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of relapse in breast cancers
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Sophie Rousseaux1 and Ekaterina Bourova‑Flin1* 

Abstract 

Background In breast cancer, as in all cancers, genetic and epigenetic deregulations can result in out‑of‑context 
expressions of a set of normally silent tissue‑specific genes. The activation of some of these genes in various cancers 
empowers tumours cells with new properties and drives enhanced proliferation and metastatic activity, leading 
to a poor survival prognosis.

Results In this work, we undertook an unprecedented systematic and unbiased analysis of out‑of‑context activations 
of a specific set of tissue‑specific genes from testis, placenta and embryonic stem cells, not expressed in normal breast 
tissue as a source of novel prognostic biomarkers. To this end, we combined a strict machine learning framework 
of transcriptomic data analysis, and successfully created a new robust tool, validated in several independent datasets, 
which is able to identify patients with a high risk of relapse. This unbiased approach allowed us to identify a panel 
of five biomarkers, DNMT3B, EXO1, MCM10, CENPF and CENPE, that are robustly and significantly associated with dis‑
ease‑free survival prognosis in breast cancer. Based on these findings, we created a new Gene Expression Classifier 
(GEC) that stratifies patients. Additionally, thanks to the identified GEC, we were able to paint the specific molecular 
portraits of the particularly aggressive tumours, which show characteristics of male germ cells, with a particular meta‑
bolic gene signature, associated with an enrichment in pro‑metastatic and pro‑proliferation gene expression.

Conclusions The GEC classifier is able to reliably identify patients with a high risk of relapse at early stages of the dis‑
ease. We especially recommend to use the GEC tool for patients with the luminal‑A molecular subtype of breast can‑
cer, generally considered of a favourable disease‑free survival prognosis, to detect the fraction of patients undergoing 
a high risk of relapse.
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Background
Breast cancer is the leading cancer in women in terms of 
incidence and mortality, with more than 2.1 million new 
cases reported and 627,000 deaths in 2018 worldwide. 
Although hereditary and genetic factors, such as a per-
sonal or family history of breast or ovarian cancer and 
inherited mutations in breast cancer susceptibility genes, 
including BRCA1 and BRCA2, account for 5% to 10% of 
breast cancer cases, nonhereditary factors remain major 
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drivers of the observed world-wide and interethnic dif-
ferences in incidence [1].

Breast cancer can be subdivided into different sub-
groups based on molecular and phenotypic characteris-
tics, which are responsible for significant disparities in 
survival. Based on extensive transcriptomic analyses, at 
least four tumour subtypes have been described, which 
include luminal A, luminal B, human epidermal growth 
factor receptor 2 (HER2)-amplified and basal-like. This 
stratification of molecular subtypes in breast cancer 
extends the simpler histological classification based on 
immunohistochemical characteristics such as hormone 
receptor expression (oestrogen and progesterone recep-
tors) and HER2 amplification. Genetic mutations, DNA 
methylation, copy number and protein expression com-
plete this classification [2].

However, despite progress in research and therapy, 
breast cancer remains a world-wide public health issue. 
Early diagnosis, timely treatment and accurate progno-
sis evaluation are crucial determining factors for breast 
cancer survival rates. The search for reliable biomarkers 
still remains a challenge for biomedical scientists. Due to 
inherent tumour heterogeneity, in addition to the immu-
nohistochemical and molecular subtypes, there is still 
a need for the identification of robust biomarkers that 
could accurately predict the behaviour of breast cancers, 
which would help the selection of appropriate treatment 
strategies. Additionally, the identification of candidate 
factors for targeted therapies would be of great help 
in the development of personalized treatments, which 
would efficiently and durably harness cancer cells, while 
minimizing the effects on healthy cells.

In all cancers, including breast cancer, genetic and 
epigenetic alterations result in aberrant gene expres-
sion with a significant contribution of normally silent 
tissue-specific genes [3]. Various investigations during 
the past decencies have revealed that a high proportion 
of all identified tumour-associated illegitimately activated 
genes in cancer corresponds to genes that are exclusively 
or predominantly expressed in male germ cells [4–8]. 
Moreover, the results of several studies suggest an asso-
ciation between the expression of these genes and poorer 
outcomes across a broad spectrum of solid tumours, 
as well as a higher prevalence in undifferentiated and 
advanced-stage cancers [9]. However, the out-of-context 
expression of tissue-specific genes is not restricted to tes-
tis-specific genes and many other genes with an exclusive 
or predominant pattern of expression in different tissues, 
such as placenta-specific genes, are also aberrantly acti-
vated in various cancers [3].

Molecular functional investigations of some the pro-
teins encoded by a number of these tissue-specific 
genes clearly demonstrated that they contribute to 

the acquisition of new properties by cancer cells. For 
instance, data from our laboratory as well as from other 
groups indicated that the activation of the testis-specific 
protein NUT in the rare but highly aggressive NUT carci-
noma completely modify CBP/p300-dependent chroma-
tin acetylation signalling [10–13]. Illegitimate expression 
of the protein CYCLON in the diffuse large B-cell lym-
phomas controls cell response to Rituximab and tumour 
growth [14]. In addition, the aberrant expression of the 
mitochondrial protein FASTKD1 in aggressive forms 
of acute lymphoblastic leukaemia, impacts mitochon-
drial activity and drives an oncogenic epigenome repro-
gramming [15–17]. Finally, the out-of-context activity 
of ATAD2, a gene predominately expressed germline/
embryonic stem cell, affects histone chaperone-bound 
chromatin dynamics and could promote oncogenic 
genome reprogramming [18–20]. Aberrant activation of 
a placenta-specific gene, ADAM12, favouring tumour 
invasion, activated following an oncogenic signalling 
pathway, is another example [21]. Additionally, there are 
accumulating data in the literature showing that some 
of the known “official” Cancer Testis genes (CTdatabase, 
http:// www. cta. lncc. br) [22], also significantly contribute 
to malignant cell transformation [23–25]. Therefore, it is 
reasonable to hypothesize that out-of-context expression 
of tissue-specific genes could also play important roles 
in tumour progression and metastasis in most cancers, 
including breast cancer. Hence, their specific expression 
in cancer cells, and their lack of expression in the major-
ity of non-germline cells also make the product of genes 
an attractive target for anti-cancer therapy.

Here we undertook a systematic investigation of ectopic 
activation of a set of genes specifically or predominantly 
expressed in testis, placenta and embryonic stem cells, 
based on an analysis of publicly available expression data 
from eight independent well-documented breast cancer 
cohorts. We first used transcriptomic data from normal 
human tissue samples to consider the normal expression 
profiles of all the annotated human genes, and to single 
out those that show a clear predominance of expression 
in a given tissue in an unbiased manner. An analysis of 
expression data using publicly available transcriptomes 
obtained from eight large cohorts of well-annotated 
breast tumours was then performed in order to identify 
among our germ cells, placenta, and ES cell—genes, the 
best candidates that could be proposed to design prog-
nosis tests and/or to use as targets for future therapeutic 
developments. To this end, we established a method to 
reliably define ectopic tissue-specific gene expression in 
breast cancer cells, and then considered their association 
with survival on a ON (expressed) / OFF (not expressed) 
basis. Based on this approach, we show that a combina-
tion of several of these ectopically activated genes (ON 
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genes) provides a powerful mean to detect the worse 
prognosis in breast cancers. These investigations not only 
highlighted a number of robust breast cancer biomark-
ers, but also helped to molecularly characterize the most 
aggressive fraction of breast tumours thanks to our abil-
ity to isolate these subpopulations of breast cancer.

Results
Many tissue‑specific genes are frequently activated 
in breast cancer
Using the publicly available RNA-seq data of several nor-
mal tissues provided by GTEX and NCBI Sequence Read 
Archive, we computed the patterns of expression for all 
annotated genes. To identify genes with a tissue-pre-
dominant expression, we used an outlier detection tech-
nique based on the Z-score as presented in the Methods 
section. In total, 1882 tissue-specific genes encoding 
for testis, placenta or ESC were found. The patterns of 
expression of the 1882 selected genes in normal tissues 
are shown in Supp. Figure S1A. The tissues where each 
of these genes are predominantly expressed (testis, pla-
centa, ESC) are listed in Supp. Table S1. A Venn diagram 
in Supp. Figure S1B presents the number of genes that 
show a shared tissue-specific expression pattern.

For each of the 1882 tissue-specific genes, we used 
the transcriptomic data from breast non-tumour tis-
sues (where these genes are silent) of the dataset 
TCGA-BRCA to establish a threshold of signal below 
which the gene was considered as not expressed. The 
threshold of expression was defined as the mean sig-
nal + two standard deviations calculated in the non-
tumour breast samples. Based on this threshold value, 
for each gene, we measured the proportion of breast 
tumour samples where the gene was expressed (signal 

over the threshold, considered as ON). The results are 
shown as a heatmap in Fig. 1. These data confirm that, 
as expected, many tissue-specific genes are aberrantly 
expressed in a number of breast tumours, with varia-
ble frequencies, depending on the gene and the breast 
tumour molecular subtype. The frequencies of ectopic 
activations for each gene are presented in Supp. Table 
S2. Taking all subtypes together, 626 genes (33.2%) were 
found to be frequently activated, which by convention 
means, in more than 10% of breast cancer samples. This 
procedure allows us to remove the non-eligible genes 
with infrequent activations and consider only the genes 
that are ectopically expressed in a representative pop-
ulation of patients. This preliminary selection ensures 
their potential usability as biomarkers in routine clini-
cal practice for all patients with breast cancer. Finally, 
we retained 626 frequently activated genes for the sub-
sequent survival analysis.

However, this approach has a limitation in terms 
of the representation of epithelial cells in both non-
tumour and tumour samples. In bulk RNA-seq data, 
the non-tumour breast tissues can potentially contain 
less epithelial cells and more stroma cells and adipo-
cytes compared to the tumour samples. In this case, 
the expression level of the genes expressed in epithe-
lial cells may be underestimated in the non-tumour 
samples due to their low representation. To accurately 
address this point, one would need to analyse single cell 
data which are unfortunately unavailable in the TCGA-
BRCA cohort. For this reason, we selected the genes 
potentially activated in tumours in this preliminary step 
and then we relied on a thorough full machine learning 
approach described in next section to accurately iden-
tify the thresholds of gene activations during the sur-
vival analysis.

Fig. 1 Heatmap showing the percentage of ectopic activations of the 1882 tissue‑specific genes encoding for testis, placenta and embryonic stem 
cells in the total TCGA‑BRCA dataset and in breast cancer subtypes. Frequent ectopic activations above the threshold of 10% are presented in red 
colour map. Infrequent ectopic activations below 10% are shown in blue colour map
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A combination of five ectopically expressed genes robustly 
predicts patients’ prognosis in four independent test 
datasets
For each of the selected 626 tissue-specific genes, we per-
formed a survival analysis as described in the Methods 
section. Briefly, we identified the genes for which it was 
possible to establish a stable activation threshold (defin-
ing the “OFF/ON” status of the corresponding gene), 
associated with patients’ survival prognosis, based on cri-
teria explained below. This approach separated patients 
in two groups with significantly different survival prob-
abilities. For this purpose, we used a specific dedicated 
approach based on machine learning principles to reduce 
possible artefacts and overfitting issues in survival analy-
sis. The main steps of the method are summarized in 
Supp. Figure S2.

The idea behind this approach is that for some of 
these genes, their “ON” expression status may empower 
tumour cells with new properties of higher aggressive-
ness, resulting in a poor survival prognosis for patients. 
The main objective of our specific survival analysis 
approach, was to accurately identify thresholds of expres-
sion above which the activation of the genes was sig-
nificantly and robustly associated with survival. It was 
also important to reject false positive results that could 
appear during the overall learning process, due to overfit-
ting and possible heterogeneity among different datasets.

We considered that a threshold was stable when the 
following criteria were fulfilled: i/ a small modification 
of the threshold didn’t impact significantly the prediction 
of the survival model; ii/ a random selection of subsets 
of samples produced the best similar results of the sur-
vival model; iii/ selected thresholds were validated across 
several datasets. These constraints were implemented 
through a formal machine learning pipeline separating 
all breast cancer cohorts into the training, validation and 
test datasets. In addition, we used a technique of random 
threefold cross-validations to introduce perturbations 
of the subsets of samples during the training step. The 
details are provided in the Methods section. The calcu-
lations were performed in several steps and described 
below.

First, in the training dataset TCGA-BRCA we identified 
28 genes for which a stable threshold was detected and 
the activated status of the gene (ON) was significantly 
associated with a shorter disease-free survival prob-
ability (p-value < 0.05, FDR < 0.2). In the second step, we 
used three validation datasets GSE25066, GSE21653 and 
GSE42568 to include a possible heterogeneity across dif-
ferent datasets in the learning process and to evaluate the 
robustness of the selected genes. These 28 genes were 
then ordered according to the p-values obtained by the 
logrank tests in each validation dataset (Supp. Table S3).

These results showed that the gene DNMT3B was 
found significantly associated with disease-free survival 
in all three validation datasets (p-value < 0.05). Another 
four genes EXO1, MCM10, CENPF and CENPE were 
found significantly associated with disease-free survival 
in 2 of 3 validation datasets and in the third dataset the 
obtained p-value was also relatively low (p-value < 0.1). 
We selected these five genes as candidate biomarkers. For 
all other genes, we obtained high non-significant p-values 
in at least one dataset. These genes were considered not 
sufficiently robust; therefore, they were not validated. All 
five genes have normal predominant expression profile 
in embryonic stem cells; they are also expressed in testis 
at lower levels (Supp. Figure S3). The individual Kaplan–
Meier survival curves for five selected genes in the train-
ing and validation datasets are shown in Supp. Figure S4.

Finally, the five candidate genes DNMT3B, EXO1, 
MCM10, CENPF and CENPE were combined in a new 
prognosis tool, Gene Expression Classifier or GEC, that 
stratifies patients according to the number of activated 
genes in the corresponding tumour (activation status 
ON). The patients for which none or only one gene is 
activated in the tumour have a more favourable disease-
free survival prognosis than the patients for which two or 
more genes are activated. To ensure the robustness of our 
GEC tool, we tested it in four independent breast cancer 
cohorts E-MTAB-365, Miller-2005, Naderi-Caldas-2007 
and Yau-2010 that had never been used either during the 
learning process nor for the selection of the five genes in 
the GEC.

The results of the GEC performance in the test cohorts 
are shown in Fig.  2E-H. Our new GEC tool accurately 
predicted patients’ disease-free survival prognosis in all 
test datasets, providing significant p-values < 0.05 for 
the logrank test between two groups GEC 0–1 (favour-
able prognosis) and GEC 2–5 (unfavourable prognosis), 
as well as for Cox proportional hazard model considering 
the number of activated genes in the GEC as an explana-
tory variable. For information, we also presented the 
results of the GEC tool in the training dataset (Fig. 2A) 
and in the validation datasets (Fig. 2B-D) that were also 
significant, as expected.

Multivariate analysis shows that the GEC tool provides 
complementary information to known risk factors
To evaluate the impact of the new GEC prognosis tool 
compared to other known risk factors in breast cancer, 
we performed a multivariate survival analysis using Cox 
proportional hazard model with the following explana-
tory variables: GEC, age, molecular subtype and tumour 
stage. For this analysis we selected the datasets with 
available annotations of the molecular subtype. Five data-
sets were eligible: TCGA-BRCA, GSE25066, GSE21653, 
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E-MTAB-365 and Yau-2010. When the information 
about age or tumour stage was missing in some datasets, 
we used the available covariates. The results of the multi-
variate analysis are shown in Table 1.

In all considered datasets, the GEC tool provided sig-
nificant and stable prediction of disease-free survival 
probability while corrected for other risk factors. It 

means that the GEC brings a new complementary infor-
mation to known risk factors. On this basis, we conclude 
that it is potentially interesting to integrate the GEC 
classification to the existing breast cancer classifications 
criteria that are already using age, molecular subtype 
and tumour stage as explanatory variables to estimate 
patients’ survival prognosis.

Fig. 2 Kaplan–Meier survival curves showing disease‑free survival probability according to the number of activated genes in the GEC tool for eight 
breast cancer datasets. A: Training dataset. B‑D: Validation datasets. E–H: Test datasets. For each dataset, blue lines show the survival curves 
for the group of patients in which the corresponding tumours activated 0 or 1 gene in the GEC tool (GEC 0–1). Red lines represent the group 
of patients in which the tumours activated 2 or more genes (GEC 2–5). The p‑values obtained from the logrank test and Cox proportional hazard 
model as well as the hazard ratios are displayed on the top of each plot. Significance symbols: * for p‑value < 0.05, ** for p‑value < 0.01, *** 
for p‑value < 0.001

Table 1 Results of multivariate survival analysis including our new GEC classifier and other known risk factors in breast cancer

The table shows p-values and hazard ratios (HR) obtained by multivariate Cox model for the covariates GEC, age, molecular subtype and tumour stage in five breast 
cancer datasets. Significant p-values < 0.05 are shown in bold. The symbol NA means that the corresponding explanatory variable was missing in clinical annotations 
of the dataset and was excluded from the analysis

TCGA‑BRCA GSE25066 GSE21653 E‑MTAB‑365 Yau‑210

p-value HR p-value HR p-value HR p-value HR p-value HR

GEC 0.011 1.2 0.005 1.2 0.01 1.3 0.039 1.2  < 0.001 1.2

Age  < 0.001 1 0.786 1 0.749 1 0.685 1 NA NA

Molecular 
subtype

0.591 1.1 0.059 1.2 0.314 0.9 0.054 1.3 0.933 1

Stage  < 0.001 2.3 NA NA NA NA 0.466 1.2 NA NA
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The GEC tool identifies patients with a high risk of relapse 
inside the luminal‑A and luminal‑B subtypes
In five datasets TCGA-BRCA, GSE25066, GSE21653, 
E-MTAB-365 and Yau-2010 we identified the GEC sta-
tus for all samples and then performed survival analysis 
separately in each molecular subtype of breast cancer. 
Figure  3A-B show the distribution of all samples (five 
datasets pooled, n = 2681) in luminal-A, luminal B, 
HER2-enriched and basal-like subtypes according to the 
number of activated genes in the GEC panel.

We found that the majority of tumours in luminal-
A molecular subtype, which is generally considered 
of a good prognosis, does not express any of the five 
genes of the GEC panel (68.1%) or only one gene of 
five (18.5%) as shown in Fig.  3A. However, 13.3% of 
tumours in this subtype still express between 2 and 5 
GEC genes, corresponding to aggressive forms of breast 
cancer (Fig. 3B). Survival curves in Fig. 3C shows that 
this particular group of patients have a significantly 
higher risk of relapse compared to other patients with 
luminal-A subtype of breast cancer. Similarly, in lumi-
nal-B molecular subtype, the GEC tool is able to iden-
tify a subset of patients with a significantly higher risk 
of relapse (Fig. 3D). These results indicate that the GEC 

tool can be particularly interesting to use in clinical 
practice to efficiently identify the fraction of patients 
with a high risk of relapse inside the group of a priori 
favourable disease-free prognosis.

In HER2-enriched and basal-like subtypes, respectively, 
we didn’t find significant association between the GEC 
status and disease-free survival (Fig. 3E-F). This result is 
probably due to an uneven distribution of the molecular 
subtypes in the training dataset, containing a majority 
of luminal A subtype (53.4%), whereas the proportion of 
the other molecular types was significantly lower (19.8% 
of luminal-B, 8.0% of HER2-enriched and 18.8% of basal-
like). Therefore, since the majority of samples belongs to 
the luminal-A molecular subtype, the identification of the 
GEC biomarkers during the learning process was mostly 
impacted by this subtype. The HER2-enriched subtype 
was not sufficiently represented compared to the other 
subtypes. This could be the reason why we didn’t find 
significant association with survival within this subtype. 
In basal-like subtype the obtained p-values were close to 
significant for both the logrank test and Cox model (cox 
p-value = 0.065, logrank p-value = 0.097, Fig. 3F), suggest-
ing that the patients in the group basal-like and GEC 0–1 
may have a tendency for a lower risk of relapse.

Fig. 3 Results of the GEC tool in molecular subtypes of breast cancer. A: Distribution of breast cancer samples for five pooled datasets (TCGA‑BRCA, 
GSE25066, GSE21653, E‑MTAB‑365 and Yau‑2010) in luminal‑A, luminal B, HER2‑enriched and basal‑like subtypes according to the number 
of activated genes in the GEC panel. The bar plots show the percentage of samples for each GEC group (from GEC 0 to GEC 5) in each molecular 
subtype. B: Same for the groups GEC 0–1 and GEC 2–5. C‑F: Kaplan–Meier survival curves showing disease‑free survival probability in luminal‑A, 
luminal B, HER2‑enriched and basal‑like subtypes, respectively, according to the number of expressed genes in the GEC panel, presented in two 
groups: GEC 0–1 and GEC 2–5. The p‑values obtained from the logrank test and Cox proportional hazard model as well as the hazard ratios are 
displayed on the top of each plot. Significance symbols: * for p‑value < 0.05, ** for p‑value < 0.01, *** for p‑value < 0.001
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Gene Set Enrichment Analysis (GSEA) shows shared 
molecular signatures of the aggressive GEC + tumours 
in several breast cancer datasets
Differential expression analysis and the corresponding 
GSEA were performed in ten independent breast can-
cer datasets (see Supp. Table S4) between the group of 
tumours without GEC ectopic expressions (GEC-) and 
those with major GEC ectopic expressions of 4 or 5 genes 
(GEC +). The intermediate group of tumours classified in 
GEC 1–3 was excluded from the differential analysis. We 
considered here only the extreme GEC groups in order 
to identify the most striking differences in molecular 
signatures between the aggressive tumours GEC + and 
the tumours of favourable prognosis GEC-. The survival 
curves of the groups GEC- and GEC + in the dataset 
TCGA-BRCA are shown in Fig.  4A as an example. The 
heatmap in Fig. 4B illustrates the expression of the genes 
down- and up-regulated in GEC + versus GEC- breast 
cancer samples with an absolute fold change of expres-
sion values above 1.5 and an adjusted Mann–Whitney 
p-value < 0.05. Respectively, 1593 and 1301 genes were 
down- and up- regulated in the dataset TCGA-BRCA.

In order to characterize the molecular profile of 
GEC + aggressive breast tumours, we performed 
Gene Set Enrichment Analysis (GSEA) for all 10 data-
sets to highlight biological pathways correlating with 
GEC + compared to GEC- samples (Figs. 4C and 5). The 
GSEA profiles of the aggressive GEC + form of breast 
cancer revealed a significant and consistent up-regu-
lation in gene sets involved in cell proliferation and cell 
cycle progression. In addition, the GEC + tumours were 
found significantly enriched in the signatures of meta-
static breast cancers prone to develop distant metastases 
in brain and lung. Interestingly, many pathways related to 
cholesterol and fatty acid metabolism were significantly 
depleted in the majority of breast cancer datasets in the 
GEC+ tumour fraction; however, the mitochondrial 
gene expression and mitochondrial RNA metabolic pro-
cesses did not seem to be directly affected. Finally, the 
GEC + tumours were found significantly enriched in the 
gene sets of spermatogenesis, testis and embryonic stem 
cells in all datasets, indicating massive ectopic activations 
of these genes in aggressive forms of breast cancers.

Discussion
Several cancer testis antigens present in the “official” list 
of CTAs were proposed in the literature as potential diag-
nostic or prognostic biomarkers in breast cancer. These 
signatures, however, were not sufficiently validated in 
independent studies, producing sometimes controversial 
results [26], and, therefore, cannot be applied in clinical 
practice. Nowadays, an important number of transcrip-
tomic breast cancer datasets are available in public data 

repositories, making possible a thorough full machine 
learning approach for biomarker discovery with extensive 
validations and tests in various breast cancer cohorts.

Using a large dataset of RNA-seq data in normal tis-
sues from GTEX and NCBI repositories, as well as eight 
independent breast cancer cohorts, we applied a strict 
machine learning pipeline in order to accurately define 
all genes with predominant expression profiles in testis, 
placenta or ESC, and to identify among these genes the 
most robust biomarkers to predict disease-free survival 
prognosis. These analyses revealed five genes, DNMT3B, 
EXO1, MCM10, CENPF and CENPE, that are normally 
not expressed in healthy breast tissue but become fre-
quently activated in breast cancers. In addition, the aber-
rant activation of these genes was found systematically 
associated with a shorter disease-free survival in several 
cohorts.

On the basis of these findings, we combined the five 
biomarkers to create a new prognosis tool Gene Expres-
sion Classifier (GEC) that stratifies patients according 
to the number of ectopically activated genes in the GEC 
panel. A higher number of aberrant activations of these 
genes significantly correlated with a shorter disease-free 
survival prognosis of patients in all eight datasets. In par-
ticular, we proposed to stratify patients to the group of 
favourable survival prognosis if the number of ectopi-
cally activated genes found in the tumours was equal to 
0 or 1 (GEC 0–1) and to the group of unfavourable sur-
vival prognosis if the number of ectopically activated was 
higher (GEC 2–5).

A multivariate survival analysis in five independent 
datasets demonstrated that the GEC tool remained sig-
nificantly predictive after the adjustment for other risk 
factors as molecular subtype, patient age and tumour 
stage, also related to prognosis. We also found that the 
GEC tool was particularly efficient to detect tumours 
with a high risk of relapse inside the molecular subtypes 
luminal-A and luminal-B.

The five biomarkers identified in this work, DNMT3B, 
EXO1, MCM10, CENPF and CENPE, have predominant 
expression profiles in embryonic stem cells and are also 
expressed in testis. The literature may highlight potential 
mechanisms which could be involved in the oncogenic 
activities of five genes and explain the strong association 
between their expression and aggressive forms of breast 
cancer.

DNMT3B is a DNA methyltransferase that regu-
lates the epigenome by de novo methylation of CpG 
sites. Aberrant activation of DNMT3B in breast cancer 
was reported in [27]. Recently, it was also shown that 
DNMT3B is induced in metastatic cells and facilitates 
distant colonization [28] and that high DNMT3B lev-
els are correlated with poor patient survival and more 



Page 8 of 13Jacquet et al. BMC Genomics          (2023) 24:463 

Fig. 4 Main results of the GSEA analysis for transcriptomic profiles of GEC + versus GEC‑ tumours in the dataset TCGA‑BRCA. A: Kaplan–Meier 
disease‑free survival curves between the group of tumours without GEC ectopic expressions (GEC‑) and those with major GEC ectopic expressions 
of 4 or 5 genes (GEC +). The displayed p‑value corresponds to the logrank test between GEC‑ and GEC + groups. B: Heatmap of the differential 
expression profiles of GEC + versus GEC‑ in TCGA‑BRCA. The differentially expressed genes used for the heatmap were selected with an adjusted 
p‑value < 0.05 of Mann–Whitney test and abs (ratio) > 1.5. The hierarchical clustering was performed using Euclidian‑based distance with Ward’s 
linkage for samples and Pearson correlation for genes. C: GSEA plots illustrating main enrichment/depletion profiles in GEC + tumours compared 
to GEC‑ tumours in the dataset TCGA‑BRCA. For all the gene sets, the enrichment or depletion was considered significant with a nominal 
p‑value < 0.05 and FDR < 0.25. The gene sets were selected from the MSigDB database of the Broad Institute (collections C2, C5 or H of the MsigDB)
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aggressive subtypes of breast cancer [29]. Preclinical 
studies demonstrated that overexpression of DNMT3B 
promotes primary tumour progression in melanoma and 
colon cancer [30, 31].

EXO1 encodes a protein with 5’ to 3’ exonuclease 
activity as well as an RNase H activity. It is implicated 
in several genomic DNA metabolic processes such as 
replication stress response, double strand break repair, 
mismatch repair, nucleotide excision repair and tel-
omere maintenance. However, even though EXO1 is of 
paramount importance to generate signals for the proper 
DNA damage response, Sertic and colleagues [32] argued 
that an overexpression of EXO1 can results in excessive 
nucleolytic activity, which leads to increased genome 
instability and alterations in cellular functions. Interest-
ingly, in agreement with our data, an overexpression of 
EXO1 has been already reported to be associated with 
poor prognosis in breast and lung cancers [33, 34].

The protein encoded by the gene MCM10 is one of the 
highly conserved mini-chromosome maintenance pro-
teins family (MCM) that are involved in the initiation of 

eukaryotic genome replication. Mughal and colleagues 
[35] observed that MCM10 promotes tumorigenic prop-
erties in immortal non-tumorigenic mammary cells by 
increasing proliferation, shortening the cell cycle, and 
promoting tumorigenic characters in in-vivo mimicking 
conditions. MCM10 was also suggested as a potential 
prognostic biomarker in breast cancer [36] and in hepa-
tocellular carcinoma [37].

The genes CENPE and CENPF encode proteins associ-
ated with the centromere-kinetochore complex. CENPF 
associates with the kinetochore and maintains this 
association through early anaphase. The localization of 
this protein suggests that it may play a role in chromo-
some segregation during mitosis. CENPE is not present 
during interphase and first appears at the centromere 
region of chromosomes during prometaphase. This pro-
tein is required for stable spindle microtubule capture 
at kinetochores, which is a necessary step in chromo-
some alignment during prometaphase. High expression 
of both CENPE and CENPF was associated with low 
oestrogen and progesterone receptor expression levels 

Fig. 5 Gene Set Enrichment Analysis (GSEA) shows consistent molecular signatures of the aggressive GEC + tumours in several breast cancer 
datasets. The heatmap represents the normalized enrichment score (NES) obtained from the GSEA analysis in ten breast cancer datasets for different 
genes sets. Significantly enriched gene sets are shown in red colours; significantly depleted gene sets are displayed in blue colours. For all the gene 
sets, the enrichment or depletion was considered significant with a nominal p‑value < 0.05 and FDR < 0.25. Grey cells correspond to non‑significant 
results
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in breast cancer [38]. The expression of these genes was 
also reported to be associated with progression and unfa-
vourable prognosis in retinoblastoma, oesophageal ade-
nocarcinoma, melanoma and hepatocellular carcinoma 
[39–42].

Although some of these genes have already been 
described in the literature as prognostic factors in breast 
cancer, our work provided a systematic and comprehen-
sive exploration of known and unknown candidate prog-
nosis biomarkers. An important input of this work is the 
evaluation of the prognosis values of these selected mark-
ers compared to many others reported in the literature, 
that were not validated following our rigorous systematic 
consideration. Indeed, as expected, within the list of our 
testis-specific genes there were many of the known “offi-
cial” cancer-testis antigens from CTdatabase [22]. How-
ever, none of them were found on our GEC.

Interestingly, the GSEA analysis revealed a massive 
overexpression of testis-specific, ESC-like specific genes 
as well as the genes related to spermatogenesis in the 
GEC + aggressive forms of breast cancers, in total accord-
ance with our hypotheses. However, more research is still 
required to characterize and understand the mechanisms 
involved in their oncogenic activities. Indeed, the role of 
these different genes in the tumorigenesis of breast can-
cer seems to be multiple, and involves different molecu-
lar mechanisms, some of which are still in need to be 
investigated. Additionally, our analysis also suggests that 
in many cases of breast cancer, several of these genes 
could be co-expressed. This co-expression suggests that 
they could contribute together to known or yet unknown 
oncogenic pathways, which remain to be investigated.

Conclusions
This work highlights a subset of five tissue-specific 
genes whose expression is strongly and robustly associ-
ated with patients’ survival. Our results are particularly 
encouraging to predict individual survival prognosis in 
breast cancer for each patient, especially at early stages 
of the disease in order to adapt the treatment. This 
approach can be potentially implemented not only with 
RNA-sequencing technique but also with RT-qPCR or 
immunohistochemistry tests which are usually more con-
venient and cost-effective in clinical practice. Such tests 
have been successfully developed for other cancer types 
in our previous studies, for example, in the case of oral 
squamous cell carcinoma [43] or T-cell acute lympho-
blastic leukaemia [44]. Indeed, these five genes or their 
encoded proteins could be used by the scientific and 
medical communities as a basis for further mechanistic 
investigations of aggressive breast cancer as well as for 
the development of diagnostic/prognostic tools and the 
design of new targeted therapies.

Methods
Transcriptomic data
To obtain expression profiles in normal tissues, we 
used RNA sequencing (RNA-seq) data provided by 
the GTEX portal and NCBI Sequence Read Archive 
(datasets PRJNA280600, PRJEB4337, PRJEB2445, 
PRJNA270632, GSE70741, GSE53096). We also used 
10 breast cancer datasets from public data repositories: 
GDC Data Portal, ArrayExpress, NCBI GEO and USCS 
Xena. The detailed description of the datasets is pre-
sented in Supp. Table S4.

The RNA-seq data of normal human tissues from 
GTEX repository and NCBI Sequence Read Archive con-
tain 2955 samples of 48 different tissues: 2913 samples of 
39 adult tissues, 37 samples of 8 foetal tissues and 5 sam-
ples of embryonic stem cells. Some tissues were pooled 
in more general tissue groups. In total, we obtained 26 
tissue groups: 18 tissue groups for adult tissues, 7 tissue 
groups for foetal tissues and 1 tissue group for embryonic 
stem cells. The list of available normal tissues, tissues 
groups and the corresponding sample sizes is provided in 
Supp. Table S5.

The transcriptomic data of microarray datasets 
E-MTAB-365, GSE25066, GSE21653, GSE42568, 
GSE2109, Miller-2005, Naderi-Caldas-2007 and Yau-
2010 were obtained with Affymetrix Human Genome 
Arrays U133 Plus 2.0, U133A and U133B. The data were 
normalized using Robust Multi-array Average (RMA) 
method [45] and then log-transformed. For the TCGA-
BRCA and CPTAC-2 datasets, we used the RNA-seq val-
ues normalized by FPKM method directly provided by 
the GDC Data Portal. The FRKM values were log-trans-
formed by taking log2(1 + FPKM). For the RNA-seq data-
sets of normal tissues, we downloaded pre-processed raw 
counts and normalized them in log-transformed RPKM 
units.

Identification of genes with predominant expression 
profiles
To establish the expression profile of the genes in normal 
tissues, we used RNA-seq data from GTEX public reposi-
tory and NCBI Sequence Read Archive (2955 samples, 48 
tissues). We classified all the genes available in this data-
set in two groups according to their expression profiles 
in normal tissues: predominant expression or ubiquitous 
expression. A predominant expression profile is defined 
as an expression pattern with one tissue determined as 
outlier in the distribution of expression values through 
tissues. These genes show no expression or lower expres-
sion levels in other tissues. To detect the predominant 
tissues, for each gene, we used an outlier detection tech-
nique based on the Z-score:
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where x corresponds to the average expression level in a 
given tissue.

The Z-score was calculated by subtracting the mean 
from the average expression levels in all tissues exclud-
ing foetal tissues, and then dividing the difference by the 
standard deviation. If the Z-score was found above a cer-
tain threshold, corresponding to 60% of the maximum 
Z-score [46] accordingly to the formula:

where N is the total number of tissues, we considered the 
gene to be predominantly expressed in this tissue. The 
predominance of expression was analysed for each gene 
in both the detailed list of tissues (N = 40) and tissues 
groups (N = 19) with the corresponding Z-score thresh-
olds 3.7 and 2.5, respectively.

We then selected the predominant genes in testis, pla-
centa and embryonic stem cells that were not expressed 
or lowly expressed in normal breast (expression level in 
normal breast 10 times lower than in the predominant 
tissue). Applying these criteria, we identified a total of 
1882 predominant genes listed in Supp. Table S1.

Calculating the frequency of abnormal expression 
in breast cancer
Considering the 1882 predominant genes, we calculated 
the frequency of aberrant expression of these genes in 
breast cancer in the TCGA-BRCA dataset, where suf-
ficient numbers of non-tumour and tumour samples 
were available. We set a threshold of expression to the 
mean + 2 standard deviations of the expression signal 
detected in non-tumour breast samples and then cal-
culated the percentage of tumour samples in which the 
expression level was above the threshold.

Survival analysis
We performed a dedicated survival analysis to explore 
the association between aberrant gene expression and 
disease-free survival and to identify robust prognostic 
biomarkers in breast cancer. Our biomarker discovery 
method is based on the published works of [3, 43]. In 
this study, we updated the original method by adding a 
machine learning framework in order to insure the repro-
ducibility of the results in different breast cancer cohorts. 
The main steps of the pipeline are described below and 
also presented in Supp. Figure S2.

Eight cohorts with available survival data were sepa-
rated in the training, validation and test datasets. The 
TCGA-BRCA cohort with the highest sample size and a 

Z score =
x −mean

std

Z score threshold = 0.6
(N − 1)
√
N

long-term follow-up was designed as the training dataset. 
Three other cohorts GSE25066, GSE21653 and GSE42568 
were used as the validation datasets. The objective of the 
validation step was to present to the algorithm the most 
heterogeneous cohorts in terms of sample composition, 
sample size and technology to retain the most stable bio-
markers during the learning process. The additional four 
cohorts E-MTAB-365, Miller-2005, Naderi-Caldas-2007 
and Yau-2010 were used as the test datasets to confirm 
our prognosis prediction tool in completely independent 
cohorts, never seen during the learning process.

In the training step, we checked if it was possible to 
define thresholds that could stratify patients into two 
groups with significantly different prognosis. With this 
purpose, for each gene in the TCGA-BRCA cohort, we 
tested all possible thresholds in the range from the 15th 
to the 85th percentile of expression in tumour samples, 
with a step of a half of percentile. All thresholds were 
analysed using logrank statistical test between the ON 
and OFF groups. We performed these tests in the total 
dataset as well as in the random subsets of samples gen-
erated within threefold cross-validations repeated five 
times. The obtained p-values were adjusted by Benja-
mini–Hochberg procedure. A threshold was considered 
as significant if the corresponding logrank p-value < 0.05, 
FDR < 0.2 and hazard ratio > 1. When several signifi-
cant thresholds were present, we selected one reference 
threshold corresponding to the most stable threshold in 
all cross-validations.

In the validation step, we selected the genes for which 
at least one significant threshold associated with patients’ 
survival probability was found during the training step. 
For these significant thresholds, we determined their cor-
responding percentile ranking in the total distribution 
of tumour samples. We then propagated the thresholds, 
expressed as percentile rankings, to all other datasets. 
Subsequently, we performed the logrank test for these 
genes in the validation cohorts using the same threshold. 
The genes were ordered according to the obtained p-val-
ues and hazard ratios in all validation cohorts. Genes that 
achieved simultaneous significance in at least two out 
of the three validation cohorts, for which the p-values 
obtained in the third cohort were also relatively low < 0.1, 
were chosen as candidate biomarkers.

In the last step, the candidate biomarkers were com-
bined to create a prognosis tool, named Gene Expression 
Classifier or GEC, which stratifies patients according to 
the number of aberrantly activated genes among these 
biomarkers. Finally, the combined GEC tool was tested in 
the independent test cohorts using the logrank test and 
Cox proportional hazard model.

The proposed dedicated approach (named “ectopy”) for 
systematic discovery of prognosis biomarkers in cancers 
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from omics data was implemented in Python program-
ming language. The code of “ectopy” tool is publicly avail-
able on Github repository https:// github. com/ epimed/ 
ectopy.

Gene Set Enrichment Analysis (GSEA)
The GSEA [47, 48] was carried out on the collections C2, 
C5 and H of gene sets made available by the Broad Insti-
tute in the database MSigDB (https:// www. gsea- msigdb. 
org/ gsea), using the GSEA software available on the 
website.
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