrementformula is introduced to estimate damping in multi-degree-offreedom systems from time-domain responses. The new formulais then validated upon both numerical and in-situ experiments.
INTRODUCTION mercredi 7-fvr.-2001 In the frame of applications, the study of continuous systems modelized by partial differential equations (PDE) with boundary and initial conditions for both displacements and stresses is performed using a discretization of PDE,via a Rayleigh-Ritz procedure for instance. So, systems with Ndegree-of-freedom may be obtained, govemed by equations MX+CX+KX =f(t) (1) where M, C, K respectively denote a mass, a damping and a stiffness matrix; f(t) stands for the extemal forcing: let us assumethat it does not depend on displacement vector X and velocityvector X. The term CX corresponds to a mathematical expression of viscous damping proportional to velocity. In the modalbasis, one is lead to study the dynamic response of N uncoupled

t Sorne of the material in this paper was presented in references (Lamarque 
et al., 2000; Hans et al., 2000). 

single-degree-of-freedom oscillators govemed by equations:
(2) As the experimental setup provides signais recorded in thephysical basis written as a linear combination of eigenmodes(qj}t:,::,j:,::,N and given by

N Xi(t) = LAij-qj(t) (3)i=l the main stake is also to analyze damped vibrations such aswith N-I f(t) = fro(t) + L fro;(t)i=l {fro(t) =Ae-ctcos(rot+cp)·Hy(t) Jro;(t) = Aie-c;t cos( roj! + Cj)i) • Hy(t) (4) (5)where A and Ai = aiA denote the amplitudes, c and Ci = Ôic denote the viscous dampings, ro and roi = ro + Ei denote a sorted
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sequence of natural frequencies, <p and <p; stand for the phases of the fundamental mode /œ and the ;th harmonie response /œ; , Hy referring to the Heaviside function. 
Last decade, numerous applications in mechanics have been extensively using wavelets. According to damping identification, Ruzzene and al (Ruzzene et al., 1997) and Staszewski(Staszewski, 1997) performed a continuous wavelet analysis of the free response of dynamic systems to extract modal features: they separated modal contributions thanks to the rapidly decreasing properties of the progressive Morlet wavelet. In (Staszewski, 1997), Staszewski also introduced a wavelet reconstruction formula to approximate the impulse response of MDOF systems. The main purpose of this paper is to analyze a damped signal recorded in the physical basis with wavelet patterns optimally localized both in time and in frequency domains and to extract 'local' information to estimate the damping ratio. As a result, a wavelet logarithmic decrement formula is introduced. The paper is organized as follows: In section 1, we investigate the determination of viscous damping by using a continuous wavelet transform. In section 2, a wavelet logarithmic decrement formula is introduced in the frame of a superabundant multiresolution analysis well adapted to analyze sampled signais. In section 3, numerical experiments are then proceeded to test reliability and noise resistance of the wavelet based formula using the dynamic response of exact single-degree-of-freedom systems perturbed with a Gaussian noise. These simulations are achieved by comparison with a pre-filtered logarithmic decrement procedure. As practical applications involve multiple degree-offreedom systems, the wavelet logarithmic formula is finally used in section 4 in the study of a civil engineering building to extract damping estimates of the first and second modes from insitu shock test responses. FinaUy, a few conclusions and future prospective works are outlined. 

1 CONTINUOUS WAVELET TRANSFORM - DAMPING 
ESTIMATE Let's consider the continuons wavelet transform of a signal f definedby 

l ,-+-00 (' b) wj(b,a) = .jâ Loo f(t)♦ : dt 'v'(b,a) E lRx JR"+ (6) 
bound to the scaling function ♦ E L2 (R) whose support is completely included in lR and checking some oscillation properties (Daubechies, 1988, p. 909-910) 

(7) 

Integrating by part the wavelet transform of signal f defined in (4), a damping estimate may be exhibited when equating 
1 1 wj(nT, a) 1 c = --�In �---(m - n)T wJ(mT, a) (8) 

LN-1 ·l "(l -6;)fflTc_,.(l -6;)nTc lo( 1 
) + i=I a, (m-n)T inft<i<N(E;a) 

where T = � is the fundamental pseudo-period of signal f. This damping estimate may be simplified as soon as the analyzing scale a accurately separates the natural frequencies, given bythe following admissibility conditions 
{ aœ = 0( I) ---+ Focus on mode ro inf1:9<N(e;a) » 1 ---+ Filtering of modescoi (9) 

Assuming the analyzing wavelet ♦ is well localized both in time and frequency domains, a relationship between the dilation parameter a and the corresponding frequency f which is focused 
by the wavelet transform may be given by a=,, f+ denotingthe frequency that matches the maximum value of the Fourier transform of+. The procedure can straightforwardly be generalized to extract the damping c; attached to the ;th mode of frequency ro; as soon as it is applied to successive filtered components of signal / cancelling the fundamental and the first ( i - 1) harmonie modes (low-pass filtering): 

c· ~ 1 ln 1 - (m-n)1i (10) 

where T; = �� is the pseudo-period of the ;th frequency mode. 
2 WAVELET FORMULA IN THE FRAME OF A SUPER

ABUNDANT ANALYSIS For numerical purposes, a discrete wavelet decrement formula is derived from its continuous counterpart (8) in the frame of a superabundant analysis (Mallat, 1989; Perrier, 1991 ). Considering a periodic Spline multiresolution analysis of L 2 ( ! )(Chui, 1992; Lemarié, 1988) bound to scaling function cl>, we define an intennediate scaling function by : 
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where a= 21,:- 1 with 1 � m � 21-1• J standing for the finer resolution scale of the multiresolution analysis. As reliability of formula (8) strongly depends on an efficientdetection of successive coefficient extrema. it is commun to usean 'oblique' analysis which associates 21 coefficients to 21 sampling points for each scale 1 � a � 21-1• Introducing intermediate scaling coefficients Oa..k(f) givenby the inner products (12)signal / may be approximated by the oblique set of scaling patterns 21-1 f ':::.fa. = L Oa.,k (/) <f>a.,k k=O (13)An extension of formula (8) in the superabundant contextmay be depicted by 
(14) involving coefficients ( Oa.,k(f)) 0<k<21 of signal f. In this context, the dilation parameter a = -a is set to both capture thefundamental mode f œ and to filter the higher frequency modes(fmi) l<i<N and eventually additional noisy perturbations in thewavelêt pyramidal decomposition off. Moreover, shifting parameters are chosen so that bk = k/21 and b1 = l /21 point towardslocal extrema of coefficients ( Oa.,k(/)) k.

3 DAMPING IDENTIFICATION OF A SING LE DEGRE
OF-FREEDOM SYSTEM The aim being to illustrate the efficiency and the robustness of the wavelet decrement formula, numerical simulations are proceeded to identify damping of a class of single degree-offreedom systems whose response is perturbed by a random noise given by: x(t) = X e-ct cos(œt) +B(t) (15)withamplitude andfrequencyset toX = 1 andœ= l01trad.s-1,

B(t) standing for a Gaussian noise of null mean and of standarddeviation B. The experimental set-up consists in first perturbing damped oscillations characterized by a given damping ratio c ranging between O. 1 % and 100% with a noise of standarddeviation BE ro. 50] (%). Super-abundant scaling coefficients 100 .. 
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Figure 1. Standard logarithmic decrement with wavelet pre
filtering : Relative error distribution � ( % ) in terms of the
damping ratio c ( % ) and the noise level B ( % ).

.. 

Figure 2. Wavelet-based logarithmic decrement ( 14): Relative
error distribution � (%) in terms of the damping ratio c (%)
and the noise level B ( % ).(Oa.,k(x)) k of signal x(t) are then computed for a convenientscale a. After having automatically recognized local coefficients extrema, the wavelet decrement formula (14) is used to provide estimates of the damping ratio c. This scheme is repeated according to several random processes and for each set of data. Finally, a relative error map is displayed on Figure 2 andcompared with the one computed with a standard logarithmicdecrement technique associated with a wavelet pre-filtering (see
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Figure 1). Generally speaking, Figure 2 reveals a good behavior of the wavelet decrement formula : the mean relative error is indeed very often below the threshold of 10% accordingtoc E [10%, 100%], with a linear growth in terms of the noiselevel. Wavelet-based formula's performance highlights an excellent noise resistance of the so-called identification procedure,sensitively improving estimates for c ranging in large damping area (c E [20%, 100%]) as well as in medium damping area
(c E [5%,20%]). As physical systems are often characterized by damping of weakand even very weak amplitude, a similar study was lead in therange of c E [0.1 %, 5%J. Few damping estimates are gathered inTable 1 and attest the wavelet analysis is not only a wavelet filtering of the damped signal. As for the estimation of very smalldamping (c '.::'. 0.1%), Table 1 shows formula (14) is greatly improving the forecasts compared to the ones computed with its competitive methods whose estimations literally explode. Generally speaking, the experimenter may consider the wavelet logarithmic decrement is bringing a sensitive improvement with forecasts' errors roughly Jess than 20% off the 'ultimate' dampingvalue, whi!e at the same time its classical counterpart give irrealistic values easily reaching levels of 150%. 

Logarithmic Decremcnt Wavelet Decrement 

(Wavelet pre-filtering) (Supcrabundant analysis) 

c(%) b(%) ...!:.(%) C ...!:.(%) C 

0.1 0.0 151 0.0025 0 0.0010 

0.1 160 0.0026 3.5 0.0010 

0.5 191 0.0029 22 0.0012 

0 0 0.010 0 0.010 

6 0.010 2.5 0.0010 

2 li 0.010 4 0.010 

5 73 0.017 19.5 0.011 

100 0 0.1 l.001 0 0.999 

10 23 1.229 1.5 1.001 

20 35 1.344 2.7 1.005 

50 19.5 1.084 10.6 1.093 

Table 1. Comparison of performances of the wavelet decrement 
formula versus the standard logarithmic decrement with wavelet 
pre-filtering. 

4 DAMPING IDENTIFICATION OF A CIVIL ENGINEER
ING BUILDING The topic is here to test the reliability of the wavelet decrement formula used to identify non-dimensional damping ratios of Figure 3. The tested eight-levels building ( 1970). Hight: 22 m.

Length: 30 m. Width: 14 m.

,----J\ Loading induced L---y by the shock 

--.-

Figure 4. Experimental set up of the shock test. modal responses of a regular eight-story civil engineering building made in 1970 and depicted in Figure 3. The wavelet-based procedure is directly applied on in-situshock test responses of the building recorded in the transversedirection. The testing procedure consists in using the pliers of a mechanical shovel to create impacts at the top level of the structure in the longitudinal direction. Vibrations are simultaneously recorded by four accelerometers located in the middle of the 1 't,4th, 6th and 8th levels of the building as illustrated in Figure 4.Typical time and frequency responses of the 8th floor displacement in the transverse direction are displayed in Figure 5 ac-
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Figure 5. Shock test response of the top level in the transverse direction. cording to a maximum acceleration amplitude of 10-2 g. Spectral response highlights a linear behavior of the structure exhibiting two bending modes excited at respectively fi = 4.5 Hz andh = 15 .7 Hz. Hence, the dynamic response recorded in the physical basis is mainly related to a superposition of these two eigenfrequency modes eventually including additional noisy components due to the experimental setup. Updating the wavelet decrement formula (14) to extract thenon-dimensional damping !;; related to the ith component response q; in the modal basis, one obtain the following formula
( 1 6) As the key point is to choose an accurate analyzing scale <X that will permit to isolate eigenfrequency modes in the signal response, a superabundant wavelet decomposition map displayedin Figure 6 is used to identify which detail channels are bound to the different eigenfrequency modes. If one is interested in identifying the damping using a standard superabundant analysis, formula ( 1 6) is applied with an accurate analyzing scale <X to identify damping related to the first mode. The procedure is successively repeated with the higher modes by cutting-off channels Figure 6.  Superabundant wavelet decomposition of the 8th level shock time-response in the transverse direction. related to the previous modes. Here it is noticeable on Figure 6that the first mode fi = 4.5 Hz is related to channels 28 S:: <X S:: 29 whereas the first harmonie h = 15.7 Hz is bound to channels

<X '.:::  2 10 • A filtered counterpart may be implemented selectingspecific channels to re-build modal contributions as depicted inFigure 7. These graphies are also useful to set the time-windowparameters required by the wavelet decrement formula to locatethe coefficients extrema. Damping estimates of the first and second eigenfrequency modes computed using either the wavelet formula or a logarithmic decrement associated with a wavelet pre-filtering are gathered in Table 2. Damping estimates produced from experimentaldata are in good agreement with magnitude orders that remainstable. Generally speaking, simulations demonstrate dampingestimates sensitively depends on the acceleration level.
CONCLUSION This study allowed us to build a new procedure to identify the damping ratio of dynamic systems leaning on a wavelet analysis of the time-response. The corresponding formula which isbased upon rigorous mathematical developments has been validated first analytically in the context of a general continuouswavelet transform and then numerically by comparison with exact reference solutions in the frame of a superabundant multiresolution analysis. Simulations using in-situ time-responses of a civil engineering building loaded under shock excitations demonstrate the reliability of the proposed method. Using standard identification techniques, damping estimates are often perturbed by important errors related to multi-modal contributions,
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-0.0"1 �0 "1 300 ( a) 
Mode 1 : fi = 4 .5Hz, log2 a =  8 and 9. 

Mode 2 :  h = 1 5 .7Hz, lofü a '.::::'  10. 
Figure 7. Filtered modal responses to shock test in the transverse 
direction. 

I; Mode 1 : f1 = 4.SHz 

Merhod Lev. 8 Lev. 6 Lev. 4 Lev. l Mean ± dev. 

Filtcred 0.033 0.036 0.037 0.039 0.036 ± 0.001 
Logarithmic 

Decrement 

Wavelet 0.033 0.035 0.036 0.038 0.036 ± 0.001 

Decrement 

Mode 2 :  f2 = 1S.7Hz 

Filtered 0.063 0.055 0.046 0.057 0.057 ± 0.003 
Logarithmic 

Decrement 

Wavelet 0.062 0.035 0.039 0.033 0.038 ± 0.006 

Decrement 

Table 2. Estimates of the non-dimensional damping ratio of 
eige,ifrequency modes 1 and 2.

nonlinear effects or excitation defaults for instances: here, damp
ing estimates computed with the Wavelet-Logarithmic decrement 
are accurate with magnitude orders that remain stable. Future 
prospects will now focus on the wavelet analysis of dynamic sys
tems using a frequency domain approach. 
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