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Abstract
Self-Supervised Learning (SSL) has allowed leveraging large
amounts of unlabeled speech data to improve the perfor-
mance of speech recognition models even with small annotated
datasets. Despite this, speech SSL representations may fail
while facing an acoustic mismatch between the pretraining and
target datasets. To address this issue, we propose a novel super-
vised domain adaptation method, designed for cases exhibiting
such a mismatch in acoustic domains. It consists in applying
properly calibrated data augmentations on a large clean dataset,
bringing it closer to the target domain, and using it as part of
an initial fine-tuning stage. Augmentations are automatically
selected through the minimization of a conditional-dependence
estimator, based on the target dataset. The approach is vali-
dated during an oracle experiment with controlled distortions
and on two amateur-collected low-resource domains, reaching
better performances compared to the baselines in both cases.
Index Terms: self-supervised learning, domain adaptation.

1. Introduction
Self-supervised learning (SSL) enables the use of large amounts
of unlabelled data to obtain substantial performance improve-
ments in a variety of downstream tasks without relying on man-
ual annotations. Various approaches have been introduced in-
cluding predictive coding [1, 2], multi-task learning [3, 4], auto-
encoding techniques [5] or contrastive learning [6, 7]. In this
context, data augmentation has become an important part of
many self-supervised approaches. Particularly, various studies
have shown that applying several distortions during pretrain-
ing leads to more robust representations, either with Contrastive
Predictive Coding (CPC) [8], or with Wav2vec2.0 [9, 10]. Re-
cently, WavLM [11] incorporated distortions to add a denoising
criterion to its predictive objective.

However, and despite its success, self-supervised learning
has been shown to suffer from domain mismatch where the
fine-tuning samples from the target domain are vastly differ-
ent from the pretraining ones [12, 10]. While progress has been
made in achieving near-optimal performance on clean datasets
such as LibriSpeech, spontaneous speech datasets and non-
professionally recorded ones still exhibit lower performance, as
displayed in recent speech SSL benchmarks [13, 14].

To mitigate the performance drop caused by domain mis-
match, various domain adaptation techniques have been ex-
plored, particularly in transfer learning settings [15]. In the self-
supervised context, adversarial approaches have been applied
during the unsupervised pretraining and tested on speech recog-
nition [16, 17], emotion recognition [18] and speaker recogni-
tion [19]. Along with domain adversarial paradigms, Huang
and al. [20] investigated continual learning methods during pre-

training. Distinctly, our method does not aim at aligning latent
representations, but rather transforms the audio waveforms of
a neutral dataset to match the acoustic conditions of the target
domain using data augmentations, rendering this dataset better
suited to the final task in an initial fine-tuning stage.

Furthermore, retraining the self-supervised feature extrac-
tors with additional domain-invariant enforcement, as proposed
in the literature, is a hard and costly endeavor, with the latest
SSL models being trained on 94k hours of audio data using 64
V100 GPUs [11]. Thus, we envisage the option of augmenting
a supposedly neutral dataset and using it for the first fine-tuning
step. The augmentations to be applied and their parameters are
chosen in order to optimize the similarity in terms of record-
ing conditions between the modified and the target dataset and
hence the final performance. Our method presents three main
advantages. First, it enables the use of large and clean avail-
able annotated datasets, enhancing the textual diversity of the
training corpus. Second, it does not require a new pretrain-
ing as it directly fine-tunes available SSL models. Finally, it
allows an efficient data augmentation exploration, as the selec-
tion and parametrization is automatic and does not involve any
neural network training. It is, thus, largely more efficient than
thorough testing, as scoring 200 augmentation policies takes 3
hours on 10 CPUs, while complete testing of one augmentations
distribution necessitates around 20 hours of GPU computations.

The contributions of this work are two-fold: i) Propose a
new method for supervised domain adaptation consisting in ap-
plying appropriate signal distortions to a clean labeled dataset
used for an initial fine-tuning step. The method is validated with
an oracle simulated experiment and experiments with naturally
noisy datasets. ii) Release the code base, implemented with
SpeechBrain [21] for replication and further improvements.1

Figure 1 presents an overview of the method, summarizing
the three steps conducted for every considered target dataset.
First, and given the labeled target dataset, an augmentation dis-
tribution is automatically selected (Section 2). Second, a first
fine-tuning of the self-supervised representation is done, using
the neutral dataset distorted with the augmentations selected in
the first step. Finally, a second fine-tuning on the small target
domain dataset is done leading to the final model that will be
evaluated using the target test set (Section 3.3). Experiments
show a speech recognition performance relative improvement
reaching 19.5% in a real-world distorted dataset scenario.

2. Selecting the Augmentation Distribution
Given a labeled target speech recognition dataset, our method
selects an augmentation distribution that is best suited to its

1https://github.com/salah-zaiem/
augmentations_adaptation
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Figure 1: Summary of the three steps of the method. 1. Starting from the target domain, an augmentation distribution is computed. 2.
This distribution is used to distort a neutral dataset for a first fine-tuning. 3. A final fine-tuning is done on the target domain samples.

recording conditions. From this distribution, we will sample
augmentations to be applied to a larger “clean” dataset which
will be used to fine-tune the SSL representations. The goal is
to select augmentations bringing the “clean” dataset samples
“closer” to those of the target domain, thus leading to better
performance on its test sets. This section details the conditional-
independence-based method developed to select a data augmen-
tation distribution given the annotated target dataset. It starts by
detailing the motivations behind the method, before delving into
the technical details of the implementation.

2.1. Motivation and Technical Description

Motivation. Inspired by pretext-tasks selection for speech self-
supervised learning, Zaiem et al. [22] have shown that con-
ditional independence estimation may be used for automatic
data augmentation in contrastive self-supervised learning set-
tings. Furthermore, qualitative analysis has indicated that the
distortions selected by this technique tend to be close to those
of the target downstream dataset. Explicitly, applying a set of
augmentations creates a set of augmented versions, often called
“views”, of the original samples. Minimizing, with respect to
the augmentations selected, the dependence between the views
and the IDs of the samples they originate from, conditionally on
the downstream labels leads to a good choice of augmentations
in contrastive learning settings.

Let us give an intuition about what happens in these condi-
tional independence computations to understand why it can be
useful for domain adaptation as well. Roughly, minimizing the
conditional dependence described above maximizes, within the
same downstream class, the invariance of distorted samples (i.e.
views) to the ID of their original speech sample. If a given dis-
tortion (for instance, reverberation) is not present in any sample
in the original target dataset, randomly applying this distortion
would decrease in-class similarity. Inversely, applying augmen-
tations already present in samples in the dataset makes it harder
to distinguish their original samples’ IDs given the distorted
samples and, thus, lowers the conditional dependence estima-
tor. Conditioning on the downstream labels retains the signal
clues characterizing the downstream classes since it prevents
selecting distortions that are only relevant to one class, as they

would reduce in-class similarity in the other classes.
Technical Description. Precisely, let X and Y be respec-
tively, a set of speech data points and their respective set of
downstream labels which are in our case textual transcriptions.
With τ an augmentation distribution from which one can sam-
ple a chain of augmentations, we compute a distorted dataset
X ′ = f(X, τ), with f a function that randomly applies aug-
mentations sampled from τ on the speech samples. Specifically,
we can generate N augmented versions per speech sample to
get the augmented set of data points X ′, with N a hyperparam-
eter. Every sample x′ in X ′ is a distorted version of a point x
in the original dataset X . We will refer to the ID of the origi-
nal point x as z, defining the Z set. The ID here corresponds
to a discrete value indexing the speech segments X . In con-
trastive self-supervised learning settings [23], augmentation se-
lection is crucial to incorporate the most relevant invariances
in the learned representation into the downstream task of inter-
est [24]. In this context, it has been shown that choosing the
augmentation distribution τ that minimizes an estimator of the
conditional dependence between X and Z given Y leads to the
best downstream performance on speaker and language recog-
nition tasks [22]. This work extends this approach in two man-
ners, first applying it for domain adaptation in a supervised set-
ting, and second extending it to the speech recognition task. We
use for this the Hilbert-Schmidt Independence Criterion (HSIC)
[25], a kernel-based dependence estimator, also validated on
pretext task selection in previous works [4]. The lower the HSIC
estimator, the more conditionally independent the two sets are
and the better the augmentations should be.

In summary, to find the optimal augmentation distribu-
tion τ∗, we resort to minimizing the HSIC quantity with
the augmented dataset X ′ = f(X, τ) according to τ∗ =
argminτ HSIC(f(X, τ), Z|Y )

with HSIC(X ′, Z|Y ) an estimate of the conditional de-
pendence between the distorted speech samples and their origi-
nal IDs given their downstream textual labels.

2.2. Augmentation Distributions and Implementation

An augmentation distribution τ is characterized by a set of pa-
rameters that defines how the chain of augmentations is sampled
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Table 1: Augmentations, descriptions and parameter ranges

Name Description Range (Unit)

Low Min Lowpass minimal frequency cutoff [100-500] (Hz)
Low Max Lowpass maximal frequency cutoff [1000-5000] (Hz)
High Min Highpass minimal frequency cutoff [1000,4000] (Hz)
High Max Highpass maximal frequency cutoff [4000,6000] (Hz)
Pitch min Minimal pitch shift [-6,-2] (semitones)
Pitch max Maximal pitch shift [2,6] (semitones)
Min SNR Minimal SNR for coloured noise [0,5] (dB)
Max SNR Maximal SNR for coloured noise [10,30] (dB)
Min Gain Minimal gain [-20,-10] (dB)
Max Gain Maximal gain [3,10] (dB)

during training and applied to the next data point. Precisely,
every distribution (τ(p))1≤p≤P is represented as a vector of
P = 17 parameters representing either the probability of apply-
ing an augmentation or the boundaries of a uniform probability
distribution used to sample the parameters of the augmentation
(e.g. maximal signal-to-noise ratio value for noise addition).

Since the considered augmentations are not differentiable
according to the considered parameters, we apply a random
search to minimize the HSIC value described above. Thus, we
sample random distributions and select the one with the low-
est dependence scoring. Specifically, for every considered tar-
get dataset, we first sample D = 100 distribution parametriza-
tions (τi)i∈[1,D]. For every parametrization τi, we compute the
HSIC quantity following two steps. First, the augmented set
X ′

i = f(X, τi) is generated by computing N = 20 views of
every speech sample in X . Then, HSIC(X ′

i, Z|Y ) is com-
puted following the technique described in [26]. For Y , we
consider the 10 classes consisting of the 10 most used words in
the dataset and take only the portion of the speech where the
word is pronounced, using word-level forced alignment. The
augmentation distribution with the lowest HSIC scoring is se-
lected to be applied during fine-tuning.

3. Experiments
This section describes the experiments led to validate the pro-
posed approach first in a simulated environment, then on real-
world distorted datasets.

3.1. Shared Experimental Protocol

In all the experiments, the model is composed of two blocks:
a pre-trained Wav2Vec2.0 Large model and a downstream de-
coder. The pre-trained model acts directly on the speech wave-
form and outputs an embedding of size 1, 024 every 20ms of
speech. Two fully connected layers with a hidden size of 1, 024
map each frame vector to one of the considered characters. The
whole model is fine-tuned using Connectionist Temporal Clas-
sification (CTC) [27] loss. During inference, greedy decoding
is applied to the CTC probability outputs without any language-
model-based re-scoring following the SpeechBrain recipe [21].

We employ the Torch-Audiomentations library from the
Asteroid team [28] as it accelerates the computation of augmen-
tations both during HSIC scoring and training. From the pool of
available augmentations, we selected the ones that have demon-
strated efficacy in enhancing recognition performance with the
contrastive predictive coding method [8]. Hence, seven aug-
mentations are considered: pitch shifting, reverberation, gain
(which may reproduce clipping issues), colored noise addition,
high and low pass filtering, and polarity inversion. The appli-
cation of these distortions is controlled with a set of parameters

Table 2: Mean WER results on distorted versions of Lib-
riSpeech test splits. While scoring below the topline, our
method, named “CI Augment”, is significantly better than ap-
plying all or random augmentations. “Baseline” corresponds
to an augmentation-free training.

LS Split Baseline Random CI Augment Topline

test-clean 29.86 29.91 27.20 26.11
test-other 43.89 42.48 40.68 36.92

listed in Table 1.

3.2. Oracle Experiment

Task-specific experimental protocol. In this part, a known
distortion distribution is first applied to a clean testing set. The
resulting data will be considered as the mismatching target
domain (i.e. a simulated one). In a second time, using this
generated “noisy” dataset, appropriate augmentations, selected
using our conditional independence-based method, are applied
to a clean training dataset that will be used for fine-tuning our
self-supervised representations. As only the test set is distorted,
this simulated experiment only involves one fine-tuning,
contrarily to the real-data scenario, where a second fine-tuning
stage is held on the target training data, as shown in Figure 1.
This toy experiment has two advantages compared to a natural
setting. First, it ensures that the distortions in the testing set can
be replicated by the set of augmentations considered. Second,
since we have access to the augmentation distribution that
generated the “noisy” target dataset, it allows estimating the
similarity between the augmentation distribution used to create
the simulated testing domain and the one obtained with our
method.

In these experiments, A = 8 augmentations distributions
are sampled and applied on the LibriSpeech test-clean and test-
other splits [29]. For every sampled distribution, these two dis-
torted splits are then considered as the testing datasets. We ap-
ply the same augmentation distributions to the dev-clean and
dev-other splits, and use these two sets to compute the opti-
mal augmentations following the method described in the pre-
vious section. Finally, we use the computed distribution τ∗ with
the lower HSIC estimator value as the augmentation for fine-
tuning our SSL model on LibriSpeech train-clean-100 split.
Results. Table 2 presents the results obtained on the test splits
of LibriSpeech in the oracle experiments, with the column “CI
Augment” (the name of the approach, CI standing for Condi-
tional Independence) showing the results of the proposed ap-
proach. Each value corresponds to the mean of the values ob-
tained with each of the A target datasets created with the sam-
pled augmentation distributions. The “Topline” corresponds to
the result obtained when the training samples are augmented
using the same distribution as the one used to generate the dis-
torted testing splits (i.e oracle scenario). Two baselines are con-
sidered: the first one referred to as “All” applies all the consid-
ered augmentations with the default parameters. Then, “Ran-
dom” refers to the mean value obtained if applying the (A− 1)
other toplines augmentation distributions. Our method, while
performing worse than the topline, leads to a relative word error
rate (WER) improvement of 12.7% compared to the baseline on
test-clean.

This controlled experiment also enables us to verify if the
selected augmentations result in acoustic conditions cloning, as
suggested in Section 2.1. Indeed, the probabilities of applying
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Table 3: Mean WER results on distorted versions of LibriSpeech test-clean and test-other. Our method, named “CI Augment”, outper-
forms the baselines and random augmentations for each one of the two contributors.

Contributor Without Augmentations With Augmentations

train-clean-100 Contributor Only train-clean-100 + Contributor All Random CI Augment

Contributor 1 102.52 73.0 27.71 27.95 27.33 24.27
Contributor 2 96.49 98.92 20.48 20.76 22.23 16.49

600 1800 3600 7200 32400
Training dataset duration (seconds)

30

40

50

60

70

80

90

W
or

d 
Er

ro
r R

at
e 74.51

57.14

43.08

34.5

24.27

61.98

47.43

40.23

90.83

27.71

Contributor 1
Baseline
Method

600 1800 3600 7200 25200
Training dataset duration (seconds)

20

30

40

50

60

70

80

90

W
or

d 
Er

ro
r R

at
e

46.4

32.24
26.89

16.49

80.97

72.03

36.94

27.84

88.56

20.48

Contributor 2
Baseline
Method

Figure 2: Effect of selecting augmentations on the performance
depending on the quantity of target domain training data for
each of the two considered contributors. The x-axis is not linear.
a given distortion to each testing set are known. To verify our
intuition, for each one of the 8 augmentation distributions ap-
plied, we sample 200 other random augmentation distributions
and score them using HSIC. For every scored distribution, we
consider the vector composed by the seven probabilities of ap-
plying the considered distortions. Since these probabilities are
known for the target distribution, we can compute an L2 dis-
tance between the vector of probabilities of applying distortions
used to create the target dataset, and those of the sampled scored
distributions. We observe a Spearman correlation score of 0.51
between the HSIC scores and the distances between vectors of
probabilities. Furthermore, the application probabilities of the
10 (top 5%) best scoring distributions are 15% closer to the tar-
get ones than those of the 10 worst scoring ones. These results
indicate that the selected augmentations, i.e. those with low
HSIC scoring, create samples closer to the target domain.

3.3. Experiments with Naturally Distorted Datasets

In this section, we test and validate the proposed approach on
real low-resource “noisy” datasets.

Task-specific experimental protocol. The goal is to adapt
a large clean “neutral” labeled dataset to better match the
acoustic conditions of a small target dataset. The modified
dataset is used during a first fine-tuning of the SSL repre-
sentation, before further fine-tuning on the target dataset. To
ensure a valid evaluation, the target dataset must meet two
criteria: first, it should display consistent noisy recording and
acoustic conditions. Second, neutral and target datasets should
not exhibit different textual settings, i.e differences such as

spontaneous versus read speech, as our augmentations only
address acoustic distortions. The Librispeech train-clean-100
is used as the clean dataset to be modified. The target datasets,
on the other hand, correspond to the largest contributors of the
CommonVoice 11.0 English dataset [30]. Starting from the
ten most prolific contributors, two of them are finally selected
after removing elements with heavy accents, and unintelligible
or very clean recordings. For these two selected contributors,
we partition the recorded samples into the train, validation,
and test splits, and only use the training data to compute the
augmentation distribution selection. The train splits are 9 and 7
hours long. More details can be found in the repository.

Results. Table 3 reports the WERs with or without augmen-
tations during the first fine-tuning on train-clean-100. The
first vertical part of the table shows the results obtained on
the baselines without augmentations. “train-clean-100” corre-
sponds to fine-tuning only on Librispeech train-clean-100 split
non-distorted. “Contributor Only” corresponds to training only
on the contributor data. For all other columns, the model is
fine-tuned on train-clean-100 first, with or without augmenta-
tions, before further fine-tuning on the contributor data. The
“CI Augment” column shows that the augmentations chosen
with our conditional-independence-based method lead to better
target performance than applying no, all, or random augmen-
tations on the neutral training split. The relative improvement
compared to the augmentation-free baseline reaches 12.4% for
Contributor 1 and 19.5% for Contributor 2.

Furthermore, we study how this affects the amount of target
domain data needed (see Figure 2). We start by fine-tuning with
the chosen distortions for the “Method” lines and on the clean
original LibriSpeech dataset for the “Baseline” lines. Then, the
duration of annotated target data used is augmented gradually
. For the two contributors, the orange curve representing the
evolution of the WER after fine-tuning with the computed dis-
tortions is always below the blue curve corresponding to the
baseline. The effect is particularly visible with Contributor 1
with a performance 16.6% higher relatively when training with
only 2 hours.
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5. Conclusion
Self-supervised representations severely underperform when
facing acoustic domain mismatch. We have introduced a
method using automatic data augmentation selection to reduce
the drop in performance when switching of acoustic domains.
Experiments led in controlled and natural settings validate our
assumption and method, and also show that it helps reduce the
quantity of annotated data needed in the target domain.
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Doñas, D. Ditter, A. Frank, A. Deleforge, and E. Vincent, “As-
teroid: the PyTorch-based audio source separation toolkit for re-
searchers,” Proceedings of the Annual Conference of the Interna-
tional Speech Communication Association, INTERSPEECH, vol.
2020-October, pp. 2637–2641, may 2020.

[29] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books,”
in 2015 (ICASSP), 2015, pp. 5206–5210.

[30] R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler,
J. Meyer, R. Morais, L. Saunders, F. M. Tyers, and G. Weber,
“Common voice: A massively-multilingual speech corpus,” 2020.

71


