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Abstract

We introduce Resilient Multiple Choice Learning (rMCL), an extension of the
MCL approach for conditional distribution estimation in regression settings where
multiple targets may be sampled for each training input. Multiple Choice Learning
is a simple framework to tackle multimodal density estimation, using the Winner-
Takes-All (WTA) loss for a set of hypotheses. In regression settings, the existing
MCL variants focus on merging the hypotheses, thereby eventually sacrificing
the diversity of the predictions. In contrast, our method relies on a novel learned
scoring scheme underpinned by a mathematical framework based on Voronoi tessel-
lations of the output space, from which we can derive a probabilistic interpretation.
After empirically validating rMCL with experiments on synthetic data, we further
assess its merits on the sound source localization task, demonstrating its practical
usefulness and the relevance of its interpretation.

1 Introduction

Machine learning models are commonly trained to produce, for any given input, a single prediction.
In most cases, for instance, when minimizing the empirical risk with quadratic loss, this prediction
can be interpreted as the conditional output expectation given the input. However, there are many
tasks for which the conditional output distribution can be multimodal, either by the nature of the task
or due to various sources of uncertainty. Temporal tracking and forecasting, for instance, are problems
of this type [5, 32, 44]. In such cases, the mean might fall in a low-density region of the conditional
probability function, and it would be beneficial to predict multiple hypotheses instead [34, 20]. In
this context, Multiple Choice Learning (MCL) has emerged as a simple pragmatic solution [17, 29].
Thanks to a network architecture with multiple heads, MCL models can produce multiple hypotheses,
one per head. During supervised training, the gradients are only computed for the head that provides
the best prediction given the current input sample. This Winner-Takes-All (WTA) training scheme
allows each head to specialize in a region of the output space. Accordingly, Rupprecht et al. [34]
have proposed a probabilistic interpretation of MCL based on Voronoi tessellations.

On that account, MCL suffers from two significant issues: hypotheses collapse and overconfidence.
Hypotheses collapse occurs during training when a head takes the lead, the others being almost never
selected under WTA and thus not updated. This leads to a situation where most heads are not trained
effectively and produce meaningless outputs during inference. Overconfidence can also be observed
at inference time when looking at MCL under the lens of its probabilistic interpretation. Hypotheses
that correspond to rare events tend to be over-represented, thus not reflecting the true distribution of
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outputs well. Multiple variants of MCL have been developed to alleviate these issues, in particular
for classification or segmentation tasks [29, 27, 42, 13].

In this paper, we are interested in MCL in the context of regression settings, which has been mostly
overlooked. More specifically, we propose rMCL, for resilient Multiple Choice Learning, a MCL
variant with a learned scoring scheme to mitigate overconfidence. Unlike prior work, rMCL is
designed to handle more general settings where multiple targets may be sampled for each input
during training. Moreover, we propose a probabilistic interpretation of rMCL, and show that rMCL’s
scoring fixes overconfidence by casting multi-choice regression as conditional distribution estimation.
While introduced in the context of the original WTA loss, the proposed scoring approach is also
compatible with other variants of WTA. We validate our claims with experiments on synthetic data,
and we further evaluate the performance of rMCL on the sound source localization problem. The
accompanying code with a rMCL implementation is made available.1

2 Related Work

Uncertainty estimation. The estimation of machine learning model’s uncertainty can be studied
from different perspectives depending on the type of ambiguity being considered. The uncertainty can
concern either the model (epistemic) or the data (aleatoric) [7, 12]. Kendall and Gal [22] showed that
those types of uncertainty can be combined in deep learning settings, placing both a distribution on the
weights and the outputs of the model. Epistemic uncertainty estimation may, for instance, be achieved
by variational approximation of the weights posterior [31, 14]. Independent ensembles (IE) of neural
networks [18, 11] is another widespread technique for epistemic uncertainty approximation. Several
neural networks, trained from different random initializations, provide samples for approximating the
weights posterior distribution [26].

Multiple Choice learning. Originally introduced by Guzman-Rivera et al. [17] and adapted to deep
learning settings by Lee et al. [28, 29], MCL is a framework in which multiple output heads propose
different possible predictions. Since many datasets contain only a single output realization for each
input, the heads are trained with a Winner-Takes-All scheme where only the head that made the best
prediction is updated. It can be understood as a specific case of dependent ensembles [8, 46, 4, 47]
where the members interact with each other during training. Alternatively, [34] have shown that MCL
can be adapted successfully for multi-label classification [23].

The Winner-Takes-All training scheme, however, can cause two main issues known as hypothesis
collapse and overconfidence [34, 6, 10, 19, 10, 27, 42]. Most related previous works tackle either or
both of those questions. Hypothesis collapse occurs during training when some heads receive little or
no updates due to bad initial values under the WTA loss and other hypotheses taking the lead. To fix
this issue, Rupprecht et al. [34] proposed a relaxed Winner-Takes-All (RWTA, or ε-WTA) loss that
allows the update of non-winner heads, albeit with gradients scaled by a small constant ε. While this
approach ensures that every head receives gradients updates, it also tends to level the different heads,
which counters the initial goal of WTA and thus needs careful tuning. Finally, one can leverage the
evolving Winner-Takes-All loss [32], with the top-n heads getting updated (top-n-WTA) instead of
only the best one. The authors validate that their approach, with a scheduled decreasing value for n,
achieves improved conditioning of the outputs by reducing inconsistent hypotheses in the context of
future frames prediction.

On the other hand, overconfidence is an issue that can be observed in inference when evaluating a
model as a density estimator. In this case, one would want the different outputs to be distributed
across the different modes of the true conditional probability of the outputs. Empirical observations
[27, 42] show that this is not usually the case, and rare events tend to be overly represented, rendering
such a model inadequate for integration within real-world decision-making systems. In this context,
Lee et al. [27] proposed Confident Multiple Choice Learning (CMCL) for solving overconfidence in
a classification setup. Additionally to the WTA loss, CMCL is trained by maximizing the entropy of
the class distributions predicted by the non-selected hypotheses. The classifier’s final prediction is
based on a simple average of the discrete class distributions predicted by each of the heads. Although
designed for tackling the overconfidence problem, CMCL reduces the diversity of the hypotheses.
On that account, Versatile Multiple Choice Learning [42] (vMCL) proposed to address the issue by
leveraging a choice network aiming at predicting a score for each hypothesis head. This may be seen
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as a variant of Mixture-of-Experts approaches [33], in which the choice network is supervised with
explicit targets. The final prediction in vMCL is derived by weighting the class distributions from
each hypothesis by their respective scores. These works focus on classification tasks and aggregate the
hypotheses, thereby losing individual information from each head. In contrast, we address regression
tasks and demonstrate how to benefit from the diversity of predictions without aggregation.

We propose to revisit the vMCL approach for regression, single-target or multi-target, and to extend
accordingly the mathematical interpretation of the WTA proposed by Rupprecht et al. [34].

3 rMCL regression and its probabilistic interpretation

After reviewing MCL, this section introduces resilient Multiple Choice Learning, dubbed rMCL.
This proposed variant handles multi-target settings thanks to its scoring scheme. We then provide a
distribution learning interpretation for rMCL that generalizes to regression tasks, thus completing the
MCL probabilistic interpretations of prior works [9, 34].

3.1 Fixing the overconfidence issue in Multiple Choice Learning

Let X ⊆ Rd and Y ⊆ Rq be the input and output spaces in a supervised learning setting, such that
the training set D is composed of samples (xs,ys) from an underlying joint distribution p(x,y) over
X × Y .

Multiple choice learning was proposed to address tasks with ambiguous outputs, i.e., for which
the ground-truth distribution p(y |x) is multimodal [17, 29, 10]. Adapted by Lee et al. [29] for
deep-learning settings in Stochastic Multiple Choice Learning (sMCL), it leverages several models
fθ , (f1

θ , . . . , f
K
θ ) ∈ F(X ,YK), referred to as K hypotheses, trained using the Winner-takes-all

(or Oracle) loss. It consists, given an underlying loss function ` and for each sample (xs,ys) in the
current batch, of first the computation of

L(fθ(xs),ys) , min
k∈[[1,K]]

`
(
fkθ (xs) ,ys

)
(1)

after each forward pass, followed by backpropagation on the winner hypothesis, that is, the minimizing
one. Assuming now that a set Ys of targets is available in the training set for input xs, Firman et
al. [10] have shown that (1) can be generalized by updating the best hypothesis per target using the
meta-loss

L (fθ (xs) ,Ys) =
∑
y∈Ys

K∑
k=1

1
(
y ∈ Yk (xs)

)
`
(
fkθ (xs) ,y

)
, (2)

where
Yk(x) ,

{
y ∈ Y, `

(
fkθ (x),y

)
< ` (frθ (x),y) , ∀r 6= k

}
. (3)

This loss can, however, lead to poor conditioning of the output set of predictions (hypothesis collapse),
with only one or a few hypotheses being exclusively selected for backpropagation. Furthermore,
sMCL is subject to the overconfidence problem. Following Theorem 1 of [34], a necessary condition
for minimizing the risk ∫

X

K∑
k=1

∫
Yk(x)

`
(
fkθ (x),y

)
p(x,y)dydx, (4)

is that fkθ (x) amount to the conditional mean of p(y |x) within the Voronoi cell Yk(x) for each non-
zero probability cell. We say that the components {Yk(x)}k form a centroidal Voronoi tessellation
[9]. However, this Theorem tells us nothing about the predictions of fkθ in very low probability
zones; in such regions, the inference-time predictions fkθ (x) will be meaningless. During inference,
the sMCL indeed faces a limitation: it cannot solely rely on the predicted hypotheses to identify
Voronoi cells in the output space with low probability mass (See Figure 1). This observation leads us
to propose hypothesis-scoring heads γ1

θ, . . . ,γ
K
θ ∈ F(X , [0, 1]). Those aim to predict, for unseen

input x, the probability P(Yx ∈ Yk(x)) where Yx ∼ p(y |x) with the aim of mitigating this
overconfidence issue. While MCL variants have often been proposed for classification tasks, we
are, to the best of our knowledge, the first to propose to solve this issue for multi-target regression,
interpreting the problem as a multimodal conditional distribution estimation.
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3.2 Resilient Multiple Choice Learning

We consider hereafter a problem of estimation of a multimodal conditional distribution denoted
p(y |x) for each input x ∈ X . In a real-world setting, only one or several samples (the targets)
drawn from p(y |x) are usually accessible. Sound source localization is a concrete instance of such
multimodal prediction for whose p(y |xs) represents the sound source position for an input audio
clip xs ∈ X at a given time t.

In this last example, each target sample in Ys may represent the location of a mode of the ground-truth
multimodal distribution. For such multi-output regression tasks, the MCL training of a randomly
initialized multi-hypotheses model with scoring functions, (f1

θ , . . . , f
K
θ ,γ

1
θ, . . . ,γ

K
θ ) can be adapted

as follows.

For each training sample (xs,Ys), let

K+(xs) ,

{
k+ ∈ [[1,K]] : ∃y ∈ Ys, k+ ∈ argmin

k
`(fkθ (xs),y)

}
(5)

and K−(xs) , [[1,K]]−K+(xs) be the set of positive (or winner) and negative hypotheses respec-
tively. It is then possible to combine the multi-target WTA loss L in (2) with a hypothesis scoring
loss

Lscoring(θ) , −
( ∑
k+∈K+(xs)

log γk
+

θ (xs) +
∑

k−∈K−(xs)

log
(

1− γk
−

θ (xs)
))

, (6)

in a compound loss L+βLscoring. This novel approach differs from previous MCL variants [42] in its
ability to predict multimodal distributions in regression settings and by the introduction of separated
scoring branches that are updated based on loss (6), such that the target for the scoring branch k is
the probability that hypothesis k is among the winners for that sample.

A resource-efficient implementation of rMCL is achieved by deriving the hypotheses and score heads
from a shared representation, with distinct parameters at the final stages of the architecture (e.g.,
through independent fully connected layers). Designed as such, it is also possible to reduce memory
cost by updating only a fraction of score heads associated with the negative hypotheses at each
training step, typically with distinct samples k− ∼ U (K−(xs)). This trick could also alleviate the
imbalanced binary classification task that the scoring heads face with a large number of hypotheses
|K−(xs)| � |K+(xs)| (typically, the number of target samples at disposal is small relative to the
number of hypotheses K). The variants of the WTA (e.g., top-n-WTA, ε-WTA, see Sec. 2) are also
compatible with rMCL. Inference with the proposed rMCL model is outlined in Algorithm 1.

As highlighted above, the hypothesis output can be interpreted, in the context of risk minimization,
as the conditional mean of the Voronoi cell Yk(x) it defines, providing that the cell has non-zero
probability. Furthermore, given (6), the output of the score head γkθ(x) can be interpreted as an
approximation of the probability of a sample from p(y |x) to belong to this cell.

Algorithm 1 Inference in the rMCL model

Input: Unlabelled input x ∈ X . Trained hypotheses and score heads
(f1
θ , . . . , f

K
θ ,γ

1
θ, . . . ,γ

K
θ ) ∈ F(X ,Y)K ×F(X , [0, 1])K .

Output: Prediction of the output conditional distribution p(y |x).
1: Perform a forward pass by computing f1

θ (x), . . . , fKθ (x),γ1
θ(x), . . . ,γKθ (x).

2: Construct the associated Voronoi components Yk(x) (3) with Y = ∪Kk=1Yk(x).
3: Normalize the predicted scores γkθ(x)← γkθ (x)/

∑K
k=1 γ

k
θ (x).

4: If Yx ∼ p(y |x), then for k such that γkθ(x) > 0, interpret the predictions as estimations of{
γkθ(x) = P(Yx ∈ Yk(x))
fkθ (x) = E[Yx |Yx ∈ Yk(x)]

(7)

3.3 Probabilistic interpretation at inference time

Let us consider a trained rMCL model, such as the one described in the previous section. Following
the theoretical interpretation of [34] and the motivation of solving the overconfidence issue, as
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explained in Section 3.1, the output objectives of the model can be summarized in (7). Although it is
possible, assuming that those properties are verified, to deduce the following law of total expectation

E[Yx] =

K∑
k=1

γkθ(x)fkθ (x), (8)

the above quantity may not be informative enough, especially if the law of Yx ∼ p(y |x) is
multimodal. Indeed, to be able to derive a complete probabilistic interpretation, we still need to
characterize how rMCL approximates the full conditional density of Yx. For that purpose, it is
sufficient to fix a law πk for Yx within each Voronoi cell k to accurately represent the predicted
distribution in each region of the output space as per the rMCL model, as shown in Proposition 1.
Proposition 1 (Probabilistic interpretation of rMCL). With the above notations, let us consider a
multi-hypothesis model with properties of (7). Let us furthermore assume that

Y kx ∼ πk(· |x) (9)

i.e., the law Y kx of Yx conditioned by the event {Yx ∈ Yk(x)} is described by πk for each input
x ∈ X with constraint E[Y kx ] = fkθ (x). Then, for each measurable set A ⊆ Y ,

P(Yx ∈ A) =

∫
y∈A

K∑
k=1

γkθ(x)πk(y |x)dy. (10)

Proof. We have

P(Yx ∈ A) =
∑
k P(Yx ∈ A ∩ Yk(x)) (by sigma-additivity)

=
∑
k P(Yx ∈ Yk(x))P(Yx ∈ A |Yx ∈ Yk(x)) (by Bayes’ theorem)

=
∑
k γ

k
θ(x)

∫
y∈A πk(y |x)dy (by (9)). �

Following the principle of maximum entropy [38], the uniform distribution inside each cell Y kx ∼
U(Yk(x)) is the least-informative distribution, assuming that the output space Y is with finite volume
and the hypotheses lie in the geometric center of their associated cell. With this prior, the predicted
distribution can be interpreted as

p̂(y |x) =

K∑
k=1

γkθ(x)
1
(
y ∈ Yk(x)

)
V(Yk(x))

, (11)

where V(Yk(x)) ,
∫
y∈Yk(x)

dy is the volume of Yk(x). Similarly, if we model the output dis-
tribution as a mixture of Dirac deltas such that in each cell k, γkθ(x) > 0 ⇒ Y kx ∼ δfkθ (x), then

p̂(y |x) =

K∑
k=1

γkθ(x)δfkθ (x)(y). (12)

3.4 Toy example

We build upon the toy example formalized in [34, §4.1] to validate the proposed algorithm and its
interpretation. In particular, we seek to illustrate how rMCL handles the overconfidence problem
in a regression task. The toy problem involves the prediction of a 2D distribution p(y | t) based on
scalar input t ∈ X (the time), where X = [0, 1]. The training dataset is constructed by selecting
for each random input t ∼ U ([0, 1]) one of the four sections S1 = [−1, 0) × [−1, 0), S2 =
[−1, 0) × [0, 1], S3 = [0, 1] × [−1, 0), S4 = [0, 1] × [0, 1], with probabilities p (S1) = p (S4) =
1−t

2 , p (S2) = p (S3) = t
2 . Whenever a region is selected, a point is then sampled uniformly in this

region. To slightly increase the complexity of the dataset, it has been chosen to enable the sampling
of two (instead of one) target training samples with probability q(t) for each input t. Here, q is a
piece-wise affine function with q(0) = 1, q( 1

2 ) = 0, and q(1) = 1.

We compared the behavior of our proposed approach rMCL against sMCL and independent ensembles
(IE) using a 3-layer perceptron backbone with 256 hidden units and 20 output hypotheses, and `2 as
the underlying distance. For rMCL, we used scoring weight β = 1. In addition to the full-fledged
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rMCL, we assess a variant denoted ‘rMCL∗’ where a single negative hypothesis is uniformly selected
during training. For independent ensembles, we trained with independent random initialization
20 single-hypothesis models, the predictions of which being combined to be comparable to multi-
hypothesis models. The training processes were executed until the convergence of the training loss.
We report the checkpoints for which the validation loss was the lowest. All networks were optimized
using Adam [24]. We show in Figure 1 (top right) test predictions of the classical sMCL compared to
those of the rMCL model. In visualizing the predictions where the ground-truth distribution is known,
we observe empirically that the centroidal tessellation property, E[Y kx ] = fkθ (x), is verified with
good approximation (see red points Figure 1, bottom right). We otherwise notice the overconfidence
problem of the sMCL model in low-density zones when the output distribution is multimodal by
looking at the output prediction, e.g., for t = 0.1 and t = 0.9 in Figure 1 where the sMCL predictions
fail in low-density zones. In contrast, rMCL solves this issue, assigning to each Voronoi cell a score
that approximates the probability mass of the ground-truth distribution in this zone (see Figure 1,
bottom). Furthermore, the independent ensembles (triangles) suffer from a collapse issue around the
conditional mean of the ground-truth distribution. This behavior is expected as the minimizer of the
continuous formulation of the risk (4) on the whole output space is the conditional expectation of the
output given the input.

Figure 1: Comparisons on a 2D regression toy problem. Comparing sMCL with standard WTA
(‘sMCL’, pink diamonds), proposed rMCL (blue circles), a variant of rMCL with a single negative
hypothesis chosen uniformly at training (‘rMCL∗’, purple crosses), and Independent Ensemble (‘IE’,
yellow triangles). (Left) Test EMD for different time t; (Right) Inference at t = 0.1, 0.6, 0.9 and
Voronoi tessellations generated by the hypotheses. Green points are samples from the ground-truth
distribution at the corresponding time step. Cells conditional mean (red points) matches with the
predicted hypotheses. The score predicted in each cell, displayed as color saturation of the blue
circles, as per scale on the right, approximates the corresponding proportion of points. At t = 0.1
and 0.9, we can observe how rMCL tackles well the overconfidence issue in the low-density zones.

From a quantitative perspective, as demonstrated in Fig. 1, we can evaluate the effectiveness of
rMCL in addressing the overconfidence issue compared to the classical sMCL. To ensure a fair
comparison with sMCL settings, we have opted for using the Earth Mover’s Distance (EMD) metric,
which measures the discrepancy between the ground truth and predicted distributions. Predicted
distributions are considered mixtures of Dirac deltas as in (12) for the metric computation, with
sMCL predictions assigning uniform mode weights. As depicted in Fig. 1, rMCL outperforms sMCL
when the target distribution is multimodal, i.e., for extreme values of t. However, in the unimodal
scenario, the performances of rMCL and sMCL are fairly similar. Furthermore, the ‘rMCL∗’
variant (depicted by crosses) that is lighter regarding memory consumption exhibits performance
comparable to the standard rMCL. Additional assessments, which are detailed in Appendix B.2, have
demonstrated the robustness of the rMCL when corrupting the training dataset with outliers in the
output space.
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4 Experiments with audio data

4.1 Sound source localization as a conditional distribution estimation problem

Sound source localization (SSL) is the task of predicting the successive angular positions of audio
sources from a multichannel input audio clip x ∈ X [15]. This problem can be cast either as a
regression problem (estimating the continuous positions of the sources, e.g., [37]) or a classification
one (segmenting the output space into zones in which we wish to detect a source, e.g., [2]). While
not requiring the number of sources to be known in advance, the classification approach suffers
from the lack of balanced data and limited spatial resolution. On the other hand, the regression
approach enables off-grid localization but typically suffers from the source permutation problem [40].
Assuming that the maximum number of overlapping sources M is known, a solution for handling
this multi-target regression problem is to predict, at each time frame t depending on the chosen
output resolution, a vector accounting for the sources’ activity at ∈ {0, 1}M , as well as azimuth
and elevation angles φt ∈ RM and ϑt ∈ RM . A model can be trained with a permutation invariant
training (PIT) approach [1, 37, 45] using an optimization criterion of the form

L(θ) =
∑
t

min
σ∈SM

`CE (σ(ât),at) + `g

(
(σ(φ̂t), σ(ϑ̂t)), (φt,ϑt)

)
, (13)

where `CE and `g correspond respectively to a cross-entropy term and a geometrical loss, the latter
being computed only for active sources indexes. SM is the set of permutations of M elements and
the notation σ(z) stands for the M -dim vector z with its components permuted according to σ. In
the following, we will denote Yt the set of source positions at time t.

With the distribution learning mindset, this task can be seen as an attempt to estimate, at each
time step, the sound source position distribution p(y |x), which can be viewed as a Dirac mixture,
p(y |x) ∝

∑
yt∈Yt

δyt(y), if we suppose that the targets are point-wise, with another Dirac mixture
representing the predicted active modes at predicted positions. Therefore, a natural way to evaluate
such SSL regression models is to solve the linear assignment problem, e.g., using Hungarian matching
with spherical distance as an underlying metric. To handle more general distributions, we propose to
generalize the metric used to the Earth Mover’s Distance (see Sec. 4.2).

The rMCL framework is well suited to SSL as it allows one to benefit from both the advantages
of the regression and classification viewpoints in the same spirit as [41]. There is no need for
prior knowledge of the number of sources, and it avoids challenges related to imbalanced spatial
positions and the source permutation problem of (13). This method comes at a low computational
cost regarding added parameters when opting for a low-level representation shared by the hypotheses
and scores heads (see Sec. 3.2). Furthermore, it allows for producing a heat map of the sound sources’
positions with a probabilistic prediction, which could otherwise account for their spatial dispersion
depending on the chosen law πk selected in the Voronoi cells. Modeling the sound sources as point
sources, a delta law will be selected following the formulation of Proposition 1.

4.2 Experimental setup

Datasets. We conducted our experiments on increasingly complex SSL datasets originally introduced
by Adavanne et al. [1]: i) ANSYN, derived from DCASE 2016 Sound Event Detection challenge with
spatially localized events in anechoic conditions and ii) RESYN, a variant of ANSYN in reverberant
conditions. Each dataset is divided into three sub-datasets depending on the maximum number of
overlapping events (1, 2, or 3, denoted as D1, D2, and D3). These sub-datasets are further divided
into three splits (including one for testing). Each training split contains 300 recordings (30 s), of
which 60 are reserved for validation. Preprocessing is detailed in Appendix A.2. For each experiment,
we used all training splits from D1, D2, and D3. Evaluation was then conducted for each test set
based on the overlapping levels. Moreover, we present results from additional SSL datasets, including
REAL [1] and DCASE19 [3], in Appendix B.3.

Metrics. To assess the performance of the different methods, we employed the following metrics:

• The ‘Oracle’ error (↓): O(xn,Yn) = 1
|Yn|

∑
yn∈Yn

mink∈[[1,K]] d
(
fkθ (xn) ,yn

)
.

• The Earth Mover’s Distance (EMD ↓): also known as the 1st Wasserstein distance, it
is a distance between the predicted distribution p̂(y |xn) =

∑K
k=1 γ

k
θ(xn)δfkθ (xn)(y)
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and the ground-truth one p(y |xn) = 1
|Yn|

∑
yn∈Yn

δyn(y). The EMD solves the opti-

mization problem W1 (p(·|xn), p̂(·|xn)) = minψ∈Ψ

∑K
k=1

∑
yn∈Yn

ψk,nd(fkθ (xn),yn),

where ψ =
(
ψ(fkθ (xn),yn)

)
k,n

is a transport plan and Ψ is the set of all valid transport
plans [21].

While the oracle error assesses the quality of the best hypothesis predicted for each target, the
EMD metric looks at all hypotheses. It provides insight into the overall consistency of the pre-
dicted distribution. The EMD also penalizes the overconfidence issue of the WTA with sMCL
as described in Sec. 3.4. In order to fit the directional nature of the sound source localiza-
tion task, these metrics are computed in a spherical space equipped with distance d(ŷ,y) =

arccos[sin(φ̂) sin(φ) + cos(φ̂) cos(φ) cos(ϑ − ϑ̂)], where (φ̂, ϑ̂) and (φ, ϑ) are source positions
ŷ and y, respectively, expressed as azimuth and elevation angles.

Neural network backbone. We employed the CRNN architecture of SeldNet [1] as a backbone,
which we modified to enable multi-hypothesis predictions. This adaptation involves adjusting the
output format and duplicating the last fully-connected layers for hypothesis and scoring heads.
As only the prediction heads are adjusted, the number of parameters added to the architecture is
negligible. Refer to Appendix A.2 for additional architecture and training details.

Baselines. We compared the proposed rMCL with several baselines, each utilizing the same feature-
extractor backbone as previously described. The baselines include a Permutation Invariant Training
variant (‘PIT variant’) proposed in [37] for SSL, the conventional WTA setup (‘WTA, 5 hyp.’) and
its single hypothesis variant (‘WTA, 1 hyp.’), its ε-relaxed version with ε = 0.5 (‘ε-WTA, 5 hyp.’)
and its top-n variant with n = 3 (‘top-n-WTA, 5 hyp.’), as well as independent ensembles (‘IE’). To
ensure a fair comparison, we used the same number of 5 hypotheses for the WTAs, sufficient to cover
the maximum of 3 sound sources in the dataset (refer to Sec. 4.5 and the sensitivity study in Table 4).
For the single hypothesis WTA, the head is updated by only considering the best target, as this fares
better than using one update per target. IE was constructed from five such single hypothesis WTA
models trained independently with random initialization.

4.3 Comparative evaluation of rMCL in SSL

Table 1: Source localization in anechoic conditions. Average scores (± standard deviation) on
ANSYN dataset for PIT, IE, various WTA-based methods, and proposed rMCL. The ‘EMD’ evaluates
all the hypotheses jointly, while the ‘Oracle’ error only looks at the best hypotheses. D1 corresponds
to the single-target setting, while D2 and D3 consider up to 2 and 3 targets, respectively.

Dataset: ANSYN EMD D1 EMD D2 EMD D3 Oracle D1 Oracle D2 Oracle D3

PIT variant 6.22 ± 0.80 14.65 ± 1.22 23.41 ± 1.39 3.58 ± 0.46 10.58 ± 0.91 18.10 ± 1.04
IE (5 members) 4.05 ± 0.48 21.64 ± 2.29 34.34 ± 2.37 1.24 ± 0.24 16.91 ± 2.05 28.82 ± 2.25
WTA, 1 hyp. 3.97 ± 0.55 24.69 ± 2.72 39.66 ± 2.67 3.97 ± 0.55 24.69 ± 2.72 39.66 ± 2.67
WTA, 5 hyp. 48.22 ± 1.78 44.41 ± 1.25 41.83 ± 0.96 3.56 ± 0.39 6.53 ± 0.44 10.44 ± 0.58
top-n-WTA, 5 hyp. 5.14 ± 0.80 18.09 ± 1.32 25.12 ± 1.30 3.33 ± 0.46 7.48 ± 0.79 13.54 ± 0.96
ε-WTA, 5 hyp. 5.51 ± 0.66 19.20 ± 1.78 28.39 ± 1.68 3.62 ± 0.57 10.86 ± 1.26 17.44 ± 1.22
rMCL, 5 hyp. 7.04 ± 0.58 13.87 ± 0.99 20.76 ± 1.04 3.85 ± 0.46 7.16 ± 0.67 11.29 ± 0.78

Table 2: Source localization in reverberant conditions. Results on RESYN dataset, with same
table layout as in Table 1.

Dataset: RESYN EMD D1 EMD D2 EMD D3 Oracle D1 Oracle D2 Oracle D3

PIT variant 10.53 ± 0.90 25.09 ± 2.14 35.05 ± 1.98 4.89 ± 0.55 15.92 ± 1.36 24.95 ± 1.62
IE (5 members) 8.24 ± 1.02 26.65 ± 2.49 38.7 ± 2.62 3.77 ± 0.61 20.95 ± 2.27 32.85 ± 2.48
WTA, 1 hyp. 8.32 ± 1.28 29.26 ± 2.85 43.25 ± 2.94 8.32 ± 1.28 29.26 ± 2.85 43.25 ± 2.94
WTA, 5 hyp. 57.88 ± 1.71 51.74 ± 1.36 47.38 ± 1.26 5.81 ± 0.58 9.46 ± 0.71 13.33 ± 0.69
top-n-WTA, 5 hyp. 42.74 ± 2.86 37.25 ± 1.88 36.48 ± 1.40 6.21 ± 0.79 11.02 ± 1.00 17.32 ± 1.11
ε-WTA, 5 hyp. 8.84 ± 1.09 27.3 ± 2.52 38.43 ± 2.42 6.48 ± 0.95 20.54 ± 2.33 30.18 ± 2.15
rMCL, 5 hyp. 12.14 ± 1.12 24.45 ± 1.91 32.28 ± 1.85 5.74 ± 0.66 10.5 ± 0.87 14.6 ± 0.87
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We present in Tables 1 and 2 the results of rMCL and baselines in the anechoic (ANSYN) and rever-
berant (RESYN) conditions, respectively. The consistency of the results should be noted. For each
model, the metrics tend to improve as the number of sources decreases and, under similar conditions,
results are marginally lower for more challenging datasets. Unsurprisingly, the single hypothesis
approach exhibits strong performances in the unimodal cases (D1), but performs significantly worse
in the multimodal cases (D2 and D3). Ensembling (IE) improves its performance but still displays the
lack of diversity already exposed in Section 3.4. As for the 5-hypothesis WTA, in its original form, it
is ill-suited for multi-target regression due to the overconfidence issue: despite a strong oracle metric,
the EMD results are very poor. On the other hand, rMCL surpasses its competitors and shows the
best EMD in every multimodal setting. It also consistently obtains the second-best oracle error, only
slightly above WTA, while not suffering from overconfidence.

We also present results for REAL and DCASE19 in Appendix B.3, that display similar trends. We
did not observe the collapse issue (see Section 3.1) in our settings, neither with WTA nor with the
proposed rMCL model. We believe it is solved in practice by the variability of the data samples in the
stochastic optimization during training [19]; refer to Appendix B.1 for further discussions.

4.4 Combining rMCL with other WTA variants

Table 3: Combining proposed rMCL with other WTA variants. Average scores (± standard
deviation) for source localization in anechoic (top) and reverberant (bottom) conditions.

Dataset: ANSYN EMD D1 EMD D2 EMD D3 Oracle D1 Oracle D2 Oracle D3

rMCL, 5 hyp. 7.04 ± 0.58 13.87 ± 0.99 20.76 ± 1.04 3.85 ± 0.46 7.16 ± 0.67 11.29 ± 0.78
top-n-rMCL, 5 hyp. 5.46 ± 0.62 13.88 ± 1.06 21.45 ± 1.10 4.2 ± 0.55 8.04 ± 0.74 13.72 ± 0.89
ε-rMCL, 5 hyp. 5.89 ± 0.69 12.13 ± 0.98 19.95 ± 1.16 3.6 ± 0.54 8.76 ± 0.89 14.47 ± 1.02

Dataset: RESYN EMD D1 EMD D2 EMD D3 Oracle D1 Oracle D2 Oracle D3

rMCL, 5 hyp. 12.14 ± 1.12 24.45 ± 1.91 32.28 ± 1.85 5.74 ± 0.66 10.5 ± 0.87 14.6 ± 0.87
top-n-rMCL, 5 hyp. 9.3 ± 1.15 23.81 ± 2.22 33.33 ± 2.06 6.99 ± 0.85 13.43 ± 1.40 19.72 ± 1.29
ε-rMCL, 5 hyp. 8.64 ± 1.03 22.82 ± 2.12 32.47 ± 1.97 6.08 ± 0.91 18.39 ± 2.07 26.92 ± 1.94

As noted in Section 3.2, rMCL’s improvements are, in theory, orthogonal to that of other WTA variants.
In this section, we combine the rMCL with top-n-WTA and ε-WTA approaches into respectively
top-n-rMCL and ε-rMCL. The results are shown in Tables 3. We note that while top-n rMCL does
not provide significant improvement to rMCL, ε-rMCL, on the other hand improves EMD scores
at the expense of increased oracle error. We observe similar effects when this method is applied to
WTA, indicating that there are indeed some additive effects of ε-WTA and rMCL. Also note that with
regards to Tables 1 and 2, all the proposed variants still get better EMD than all competitors under
multimodal conditions, showing the robustness of our method.

4.5 Effect of the number of hypotheses

The impact of varying the number of hypotheses on the performance of the rMCL model is presented
in Table 4 and Figure B.4. First and foremost, we notice the anticipated trend of the oracle metric
improving as the number of hypotheses increases. Concerning the EMD metric, the single hypoth-
esis model, which avoids errors from negative hypotheses, is most effective in handling unimodal

Table 4: Sensitivity analysis. Effect of the number of hypotheses on the performance of rMCL.

Dataset: ANSYN EMD D1 EMD D2 EMD D3 Oracle D1 Oracle D2 Oracle D3

PIT variant 6.22 ± 0.80 14.65 ± 1.22 23.41 ± 1.39 3.58 ± 0.46 10.58 ± 0.91 18.10 ± 1.04
WTA, 1 hyp. 3.97 ± 0.55 24.69 ± 2.72 39.66 ± 2.67 3.97 ± 0.55 24.69 ± 2.72 39.66 ± 2.67
rMCL, 3 hyp. 9.89 ± 0.95 14.37 ± 0.91 20.96 ± 1.03 5.65 ± 0.73 8.6 ± 0.63 13.42 ± 0.86
rMCL, 5 hyp. 7.04 ± 0.58 13.87 ± 0.99 20.76 ± 1.04 3.85 ± 0.46 7.16 ± 0.67 11.29 ± 0.78
rMCL, 10 hyp. 9.14 ± 0.76 15.2 ± 0.84 21.28 ± 0.96 2.94 ± 0.35 4.76 ± 0.39 7.54 ± 0.50
rMCL, 20 hyp. 9.13 ± 0.71 16.04 ± 0.84 22.55 ± 0.87 2.06 ± 0.22 3.61 ± 0.30 5.83 ± 0.37
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distributions. In the case of the EMD metric applied to multimodal distributions, we observe that
multiple hypothesis models improve the results, but excessively increasing the number of hypotheses
may marginally degrade performances. A further study could examine this phenomenon in detail,
which may be related to the expressive power of the hypothesis heads or the accumulation of errors
in score heads predictions.

5 Discussion and limitations

In the audio experiments, the performance of rMCL was found to be affected by the number of
hypotheses to tune depending on the complexity of the dataset. Moreover, as with the other variants
of WTA, fixing the overconfidence issue with rMCL slightly degrades the performance of the best
hypothesis (oracle error) for a reason that is yet to be determined. Otherwise, while ε-WTA behaves
as expected with rMCL, trading off the quality of the best hypotheses for overall performance,
top-n-WTA does not exhibit the same behavior. This discrepancy warrants further investigation.

The probabilistic interpretation of rMCL, as presented in Algorithm 1 and in Sec. 3.3, states that
the different hypotheses would be organized in an optimal partition of the output space, forming
a Voronoi tessellation. Ideally, each hypothesis would capture a region of the distribution, and the
scores representing how likely this zone would activate in a given context. This interpretation remains
theoretically valid whenever train and test examples are sampled from the same joint distribution
p(x,y). However, in realistic settings, the hypotheses might not adhere to meaningful regions, but
this could be controlled and evaluated, provided that an external validation dataset is available. In
future work, we intend to use calibration techniques [16, 39] to identify and alleviate these issues.

To sum up, this paper proposes a new Multiple Choice Learning variant, suitable for tackling the MCL
overconfidence problem in regression settings. Our method is based on a learned scoring scheme
that handles situations where a set of targets is available for each input. Furthermore, we propose
a probabilistic interpretation of the model, and we illustrate its relevance with an evaluation on
synthetic data. Its practical usefulness is also demonstrated in the context of point-wise sound source
localization. Further work could include a specific study about the specialization of the predictors,
and the validation of the proposed algorithm in increasingly complex real-world datasets.
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A Experimental setup

A.1 Synthetic data experiments

Dataset. As described in the main paper, the synthetic dataset (§3.4) is based on [34, §4.1]. The
complexity of the dataset was increased by allowing two (instead of one) target training samples at
each time step. The probability q(t) of sampling two targets instead of a single one at a time t is
chosen as the piece-wise affine function such that q(0) = q(1) = 1 and q( 1

2 ) = 0. This modification
aimed to demonstrate how rMCL handles multiple targets sampled for each input during training.

Architectures. We use a three-layer perceptron backbone with 20 output hypotheses and a ReLu
activation function for each layer and 256 hidden units. The multi-hypothesis splitting is carried out
at the final layer stage. The scoring heads of the rMCL model receive the same representation as the
hypothesis heads. The ensemble members have the same backbone but use a single hypothesis at the
output stage. The rMCL∗ model has the same architecture as rMCL but utilizes a different training
loss (see Section 3.2).

Training details. For each model, the training was performed on 100,000 training samples and
25,000 validation samples with a batch size of 1024. We employed 20 training epochs with Adam
optimizer [24]. The checkpoint retained corresponded to the one with the lowest validation loss. For
the Stochastic Multiple Choice Learning (sMCL) model, the multi-target version of the Winner-takes-
all loss was used. The rMCL and rMCL∗ models were trained with unit scoring loss weight (β = 1,
see §3.2), but the rMCL∗ training differed in that it only updated one negative hypothesis (compared
to all in standard rMCL). When trained in this manner, the rMCL∗ model can be considered a more
memory-efficient version of the proposed rMCL. The Independent Ensemble (IE) members were
trained with a single target update (in the sMCL, the best hypothesis is updated for each target)
as it resulted in a better fit to the data. The predictions from the IE members, trained with several
initialization instances, were then stacked. The IE results were not plotted in Figure 1 for clarity and
comparison purposes, as they were significantly worse (average Earth Mover’s Distance at test time
for the IE: 0.62± 0.11) compared to the other evaluated models.

Evaluation details. Figure 1, §3.4 (left) displays the Earth Mover’s Distance (EMD) values using `2
underlying distance calculated for 50 equally spaced input t values in the comparative evaluation.
At each time step and for each model, the EMD was computed between 1, 000 samples taken from
the ground-truth distribution, viewed as a mixture of Dirac deltas and the predicted hypothesis. The
centroids in each cell (described in the right part of the figure) were computed using 35, 000 samples
from the ground-truth distribution for each input.

A.2 Audio data experiments

Datasets preprocessing. As indicated in §4.2, the experimental setup incorporates the ANSYN and
RESYN datasets, which feature spatially localized events under anechoic and reverberant conditions
respectively [1]. We used the first-order Ambisonics (FOA) format with four input audio channels.
The events from 11 possible classes (Clearing throat, Coughing, Door knock, Door slam, Drawer,
Human laughter, Keyboard, Keys put on a table, Page turning, Phone ringing and Speech), extracted
from the DCASE16 Sound Event Detection dataset, were randomly placed in a spatial grid (see
[1]). We adhered to the dataset preprocessing described by Schymura et al. in [37, 36]. The audio
signals, with a sampling frequency of 44.1 kHz, were converted into 30-second files. From those
files, non-overlapping chunks of 0.5 s were generated to be used as training inputs. Spectrogram
computation was performed offline for saving computation, using Hann window with length 0.04 s
used for Short Term Fourier Transform (STFT) estimation, with 50% overlapping frames and 2048
Fast Fourier Transform (FFT) bins. The input for the model comprised both amplitude and phase
information, stacked channel-wise.

Architecture. We employed the SELDNet backbone [1]. After raw audio preprocessing, it accepts
the spectrograms of fixed duration with phase information as input and returns localization output
in the chosen output resolution (here, T = 25 output time steps were considered for each chunk).
The processing includes several feature extraction modules (CNNs, Bi-directional GRUs layers) that
generate a representation at each time step in the output resolution. These latent representations
are then mapped to the output localization estimates through FC layers. To accommodate the MCL
setup, the final FC layers were split into K FC heads, each producing a 2D output at each time step.
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The rMCL architecture also includes full confidence heads at the output stage, each producing a
scalar output in [0, 1] through a sigmoid function. Therefore, the number of added parameters in the
architecture is negligible (∼ 4 k when using 5 output hypotheses for an architecture with ∼ 1.5 M
parameters).

Training details. The training setup is the same as the one used in [37, 36]. Unless specified
otherwise, the training details correspond to those in [37], for which the official code was released,
in particular, the implementation of the PIT variant used. The trainings were conducted using the
AdamW optimizer [30], with a batch size of 128, an initial learning rate of 0.05, and following the
scheduling scheme from [43]. The MCL models were trained using the multi-target version of the
Winner-takes-all loss. The rMCL version was trained using confidence weight β = 1. As for the
synthetic data experiments, the training of IE members was performed using different random seeds
and single hypothesis loss with a single target update for each.

Evaluation details. As outlined in Section 4.2, the Oracle and EMD metrics with spherical distance
were employed for evaluation purposes. The EMD metric is an extension to solve the assignment
problem, often tackled using the Hungarian method [25]. Similar to prior studies (e.g., [1, 37, 36]),
the localization metric was computed solely for frames (the active frames) where at least one active
source is present in the sound scene. For each test sample, the metrics were computed and averaged
over the active frames among the output T frames. Furthermore, we computed the standard deviation
from the average metric for each subsection of the test set (D1, D2, and D3) sample-wise, as presented
in the Tables. The standard deviations of the metrics when performing the exact same experiments
from different random states are also provided in Appendix B.3. On a separate note, the frame recall
metric, which indicates the percentage of time frames in which the number of active sound sources
was estimated correctly, is omitted in the results for the sake of conciseness. This is because the EMD
already penalizes missing sources in the predictions. In the rMCL model, the number of sources in
the sound scene can nevertheless be computed before the normalization described in §3.2 by summing
the output scores

∑
k γ

k
θ(x).

Visualizations of rMCL outputs for input test samples from the ANSYN dataset are given in Figure
A.1.
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Figure A.1: Qualitative comparisons. Results for randomly chosen input audio clips (different rows)
from the D3 test subset of the ANSYN dataset. The columns correspond to the temporal predictions at
different time steps t. For each prediction (subplot), the abscissa and ordinates stand for azimuth and
elevation angles, respectively (in degrees). We notice the competitive performance of the proposed
rMCL model (with shaded blue circles for whose the score intensity is displayed in the colorbar)
compared with the Permutation Invariant Training (PIT) approach (orange squares, baseline used for
Tables 1 to 4) for predicting the positions of the targets (green stars).
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Figure B.1: Histogram of winner hypotheses’ indexes at test time for a 20-hypothesis model
trained on ANSYN. The x-axis displays the hypothesis index, and the y-axis the fraction of test
samples on which hypothesis k was selected. We observe a high entropy distribution, which shows
that the collapse did not occur for this model.

A.3 Computation details

We utilized the Hydra library for experimental purposes within the Pytorch deep learning framework.
Our coding was inspired by [32, 37, 36, 1].

Our experiments were conducted on NVIDIA A100 GPUs. The total computing resources used for
this project, including failed experiments, amount to approximately 2,000 GPU hours.

B Further discussions

B.1 About the collapse problem

As highlighted in the main paper, the collapse issue in MCL refers to a theoretical situation where
one (or a few) of the K hypotheses become dominant, i.e., are almost always selected as a winner and
receive the gradient update. In this situation, the other hypothesis heads are not updated, therefore
shrinking the diversity of the predictions. As a way to measure the collapse phenomenon for trained
model fθ = (f1

θ , . . . , f
K
θ ) using a validation dataset D , {(xn,Yn)}, one can compute for each k,

the number of samples in D for which hypothesis k is a winner, that is:

Nk(D) , |{(xn,Yn) ∈ D : ∃y ∈ Yn, y ∈ Yk(xn)}|.

The negative entropy of the histogram values {Nk(D)}k should therefore inform about the collapse
level; if the histogram shows a wide diversity of the selected hypotheses (i.e., a histogram with almost
uniform values for each bin), then there is no collapse. On the opposite, if the histogram has only one
non-zero bin, the collapse level is maximum.

In our experiments with audio data, we did not observe the collapse problem in practice, neither
with WTA nor with the proposed rMCL model. To verify this, one can compute the histogram of the
{Nk(D)} values as explained above. See Fig. B.1 for an example of visualization for a 20-hypotheses
model trained on ANSYN (corresponding to the results of Table 4 in the paper). As mentioned in
[19] (p.8), we believe this issue is, in practice, solved by the variability of the data samples and the
training stochasticity.

B.2 Robustness in the presence of target outliers

This section aims to provide insights into how the proposed model can handle the presence of outliers
in the output space, which may be critical in real-world datasets. Let’s consider a setting where we
have outliers in the training dataset, for instance, the toy use-case presented in the paper, where for
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Figure B.2: Robustness of rMCL to outliers. Evaluation results on the toy example when corrupting
the training dataset with outliers, modeled by a bivariate Cauchy distribution. (Left) Sorted values of
the unnormalized scores predicted from the hypotheses scoring heads at t = 0.6. (Right) Inference at
t = 0.1, 0.6, 0.9 with zoomed prediction in [−1, 1]2 (top) and Voronoi tessellations in the full plane
(bottom) with the same organization as in Figure 1.

each training example sampled, the probability of getting an outlier is ρ � 1. Then, whenever an
outlier is sampled, one hypothesis will be pushed towards it with its associated score heads updated.
As the training goes on, some of the hypotheses will manage the outlier samples; let’s name them
the ‘outlier hypotheses’. Thanks to the proposed hypothesis scoring heads, the model will also
learn the probability that an outlier hypothesis is chosen for a given training sample. Provided that
the outlier likelihood is ρ � 1, the scoring heads will therefore prevent outlier hypotheses output
from deteriorating the quality of the predicted distribution by rMCL. In Fig. B.2 an illustration
of this phenomenon is proposed using a Cauchy distribution (we used ρ = 0.02). We notice the
above-explained phenomenon, where the so-called outlier hypotheses account for the outlier samples,
while the other hypotheses lie in the square [−1, 1]2 representing the samples from the ground-truth
distribution.

Provided that the probability of sampling an outlier ρ is small enough and the outliers are far enough
from the ground-truth distribution to predict, the proposed rMCL model is therefore potentially robust
to outliers. In this case, some specific hypotheses, namely the outlier hypotheses, will be assigned to
them, preventing the non-outlier hypotheses from being heavily affected. At inference time, it will
indeed be possible to set to zero the very low-score hypotheses given an arbitrary threshold so that
the outlier hypotheses are not taken into account.

B.3 Further results on audio datasets

We provide in this section further benchmarks of the method on sound source localization (SSL)
datasets. Additionally to the results presented in Tables 1-4, where the mean and sample-wise
standard deviation of the metrics on ANSYN and RESYN datasets are computed, we provide in
Figures B.3 and B.4 further results considering the statistics of the metrics after several runs from
different random states, and also including the REAL [1] and DCASE19 [3] datasets. In those
datasets, the maximum number of overlapping events is respectively three and two.

Further datasets. In contrast to ANSYN and RESYN datasets which employ simulated Room
Impulse Responses (RIRs) for audio spatialization, the REAL and DCASE19 datasets utilize RIRs
recorded in real sound scenes. These were captured with a Spherical Microphone Array [1, 3].
Specifically, the recordings took place in various indoor settings inside a university. The REAL and
DCASE19 RIRs were convoluted respectively with sound events from the UrbanSound8k [35] and
DCASE16 datasets to achieve spatialization. Additionally, ambient noise was collected from the
environment of the RIR recordings in the DCASE19 dataset. The same dataset pre-processing and
sub-splitting process as presented in ANSYN and RESYN datasets was employed in REAL. For
DCASE19, the four development dataset splits were consolidated to form the training set, while
the official evaluation dataset served as the test set. The DCASE19 dataset comprises 60-second
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recordings. Notably, it has a low percentage of frames with overlapping events. To avoid bias from
the dominance of monophonic events in some polyphonic recordings, the unimodal and multimodal
splitting for the results in Figures B.3 and B.4 was executed at the prediction level, not the recording
level, for this dataset. For each dataset, the WTA variants were trained with n = 3 and ε = 0.5.

The outcomes from both the REAL and DCASE19 datasets mirror the patterns identified in preceding
datasets in Section 4.3. Within these results, the vanilla WTA approach, represented by the pink
diamonds, marginally outperforms our proposed method on the oracle metric when an equivalent
number of hypotheses is used. However, a substantial disparity is observed concerning the Earth
Mover’s Distance (EMD) metric when multiple hypotheses are predicted. Whenever a single source
is present in the scene, the IE with five members (yellow line, triangles) still tend to outperform the
other methods both in term of EMD and Oracle. In every multimodal setting within those datasets,
we discern competitive results while comparing the EMD of rMCL (blue line, circles) and the other
baselines.

Consistently with Section 4.5’s analysis, increasing the number of hypotheses K improves the oracle,
but it may also degrade slightly the EMD when K is too large. Furthermore, top-n-WTA shows a
disparity of results across datasets. For instance, the EMD results of top-n between ANSYN and
other datasets reveal a contrary trend as the number of sources grows. Finally, it is noteworthy that,
while oracle results remain stable, greater variability is seen in the rMCL unimodal EMD results in
REAL and DCASE19 compared to prior datasets. This fluctuation may be attributed to the stochastic
optimization sensibility to the challenging audio conditions, particularly when a single source is
active and multiple hypotheses are utilized. Investigation on the explicit evaluation of the uncertainty
estimated by rMCL, e.g., due to possible label noise, is left for further work.
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(a) Statistics of the metrics on ANSYN.
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(b) Statistics of the metrics on RESYN.
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(c) Statistics of the metrics on REAL.
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(d) Statistics of the metrics on DCASE19.

Figure B.3: Statistics of the metrics over four datasets. Mean and standard deviation of EMD (left)
and Oracle (right) over three training runs, on ANSYN, RESYN, REAL and DCASE19 datasets
(a-d). Details and interpretation of the results are discussed in Sec. B.3.
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(a) Sensitivity analysis on ANSYN.
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(b) Sensitivity analysis on RESYN.
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(c) Sensitivity analysis on REAL.
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(d) Sensitivity analysis on DCASE19.

Figure B.4: Effect of the number of hypotheses on the performance of rMCL. Mean and standard
deviation of EMD (left) and Oracle (right) over three training runs, on ANSYN, RESYN, REAL and
DCASE19 datasets (a-d). Details and interpretation of the results are discussed in Sec. B.3.
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