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ABSTRACT

The possibility of dynamically modifying the computational load of
neural models at inference time is crucial for on-device processing,
where computational power is limited and time-varying. Established
approaches for neural model compression exist, but they provide ar-
chitecturally static models. In this paper, we investigate the use of
early-exit architectures, that rely on intermediate exit branches, ap-
plied to large-vocabulary speech recognition. This allows for the
development of dynamic models that adjust their computational cost
to the available resources and recognition performance. Unlike pre-
vious works, besides using pre-trained backbones we also train the
model from scratch with an early-exit architecture. Experiments on
public datasets show that early-exit architectures from scratch not
only preserve performance levels when using fewer encoder lay-
ers, but also improve task accuracy as compared to using single-exit
models or using pre-trained models. Additionally, we investigate an
exit selection strategy based on posterior probabilities as an alterna-
tive to frame-based entropy.

Index Terms— dynamic models, early-exit, Conformer, ASR

1. INTRODUCTION

The edge-cloud continuum is an emerging complex ecosystem that
integrates compute-enabled edge devices, distributing the overall
computation workload among them [1]. Computational resources
available on the devices considerably differ from each other and are
time-varying due to sharing between different services. Therefore,
having neural models that can dynamically change their trade-off
between computation and performance is crucial. To this end,
we investigate the use of early-exit architectures applied to large-
vocabulary automatic speech recognition (ASR).

Previous work targeting neural models suitable for on-device
processing mainly focused on decreasing the model size through
compression [2], knowledge distillation [3, 4], pruning [5], and
quantization [6]. Although very effective, these approaches de-
liver static solutions and require the models to be reconfigured each
time the computational budget changes. Instead, it is preferable
to dynamically adapt the model architecture to the memory and
computational capabilities of each hosting device to avoid handling
multiple models with varying trade-offs.

A solution for this task is represented by “early-exit” architec-
tures that introduce intermediate exit branches [7, 8]. The input is not
processed by all of the layers of the neural model but only by a sub-
set of them, returning the result at an intermediate level and saving,
in this way, the operations in the layers that are not traversed. An ex-
ample is shown in Figure 1, where a layer-specific classifier/decoder
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Fig. 1: Example of resource-aware and result-aware use of early-
exits. On the left: the micro-controller can afford only two layers;
the server can process the whole model. On the right: the first input
requires processing the whole network; in the second case after 2
blocks the model already produces the best transcription.

(called “Exit Layer”) is appended to some intermediate encoder lay-
ers. The motivation relies on the observation that, for easier inputs,
the lower (earlier) layers have already learned a number of param-
eters sufficient to effectively predict the correct output. Early-exit
architectures allow the development of resource-aware processing
(Fig. 1, left) where the same model can be used on different devices,
as well as result-aware processing (Fig. 1, right) where the model
selects the earliest exit that would provide the same performance as
processing the full network.

In this work, we investigate the use of early-exits applied to
Conformer neural architectures, evaluated on three popular ASR
benchmarks: LibriSpeech [9], TED-LIUM [10], and VoxPop-
uli [11]. While previous work on early-exit models for ASR mainly
focused on inference exit selection using pre-trained large-scale
models [12, 13, 14], we investigate training 3 different models both
from scratch as well as pre-trained, using different early-exit losses
as depicted in Fig. 2. We demonstrate that training the upstream
network with the combined early-exit losses outperforms single-exit
models that optimize only the loss of the final layer. Interestingly,
early-exit training is found to be more effective when training the
model from scratch, as opposed to fine-tuning an existing model.
Overall, our contributions are:

1. We investigate early-exit training strategies for 3 different mod-
els, those trained from scratch as well as those initialized from
pre-trained self-supervised models with different losses, showing
that training the models from scratch is beneficial.

2. We compare early-exit selection methods based on entropy and
confidence, and show that the N-best posterior provides a slightly
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Fig. 2: Early-exit model architectures (from left to right): Conformer-CTC,
Conformer-AED, and Wav2Vec2-CTC. Conformer-based models are entirely
trained from scratch. Wav2Vec2-CTC is initialized with the pre-trained model and
fine-tuned with early-exit losses, freezing the convolutional feature extractor.

Table 1: Hyperparameters for the early-exit model ar-
chitectures shown in Fig. 2.

Feature Conformer
CTC

Conformer
AED

Wav2Vec2
CTC

# params (M) 31.0 13.3 94.0
Encoder 12-layer Conf. 12-layer Conf. 12-layer Transf.
Attention dim. 256 144 768
Number heads 8 4 8
Feed-forward dim. 2048 1024 3072
Decoder Linear 4-layer Transf. Linear
Inputs 80-d MFCC 80-d MFCC Waveform
Loss function LCTC LCE & LCTC LCTC

Output units BPE BPE Grapheme
LM rescoring ✗ ✓ ✗

Data augmentation ✗ ✓ ✓

better trade-off than entropy.
3. To substantiate our claims, we perform experiments on 3 popular

ASR benchmarks: LibriSpeech, TED-LIUM, and VoxPopuli.

2. RELATED WORK

“Early-exit” was introduced for computer vision in BranchyNet [7]
by adding two branches to AlexNet [15]. The authors optimized the
joint loss of the exits and also defined a confidence measure, based
on the entropy of the output class distribution, to decide the exit
level. More recently, Scardapane et al. [16] provided a theoretical
framework for multi-exit neural architectures. Early classifiers have
also been used on tiny (KB-sized) models [17]. Beside early-exit,
other methods for dynamically selecting the model architecture for
efficient inference (such as HydraNet [18]) have also been explored.

In speech recognition, early-exit was first introduced in HuBERT-
EE [12] to speed up inference for a pre-trained HuBERT [19] model
according to confidence measures, based on CTC confidence or
output entropies, with no significant performance degradation. Sim-
ilarly, Zaiem et al. [14] investigated different fine-tuning strategies
in the context of a large pre-trained WavLM [20] model, comparing
them with approaches based on layer removal and input down-
sampling.The overthinking issue of ASR encoders was also anal-
ysed in [21], where the authors reported theoretical lower bounds
of speed/quality trade-offs for early-exit strategies. Exit selection
strategies were proposed based on comparison between successive
exits in terms of output distribution and transcriptions. Similar in-
vestigations using the entropy of the output distribution have also
been conducted for recurrent neural networks [22].

All of the above investigations [12, 13, 14] employ pre-trained
models by fine-tuning the transformer component, as is common for
ASR. They are primarily focused on efficient inference by select-
ing the best early exit according to some criteria. An analogous
observation can be made for natural language processing (NLP),
where early-exit research has focused on accelerating inference of
large pre-trained language models such as BERT [23, 24, 25]. Con-
versely, in this work, our objective is to understand the training dy-
namics of early-exit models (both trained from scratch and initial-
ized from large pretrained models) by conducting exhaustive exper-
iments on multiple datasets. We demonstrate that training the model
from scratch, with joint optimisation of all exits, provides a signifi-
cant performance improvements as compared to individual and pre-
trained models (the latter, in particular, at the lowest exits).

3. EARLY-EXIT MODELS FOR ASR

Given an input sequence X, such as a raw waveform {x1, . . . , xN}
or acoustic features {x1, . . . ,xT }, where xt ∈ Rd, an ASR system
estimates the output sequence ŷ as

ŷ = argmax
y

P (y|X), (1)

where y ∈ Y∗, for some vocabulary Y , such as graphemes,
phonemes, or BPE units. The distribution P (y|X) is usually esti-
mated using a parameterized model Θ (such as a neural network),
i.e., P (y|X; Θ), which is learned using input-output pairs (X,y).

For convenience, Θ is often factored into an encoder, which ex-
tracts high-dimensional representations hT

1 from X, and a decoder,
which maps hT

1 to the output sequence yU
1 . Since U ≪ T in gen-

eral, ASR decoders either use (i) an alignment function (B : aT
1 →

yU
1 ) for sequence training, or (ii) an attention mechanism with label-

based cross-entropy training. We apply early-exit to ASR by adding
decoders at several intermediate layers of the encoder (as shown in
Fig. 2). Assuming that M such intermediate exits are added (with
hypothesis ŷ1, . . . , ŷM ), the overall model is trained by optimizing
the joint objective

LEE(ŷ
1, . . . , ŷM ,y) =

M∑
m=1

L(ŷm,y), (2)

where L(ŷm,y) = − logP (y|X; Θm), and Θm denotes the subset
of Θ used for exit m. In this work, we implement early-exit for
several choices of the encoder and decoder, resulting in three models
with different complexities, as described below. Hyperparameters
for the models are summarized in Tab. 1.

Conformer-CTC: The Conformer encoder [26] is used to
obtain hT

1 , and the decoder is a linear layer with softmax. The
intermediate loss function is connectionist temporal classification
(CTC) [27], which is given as

LCTC(ŷ,y) = − log
∑

aT
1 ∈B−1(yU

1 )

T∏
t=1

P (at|hT
1 ), (3)

where at ∈ Y ∪ {ϕ}, and B maps aT
1 to yU

1 by removing repeated
tokens and ϕ. We use a 12-layer encoder, and insert intermediate
exits at all even-numbered layers.



Conformer-AED: To test the robustness of early-exits with
complex decoders, we use an attention-based encoder-decoder
(AED) model [28]. We retain the Conformer encoder as above,
but replace the linear decoder with four transformer layers with
cross-attention on hT

1 . This decoder contains two output heads,
trained with a CTC loss and a sequence-to-sequence cross-entropy
loss respectively [29]. The overall loss function is given as

LAED(ŷ,y) = λCTCLCTC(ŷ,y) + λCELCE(ŷ,y), (4)

where LCE(ŷ,y) = −
∑U

u=1 logP (yu|hT
1 ,y

u−1
1 ), and λ’s are hy-

perparameters. Following the SpeechBrain recipe [30], we set λCTC

and λCE to 0.3 and 0.7, respectively. During inference, only the
cross-entropy head is used , and a transformer-based language model
trained with the same tokenization is used to rescore the hypothesis.

Wav2Vec2-CTC: Both the above models are trained from
scratch by optimizing equation (Eq. 2). We also apply early-
exit fine-tuning on a pre-trained Wav2Vec-2.0 [31] encoder using
the joint CTC losses (Eq. 3). Unlike the above models, this model
operates on raw waveforms processed using a convolutional feature
extractor which is normally frozen during fine-tuning.

4. EARLY-EXIT SELECTION

To decide the exit for an early-exit model one can use a measure of its
uncertainty, i.e., an exit layer is selected when its uncertainty drops
below a given threshold which is, in turn, estimated to guarantee a
desired performance level. Since the outputs from the encoder layers
are converted to posterior probabilities by passing them to a softmax
module, a suitable measure of their uncertainty is represented by
their average frame entropies:

Ξm = − 1

T |Y|

t=T∑
t=1

∑
y∈Y

P [y|hm
t ] log(P [y|hm

t ]) (5)

where, P [y|hm
t ] is the probability in the mth encoder output at time

t for each output token y ∈ Y . While entropy is a common choice
in literature, we also investigate a metric based on an estimate of the
sentence confidence. This is computed by applying a softmax to the
scores of the N-best hypotheses provided by each decoder:

Ψm =
es

m
1∑K

1 es
m
k

(6)

where smk is the log-probability of the kth hypothesis at layer m,
i.e. smk = log(P [ŷm

k |X;Θm]), and K is the number of N-best
hypotheses. Preliminary experiments, aimed at finding the optimal
performance/complexity trade-off, suggested the value K = 300.

5. EXPERIMENTS

We carry out experiments using LibriSpeech [9], TED-LIUM [10]
and VoxPopuli [11]. LibriSpeech contains around 1,000 hours of
read-aloud speech (audiobooks) partitioned into ≈960h to be used
for training and ≈20h to be used for evaluation. TED-LIUM (re-
lease 3, [10]) comprises around 452 training hours of transcribed
English speeches (from TED video conferences) and around 6 hours
for evaluation. Finally, VoxPopuli is a multi-lingual corpus formed
of around 400K hours of recordings (collected from European Par-
liament events). For this work, we used the English subset which
consists of around 543 hours of training recordings and around 60
hours to be used for evaluation.

5.1. Implementation Details

As mentioned above, we consider 3 different models: Conformer-
CTC (Eq. 3), Conformer-AED (Eq. 4), Wav2Vec2-CTC. The two
Conformer models take as input 80 Mel Frequency Cepstral Coef-
ficients (MFCCs) This MFCC sequence is passed through a series
of 1D convolution sub-sampling layers. The output of this block
is applied to a positional encoding module that feeds a stack of 12
Conformer blocks. The Wav2Vec2.0 model (hereinafter referred to
as Wav2Vec-CTC) also consists of a convolutional feature extractor
followed by a 12-layer self-attention encoder, but takes as input raw
waveforms.Both Conformer-CTC and Conformer-AED use a byte
pair encoding (BPE) based tokenizer [32], with 256 and 5000 tokens
respectively. Exit decoders of Wav2Vec2-CTC instead produces 32
grapheme-based tokens (28 characters + 1 blank token + 2 sentence
boundary tokens + 1 unknown token) as per its official recipe.

The code for both training and inference for the Conformer-CTC
and Wav2Vec2-CTC models is available1, while the Conformer-
CTC model is trained following the SpeechBrain recipe. Tab. 1
summarizes the main hyperparameters for the 3 models.

6. RESULTS

All results reported in this section are expressed in terms of word
error rates (WERs) computed on the standard test partitions of the
three datasets 2. Tab. 2 reports the performance on LibriSpeech at
different exits both training from scratch using the Conformer-CTC
and Conformer-AED models, and fine-tuning Wav2Vec2-CTC. For
each model we also report the performance of the corresponding
single-exit model for comparison.

In our settings, the performance for the Conformer-CTC model
with 12 layers is 6.6% on test-clean and 17.7% on test-other. As ex-
pected, the WER is higher in the lower layers. The performance sig-
nificantly decreases only in the lowest two exits (exits 2 and 4), while
it remains not far from the best one (that of layer 12) in the middle
layers (i.e., 6, 8 and 10), which, however, require significantly fewer
parameters. Similar trends are achieved with the Conformer-AED
model but with significantly better absolute performance (2.3% and
6.0% WER in the highest layer for test-clean and test-other, respec-
tively). This absolute improvement is attributed both to the use of
transformer-based decoders as well as to the language model rescor-
ing, allowing the model to reach state-of-the-art on LibriSpeech.
Tab. 2 shows that the Wav2Vec2-CTC model exhibits a behaviour
similar to the two Conformer models. However, since the pre-trained
Wav2Vec2-CTC model has been optimised solely on the loss of the
highest layer, it leads to very high WERs at the lower exits with an
evident performance gain already at the 8th layer. This degradation
is much less evident in the Conformer models trained from scratch.

In summary, although smaller and trained on less data, the
Conformer-CTC/AED models perform better than Wav2Vec2-CTC
in the last 3 layers. These results suggest that for early-exit
architectures, training a model from scratch is more efficient
than fine-tuning a large and accurate model not pre-trained
with early-exits. It is worth noting that the same trends are ob-
served considering different decoders, different training losses, and
independently of the use of a language model.

Another important outcome emerges as we compare the per-
formance achieved with the early-exit models with those obtained

1https://github.com/augustgw/early-exit-transformer and
https://github.com/augustgw/wav2vec2-ee

2Results on the dev-sets are not reported for the sake of space but are
available.

https://github.com/augustgw/early-exit-transformer
https://github.com/augustgw/wav2vec2-ee


Table 2: WERs on the LibriSpeech at different exits, obtained with the 3 models under investigation. "layer" indicates at which layer the
exit is located or the number of layers of the single-exit model. EE indicates that the model has been trained with the early-exit losses while
no-EE refers to the single-exit model.

Layer
Conformer-CTC Conformer-AED Wav2Vec2-CTC

test-clean test-other test-clean test-other test-clean test-other

no-EE EE no-EE EE no-EE EE no-EE EE no-EE EE no-EE EE

2 17.6 23.9 36.1 43.8 18.9 20.1 38.0 40.1 35.7 33.7 56.7 56.0
4 9.8 11.6 24.3 25.7 12.8 12.5 25.8 25.2 17.4 17.4 35.5 36.7
6 7.6 6.8 20.0 18.1 8.4 7.7 20.1 17.1 10.7 9.6 24.8 23.7
8 – 5.9 – 16.3 – 4.4 – 11.5 – 5.8 – 15.9
10 – 5.2 – 15.8 – 2.8 – 6.9 – 4.5 – 12.6
12 6.5 5.1 17.7 15.1 2.5 2.3 6.1 6.0 3.4 4.3 8.6 12.2

Table 3: WERs on the TED-LIUM and VoxPopuli at different ex-
its, training the model Conformer-CTC from scratch.

Layer TED-LIUM VoxPopuli

no-EE EE no-EE EE

2 42.7 43.8 27.3 36.7
4 35.4 23.4 19.7 21.1
6 25.5 18.0 18.7 17.3
8 – 16.1 – 15.4

10 – 14.9 – 14.7
12 16.4 14.6 16.3 14.3

with the corresponding single-exit models (column "no-EE" in Tab.
2). Apart from the lowest exits (layers 2 and 4), the single-exit
Conformer-CTC/AED models deliver worse WERs than the early-
exit counterpart. This indicates the beneficial effects of the com-
pound loss, acting as a regularizer and improving both robustness
and generalization. This observation is in line with previous studies
applying losses at lower layers, although with different granularity
than an ASR decoder [16, 7, 33]. In other words, using a single
model with multiple exits not only reduces the computational bur-
den of training multiple single exit models but also delivers better
performance. Note that this claim is not valid for the top layer of
the Wav2Vec2-CTC model where the performance decreases (from
3.4% to 4.3% on test-clean and from 8.6% to 12.2% on test-other)
when fine-tuning with the early-exit loss. In this case, however, it
has to be considered that the model has not been trained from scratch
but, as usual, its convolutional feature encoder has been frozen and
only the transformer encoder module has been fine-tuned.

Finally, experiments on TED-LIUM and VoxPopuli, shown in
Tab. 3, confirm the observations drawn on LibriSpeech. In these ex-
periments, we also observe superior performance in models trained
with the compound early-exit loss as compared to those trained with
single exits, for layers higher than 4.

6.1. Exit selection during inference

Having assessed the efficacy of early-exit architectures for resource-
aware processing (i.e., for each individual exit), we now analyse the
behavior of the different models when selecting the exit, using either
the average frame entropy (Eq. 5) or the sentence confidence (Eq. 6),
i.e., addressing a result-aware solution. In both cases, we follow the
common practice, implementing a thresholding approach: given a
predefined threshold, we select the first exit whose entropy is below
that value or whose posterior is above. Previous studies [14, 13]
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Fig. 3: Average-exit selection and WER varying the exit selection
threshold for the 3 models and using both entropies and sentence
confidence as exit metrics.

have observed that although the overall performance of lower lay-
ers is inferior to those processing the whole network (i.e., the final
layers), in many cases the performance is on par. Being able to iden-
tify those cases would considerably reduce the overall computational
cost. Fig. 3 shows the average exit (y-axis) with the correspond-
ing WER (x-axis) when varying the selection threshold for the three
models and the two metrics. The closer the curve to the chart ori-
gin, the better. We observe that, as expected, better models deliver
better performance in exit selection: the Conformer-AED lines are
well below the others. Sentence confidence (dotted lines) on average
selects lower exits than entropy at the same WER values.

7. CONCLUSION AND FUTURE WORKS

In this paper, we investigated early-exit architectures for ASR by
comparing the training and inference of three models, two based on
a Conformer architecture and one based on Wav2Vec2. We demon-
strated the benefits of training models from scratch using early-exit,
as compared to fine-tuning a pre-trained model, on three datasets.
Future works will investigate weighting schemes for the compound
loss in Eq. 2 or alternative training strategies [16], including distilla-
tion (similar to [33]) from upper layers of the model.
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