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INTRODUCTION

mercredi 7-fvr.-2001 In the frame of applications, the study of continuous systems modelized by partial differential equations (PDE) with boundary and initial conditions for both displace ments and stresses is performed using a discretization of PDE, via a Rayleigh-Ritz procedure for instance. So, systems with N degree-of-freedom may be obtained, govemed by equations MX+CX+KX =f(t) (1) where M, C, K respectively denote a mass, a damping and a stiff ness matrix; f(t) stands for the extemal forcing: let us assume that it does not depend on displacement vector X and velocity vector X. The term CX corresponds to a mathematical expres sion of viscous damping proportional to velocity. In the modal basis, one is lead to study the dynamic response of N uncoupled t Sorne of the material in this paper was presented in references [START_REF] Lamarque | Damping identi fication in MDOF systems via a wavelet logarithmic decre ment -Part 1 : Theory[END_REF][START_REF] Hans | Damping identification in MDOF systems via a wavelet logarithmic decrement -Part 2 : Study of a civil en gineering building[END_REF].

single-degree-of-freedom oscillators govemed by equations:

(2)

As the experimental setup provides signais recorded in the physical basis written as a linear combination of eigenmodes (qj}t:,::,j:,::,N and given by N Xi (t) = LAij-qj(t)

( 3) i =l the main stake is also to analyze damped vibrations such as with where T; = �� is the pseudo-period of the ;t h frequency mode.

N-I f(t) = fro(t) + L fro;(t) i=l { fro(t) =Ae-ctcos(rot+cp)•H y (t) Jro;(t) = A ie-c;t cos( ro j! + Cj)i) • H y (t) (4) 

WAVELET FORMULA IN THE FRAME OF A SUPER ABUNDANT ANALYSIS

For numerical purposes, a discrete wavelet decrement for mula is derived from its continuous counterpart ( 8 

DAMPING IDENTIFICATION OF A SING LE DEGRE OF-FREEDOM SYSTEM

The aim being to illustrate the efficiency and the robust ness of the wavelet decre ment formula, numerical simulations are proceeded to identify damping of a class of single degree-of freedom systems whose response is perturbed by a random noise given by: .. Final ly, a relati ve error map is displayed on Figure 2 and compared with the one computed with a standard logari thmic decrement technique associated with a wavelet pre-filtering (see Figure 1). Generally speaking, Figure 2 reveals a good behav ior of the wavelet decrement formula : the mean relative er ror is indeed very often below the threshold of 10% according toc E [10%, 100%], with a linear growth in terms of the noise level. Wavelet-based formula's performance highlights an ex cellent noise resistance of the so-called identification procedure, sensitively improving estimates for c ranging in large damp ing area (c E [20%, 100%]) as well as in medium damping area (c E [5%,20%]). As physical systems are often characterized by damping of weak and even very weak amplitude, a similar study was lead in the range of c E [0.1 %, 5%J. Few damping estimates are gathered in Table 1 and attest the wavelet analysis is not only a wavelet fil tering of the damped signal. As for the estimation of very small damping (c '.::'. 0.1%), Table 1 shows formula ( 14) is greatly im proving the forecasts compared to the ones computed with its competitive methods whose estimations literally explode. Gen erally speaking, the experimenter may consider the wavelet loga rithmic decrement is bringing a sensitive improvement with fore casts' errors roughly Jess than 20% off the 'ultimate' damping value, whi!e at the same time its classical counterpart give irreal istic values easily reaching levels of 150%. 

DAMPING IDENTIFICATION OF A CIVIL ENGINEER ING BUILDING

The topic is here to test the reliability of the wavelet decre ment formula used to identify non-dimensional damping ratios of modal responses of a regular eight-story civil engineering build ing made in 1970 and depicted in Figure 3.

The wavelet-based procedure is directly applied on in-situ shock test responses of the building recorded in the transverse direction. The testing procedure consists in using the pliers of a mechanical shovel to create impacts at the top level of the struc ture in the longitudinal direction. Vibrations are simultaneously recorded by four accelerometers located in the middle of the 1 't, 4 th , 6 th and 8 th levels of the building as illustrated in Figure 4. Typical time and frequency responses of the 8 th floor displace ment in the transverse direction are displayed in Figure 5 cording to a maximum acceleration amplitude of 10-2 g. Spec tral response highlights a linear behavior of the structure exhibit ing two bending modes excited at respectively fi = 4.5 Hz and h = 15.7 Hz. Hence, the dynamic response recorded in the phys ical basis is mainly related to a superposition of these two eigen frequency modes eventually including additional noisy compo nents due to the experimental setup.

Updating the wavelet decrement formula (1 4) to extract the non-dimensional damping !;; related to the i th component re sponse q; in the modal basis, one obtain the following formula

(16)
As the key point is to choose an accurate analyzing scale <X that will permit to isolate eigenfrequency modes in the signal re sponse, a superabundant wavelet decomposition map displayed in Figure 6 is used to identify which detail channels are bound to the different eigenfrequency modes. If one is interested in identifying the damping using a standard superabundant analy sis, formula (16) is applied with an accurate analyzing scale <X to identify damping related to the first mode. The procedure is suc cessively repeated with the higher modes by cutting-off channels related to the previous modes. Here it is noticeable on Figure 6 that the first mode fi = 4.5 Hz is related to channels 2 8 S:: <X S:: 2 9 whereas the first harmonie h = 15.7 Hz is bound to channels <X'.::: 2 10 • A filtered counterpart may be implemented selecting specific channels to re-build modal contributions as depicted in Figure 7. These graphies are also useful to set the time-window parameters required by the wavelet decrement formula to locate the coefficients extrema.

Damping estimates of the first and second eigenfrequency modes computed using either the wavelet formula or a logarith mic decrement associated with a wavelet pre-filtering are gath ered in Table 2. Damping estimates produced from experimental data are in good agreement with magnitude orders that remain stable. Generally speaking, simulations demonstrate damping estimates sensitively depends on the acceleration level.

CONCLUSION

This study allowed us to build a new procedure to identify the damping ratio of dynamic systems leaning on a wavelet ana lysis of the time-response. The corresponding formula which is based upon rigorous mathematical developments has been val idated first analytically in the context of a general continuous wavelet transform and then numerically by comparison with ex act reference solutions in the frame of a superabundant mul tiresolution analysis. Simulations using in-situ time-responses of a civil engineering building loaded under shock excitations demonstrate the reliability of the proposed method. Using stan dard identification techniques, damping estimates are often per turbed by important errors related to multi-modal contributions, nonlinear effects or excitation defaults for instances: here, damp ing estimates computed with the Wavelet-Logarithmic decrement are accurate with magnitude orders that remain stable. Future prospects will now focus on the wavelet analysis of dynamic sys tems using a frequency domain approach.

  Ai = ai A denote the amplitudes, c and Ci = Ôic de note the viscous dampings, ro and roi = ro + Ei denote a sorted sequence of natural frequencies, <p a n d <p; stand for the phases of the fundamental mode /oe and the ;t h harmonie response / oe; , H y referring to the Heaviside function. Last decade, numerous applications in mechanics have been extensively using wavelets. According to damping identifica tion, Ruzzene and al (Ruzzene et al., 1997) and Staszewski (Staszewski, 1997) performed a continuous wavelet analysis of the free response of dynamic systems to extract modal features: they separated modal contributions thanks to th e rapidly decreas ing proper t ies of th e progressive Morlet wavelet. I n (Staszewski, 1997), Staszewski al so introduce d a wavelet reconstructi on for mula to approximate the impulse response of MDOF systems. The main purpose of this paper is to a n aly z e a damped signal recorded in the physical basis with wavelet patterns optimally localized both in time and in frequency domai ns and to extract 'local' information to estimate th e damping ratio. As a result, a wavelet logarithmi c decrement formula is introduced. The paper is organized as follows: In section 1, we investi gate the determination of viscous damping by using a continuous wavelet transform. In section 2, a wavelet logarithmic decre ment formula is introduced in the frame of a superabundant mul tiresolution analysis well adapted to analyze sampled signais. In section 3, numerical experiments are then proceeded to test re liability and noise resistance of the wavelet based formula using the dynamic response of exact single-degree-of-freedom systems perturbed with a Gaussian noise. These simulations are achieved by comparison with a pre-filtered logarithmic decrement pro cedure. As practical applications involve multiple degree-of freedom systems, the wavelet logarithmic formula is finally used in section 4 in the study of a civil engineering building to ex tract damping estimates of the first and second modes from in situ shock test responses. FinaUy, a few conclusions and future prospective works are outlined. the fundamental pseudo-period of signal f.This damping estimate may be simplified as soon as the analyz ing scale a accurately separates the natural frequencies, wavelet ♦ is well localized both in time and frequency domains, a relationship between the dilation pa rameter a and the corresponding frequency f which is focused by the wavelet transform may be given by a=,, f + denoting the frequency that matches the maximum value of the Fourier transform of+.The procedure can straightforwardly be generalized to ex tract the damping c; attached to the ;t h mode of frequency ro; as soon as it is applied to successive filtered components of signal / cancelling the fundamental and the first ( i

  ) in the frame of a superabundant analysis (Mal lat, 1989; Perrier, 1991 ). Con sidering a periodic Spline multiresolution analysis of L 2 ( ! ) (Chui, 1992; Lemarié, 1988) bound to scal ing function cl>, we define an intennediate scaling function by : where a= 21 ,:-1 with 1 � m � 2 1 -1 • J standing for the finer reso lution scale of the multiresolution analysis. As reliability of formula (8) strongly depends on an efficient detection of successive coefficient extrema. it is commun to use an 'oblique' analysis which associates 2 1 coefficients to 2 1 sam pling points for each scale 1 � a � 2 1 -1• Introducing intermediate scaling coefficients O a. .k(f) given by the inner products (12) signal / may be approximated by the oblique set of scaling pat terns 2 1 -1 f ':::.fa. = L Oa.,k (/) <f>a., k k =O (13)An extension of formula (8) in the superabundant context may be depicted by(14) involving coefficients ( Oa.,k(f)) 0< k < 2 1 of signal f. In this con text, the dilation parameter a =a is set to both ca pture the fundamental mode f oe and to filter the higher frequency modes (fmi) l <i< N and eventually additional noisy perturbations in the wavelêt pyramidal decomposition off. Moreover, shifting pa rameters are chosen so that bk = k/2 1 and b1 = l /2 1 point towards local extrema of coeffi cients ( O a., k(/)) k .
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 1 Figure 1. Standard logarithmic decrement with wavelet pre filtering : Relative error distribution � ( % ) in terms of the damping ratio c ( % ) and the noise level B ( % ).

Figure 2 .

 2 Figure 2. Wavelet-based logarithmic decrement ( 14): Relative error distribution � (%) in terms of the damping ratio c (%) and the noise level B ( % ).

Figure 3 .

 3 Figure 3. The tested eight-levels building ( 1970). Hight: 22 m. Length: 30 m. Width: 14 m.

Figure 4 .

 4 Figure 4. Experimental set up of the shock test.
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 5 Figure 5. Shock test response of the top level in the transverse direction.

Figure 6 .

 6 Figure 6. Superabundant wavelet decomposition of the 8 th level shock time-response in the transverse direction.

  fi = 4.5Hz, log 2 a= 8 and 9.Mode 2: h = 15.7Hz, lofü a'.::::' 10.

Figure 7 .

 7 Figure 7. Filtered modal responses to shock test in the transverse direction.

Table 1 . Comparison of performances of the wavelet decrement formula versus the standard logarithmic decrement with wavelet pre-filtering.

 1